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Abstract— We develop a second-order time-delayed
and spatially offset follow-the-leader model. The velocity
of the lead vehicle is reduced as a function of position
to simulate passage through a bottle-neck in the road.
We discuss conditions in our model that produces both
forward and back-propagating waves. To quantify our
results, we examine the average velocities of each vehicle
and determine whether any collisions between vehicles
occur.

I. INTRODUCTION

Congestion is a daily problem for millions of
commuters. Often, after creeping along bumper-
to-bumper, a traffic jam will suddenly clear and
there will no sign of what caused the slow-down.
In order to understand this phenomenon, many
attempts have been made to mathematically model
the dynamics of vehicles in traffic.

There are two major categories of traffic flow
modeling: macro- and microscopic. A microscopic
model tracks the dynamics of a discrete number of
individual vehicles as the move along a road. In
contrast, a macroscopic model ’zooms out’ such
that the number of vehicles goes to infinity while
their lengths and spacing shrinks to zero, produc-
ing a density function. A prominent macroscopic
model is the Lighthill-Whitham-Richards (LWR)
model [3], [7]. It is possible to transform a first-
order microscopic density-based model into the
LWR macroscopic model [6]. Recent work also
demonstrated that it is possible to convert a first
order time-delayed microscopic model to a delayed
macroscopic model that converges to LWR when
the delay is taken to zero. The inclusion of a time
delay is important for increasing the accuracy of
follow the leader models, both in vehicular and
pedestrian traffic [6]. In [4], it is shown that a flow
of vehicles produces a traveling shock wave when
they transition to region with a slower speed limit.

In this paper, rather than using a first order
method, such as LWR, we will develop a second-
order model based on [1], with the addition of
a time delay and a spatial offset, and we will
introduce a bottle-neck function that decreases the
velocity of the lead vehicle as a function of posi-
tion. We discuss conditions in our model that pro-
duces both forward and back-propagating waves
and causes a collision and, to quantify our results,
we will examine the average velocities of each
vehicles. In some models, the non-delayed LWR

in particular, collisions are impossible because the
vehicles instantaneously slow to the appropriate
velocity as they approach the preceding vehicle. In
our model, however, collisions are possible, due to
the time delay, so we include collision detection in
our model.

II. MODEL
A. Setup

Our system consists of a long single-lane road
which holds a series of n vehicles located at
x1, x2, . . . , xn, where xi−1 ≥ xi for i = 1, . . . , n.
We will refer to the vehicle at x1 as the lead
vehicle. We will also define di as the distance from
the ith vehicle to vehicle i−1, that is di = xi−1−xi.
We will call d the following distance; it is strictly
positive except in the case of collisions.

For simplicity, we treat the length of each ve-
hicles as zero, therefore xi−1 = xi implies that
vehicles i − 1 and i are at the same location,
therefore a collision has occurred.

B. Velocity Function
A key component to the modeling of traffic is

the velocity function used to determine the motion
of each vehicle. In [1] a second-order model is
used, motivated by the fact that real drivers cannot
directly control their velocity, only their acceler-
ation. Therefore, each vehicle is given a target
velocity that varies over time as a function of the
following distance

Λi = tanh(di). (1)

The value of Λ is then used to define acceleration
as

ẍi ≡ σ · (Λi − ẋi), (2)

where σ is a sensitivity coefficient. The authors
of [1] found that their system exhibits unstable,
chaotic behavior that mimics real traffic. Their
model works under the assumption, however, that
vehicles instantaneously respond to the motion of
the previous vehicle.

In the current work, we will modify (1) in three
ways. First, we add a time-delay to imitate the
reaction time of human drivers. Second, we include
a spatial offset to model a safe following distance,
And, third, we scale by a speed limit to create
reasonable numeric results.
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Fig. 1: Target velocity Λ as a function of following
distance d.

The spatial offset is motivated by the fact that
drivers do not set their velocity with the intent of
achieving zero following distance. On the contrary,
drivers try to achieve a safe gap between them and
the previous vehicle to allow themselves to stop in
time in the case of an emergency. We call this
target following distance, D. We will treat D as
a constant parameter, though in real life it would
vary as a function of velocity (e.g. drivers follow
more closely when driving 5m/s than 30m/s).

Now, the modified velocity function becomes

Λ(d) = V · tanh
(
2

ψ
(d−D)

)
.

The factor of 2
ψ

, where ψ is the saturation distance,
is introduced to spatially scale the width of the
function around (d−D). When (d−D) = ψ, then
Λ = V · tanh(2) ≈ V . We will use ψ = D so
that the value of Λi is nearly minimized around
the position of xi−1.

Λ(d) = V · tanh
(

2

D
(d−D)

)
(3)

Note that (3) reduces to the (1) when D = 0,
V = 1, and ψ = 2.

Now, we will add one more modification, a time
delay T to model the reaction time of drivers. In
our velocity function, we replace d, which is really
d(t), with

d̃(t) ≡ d(t− T ),

producing

Λ(d̃) = V · tanh
(
d̃−D

)
(4)

We must also modify (2) to use a time-delayed
version of ẋi(t) with

˙̃x(t) ≡ ẋ(t− T )

So our time-delayed acceleration is

ẍ(t) ≡ σ ·
(
Λ(d̃)− ˙̃xi

)
.

That is, the target velocity is based on the driver’s
delayed perception of the systems dynamics that
happened at a past time. (See [8] for consider-
ation of a system that uses separate delays for
perception of distance and for relative velocity; the
authors there show that the stability of traffic flow
increases when the delay in responding to changes
in position and changes in velocities are similar.)

C. Initial and history conditions
Next, we need to choose initial conditions for

our system. We desire that the system starts in a
steady (possibly unstable) state with the vehicles
evenly distributed at distances of d0 and moving at
a constant speed v0. The positions of the vehicles
at t = 0, therefore, are given as

xi(0) = −d0 · (i− 1), i = 1, . . . , n.

Note that x1(0) = 0 and the starting position of all
vehicles are non-positive.

Because we are using a delayed differential
equation, it is insufficient to only state instanta-
neous initial conditions, rather it is necessary to
define an initial function, H : [−T, 0] → Rn, [2].
There are two conditions on H:

• x0i = H(0)i

• v0 =
d
dt
(H(t)i)

∣∣∣∣
t=0

.

We note that there is a not a unique history
function that satisfies these boundary conditions.
Clearly, we can vary the values of H(t) for values
−T ≤ t < 0, without affecting the boundary
conditions. Any such function, however, is suffi-
cient for our needs, and we find that a reasonable
choice of history function is a steady state traffic
flow where each vehicle is traveling at a constant
velocity

Hi(t) = x0i + v0 · t.
This choice of history function has the additional
benefit that it is a solution to the non-delayed
version of our dynamical system.



D. Lead Vehicle Velocity

Note that up this point, the dynamics of the lead
vehicle has not been sufficiently defined. Equation
(4) depends on the distance to the previous vehicle,
but in the case of the lead vehicle, there is no
previous vehicle. A naive approach would be to
merely use d = ∞. This choice produces a system
with reasonable dynamics, as the lead car would
accelerate from its initial velocity and asymptoti-
cally approach the speed limit. The other following
vehicles will in turn accelerate as the lead vehicle
moves away, so that they all approach the speed
limit.

It is desirable, however, for our system in the
absence of bottle-neck to be in a steady state
without any acceleration. To this end, we provide
a distinct definition for lead vehicle’s velocity

ẋ1 ≡ Λ(d0) = V · tanh
(

2

D
(d0 −D)

)
(5)

1) Bottle-neck: In order to examine the behav-
ior of traffic as it passes through a bottleneck, we
modify (5) as

ẋ1(t) = β(x1) · Λ(d0) (6)

where the function β : [0,∞] → [0, 1] reduces
the effective speed limit along the length of the
road. We reduce the velocity of only the lead
vehicle in this manner in order to examine the
effect of a single vehicle slowing on those behind.
In particular, we are interested in whether a slow
down will propagate as a wave or die out, and if it
propagates, whether it will it remain where it began
or move over time. For this work, we choose

β(x) = 1− θ · e−(x−c)2/w2

, (7)

where c > 0 is the center of the bottle-neck,
w > 0 defines the width of the bottle-neck, and θ ∈
[0, 1) is a coefficient which defines the decrease in
velocity through the bottle-neck. We require θ ̸= 1,
otherwise the lead car would asymptotically ap-
proach, but never reach, the bottle-neck, bringing
the traffic to a full stop.

In order to ensure a smooth transition from the
initial conditions, we require that ẋ1(0) = v0,
which implies β(0) = 1. This requirement cannot
be perfectly satisfied by (7). If we are careful in our
selection of the bottle-neck parameters, however,
the difference will be insignificant to our results,

so we soften the requirement to β(0) > 1− ϵ, for
some sufficiently small ϵ. We can then find a lower
bound for c in terms of w.

c > w
√

− ln(ϵ) (8)

If we choose ϵ = 10−6, then (8) becomes

c > 3.72 · w

In this paper, we use a w = 50 meters, c = 200
meters, and θ = 0.5, which clearly satisfy (8).

III. RESULTS

To analyze the system, we consider the aver-
age velocity per vehicle after passing through the
bottle-neck and whether a collision occurs.

A. Collision Detection

The most important attribute of a traffic system
is whether for not any accidents occur. In order to
detect if a given configuration of the system pro-
duces collisions, we must verify that two vehicles
never occupy the same position, i.e.,

xi−1(t) > xi(t), ∀t ∈ [0, tend].

This condition can be be expressed as a function
δ(xi, xi+1) = xi+1−xi. We the pass this function as
a termination condition to our DDE solver so that
the integration aborts any time δ passes through
zero.
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Fig. 2: A system in a steady-state demonstrates
instability leading to a collision. d0 = 50.00m,
D = 30.00m, T = 1.15 sec, and σ = 2.00



Using this, we can find that some systems that
begin in a state of steady flow are unstable and
lead to a collision. See Fig. 2 as an example of
as system with a large delay time (T = 1.15
seconds). Small disturbances become amplified by
the drivers’ slow reaction. This result has obvi-
ous implications when drivers are driving at high
speeds or with inhibited reaction times due to
inebriation. These instabilities disappear when the
delay time is decreased.

B. Average Velocities

The next value we use to evaluate our system is
the average velocity of each vehicle.

˙̄x ≡ xi(tend)− xi(0)

tend
(9)

This is easy to compute except for one caveat:
choosing the time interval. In order for the compar-
ison of average velocities to be comparable from
one vehicle to the next, and between systems, the
time must start before each vehicle has entered
the congestion and end after they have left it.
The first is satisfied automatically, as there is no
congestion at t = 0. The second condition is where
we run into some difficulty. A traffic jam is not
bounded to a specific region or interval of time.
It is possible for the leading edge to travel either
forward or backward, as a shock wave, with the
direction depending on the flow of vehicles [5].
If the wave travels backward, against the flow of
traffic, then it will always be before the center
of the bottle-neck, therefore we can terminate the
integration when the last vehicle passes the center.
In the second case, however, where the shock wave
moves forward, the point where the last vehicle
has passed through is not clear, and it its certainly
not before the center of the bottle-neck. There is
not a distinct end to the jam, either spatially or
temporally, as it gradually dissipates (See Fig. 3).
Therefore, we will consider the first case and leave
the second for later research.

Examination of the average velocities in a sys-
tems with a backward propagating wave produces
a surprising but retrospectively intuitive result:
regardless of stop-and-go traffic prior to the bottle
neck, the average velocity of all vehicles are nearly
equal by the time the last one passes the bottle-
neck 5. The explanation for this phenomenon is

Fig. 3: Velocity ẋi for each vehicle i as a function
of time t. The shock-wave of a forward-moving
traffic wave dissipates over time and distance.
d0 = 80.00m, D = 40.00m, T = 0.15 sec, and
σ = 10.00

Fig. 4: A backward-propagating wave intensifies
over time, leading to stop-and-go traffic. d0 =
40.00m, D = 30.00m, T = 0.15 sec, and σ =
2.00

that stop-and-go behavior materializes as vehi-
cles approach the preceding vehicle too closely
and must quickly decelerate. But, ultimately, this
chaotic behavior does not matter, by the time the
each vehicle passes the bottle-neck, the vehicle
behind is close to the target following distance, so
its speed passing through is similar to all the other
vehicles. Once each vehicle is past the bottle-neck,
they accelerate as necessary to restore a following
distance of D, which means their final distribution
closely matches their initial. The small uptick for
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Fig. 5: Average velocity, ˙̄x, for the ith vehicle
passing through a backward propagating traffic
wave. Note the small vertical scale.

the last several vehicles, is a result of the fact that
they have not yet had time to fully return to their
target following distance (but they are still nearly
at D)..

IV. SUMMARY

Using a second-order time-delayed system, and
a target following distance, we have been able to
model the dynamics of traffic. Our model was able
to replicate both forward and back-propagating
waves, and exhibited expected instability when
long reaction times were introduced.

There are a number of ways that the model can
be improved. The first would be to place limits
on the range of allowable accelerations, in order
to prevent accelerations that are outside the capac-
ity of real-life automobiles. Another improvement
would be to modify 4 so that the target velocity
not only takes into account the current following
distance, but also accounts for the velocity of the
preceding vehicle.

Further investigation into the characteristics of
this model, could also prove fruitful. Calculating
the work done by each vehicle in the system

Ei =

∫
max(ẍi, 0)dxi, (10)

could provide insight into the relative efficiency of
various values of V , D, and σ.

Finally, it would be worthwhile to consider
the effects of introducing autonomous vehicles to
the system. By providing a robotic driver with
advanced knowledge of upcoming congestion, it

could manipulate its speed (and the speed of
following cars), in order to dissipate shock-waves
and increase the efficiency of the entire roadway.
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