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Motivating Example: Adaptive Cruise Control (ACC)
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Motivating Example: Adaptive Cruise Control (ACC)
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If no computational delays: If computational delays:

—> Guaranteed minimum headway = 777

Computational delays depend on

» Control Algorithm, implementation, and parameters
» Computational hardware
» Current state and measurements

> Recent computations
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SHARC: Simulator for Hardware Architecture and

Real-time Control

SIMULATOR FOR HARDWARE ARCHITECTURE & REAL-TIME CONTROL
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Features

> Uses same executable as would be deployed.

» Parallelized to shorten run times.

» Easy configuration via JSON files.

» Dockerized for easy setup.



Mathematical Model of Delayed Computations

Discrete Physics Model ] y

Te+1 = f(tk1$k7uk7w(tk))
Yk — h(l’k,’ltk,'ll)(tk)) J

Controller with Computational Delay

While computation pending | | When computation finished
{ Ukl = U Uk+1 = Uk

U1 = Ug, U1 = 9(tk, Yr)
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Controller Execution Simulation

To estimate controller run time, we use the Scarab Microarchitectural Simulator.

» Low level simulation of controller binary on CPU
» Simulates caching, branch prediction, pipelining, etc.

» Customizable processor parameters

» Cache size
» Clock speed
> Architecture

» Provides detailed statistics.
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ACC Example: Instruction Cache Size Comparison

Problem 1 (Linear MPC)

minimize |velocity error|?
+ |control effort|?

subject to
Linear System Dynamics
Linear Safety Constraints

— Performance degrades if instruction
cache is only 1 KB.
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Example Pseudocode

Physics Dynamics (Python interface)

class MyDynamics(Dynamics) :
def evolve_state(self, t0, x0, u, tf):
return xf # Final state

def get_output(self, x, u, w):
return y

def get_exogenous_input(self, t):
return w

Controller (C++)

class MyController : Controller {
void calculateControl(double t, Vec &y){
return u;
b

};
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Configuration

"system_parameters”

"Simulation Options": { "mpc_options":{
"parallel_scarab_simulation": false, "enable_mpc_warm_start": false,
"max_batches": 9999999, "prediction_horizon": 5,
"max_batch_size": 9999999 "control_horizon": 5,

}s "output_cost_weight": 10000.0,

"dynamics_module_name": "dynamics.dynamics", "input_cost_weight": @.01,

"dynamics_class_name": "ACCDynamics", "delta_input_cost_weight": 1.0

“n_time_steps”: 6, }s

"xe": [e, 60.0, 15.0], "osqp_options": {

"ue": [e.0, 100.0], "abs_tolerance": 1e-5,

"system_parameters": "rel_tolerance": 1le-5,
"state_dimension": 3, "dual_infeasibility_tolerance": 1le-3,
"input_dimension": 2, "primal_infeasibility_tolerance": 1le-3,
"exogenous_input_dimension": 2, "maximum_iteration": 5000
"output_dimension": 3, }

"sample_time": 0.2, }s

"mass": 2044, "PARAMS_base_file": "PARAMS.base",
"d_min": 6.0, "PARAMS_patch_values": {

"v_des": 20, "chip_cycle_time": 60000000,
"v_max":- 2@, "11_size": null,
"F_accel_max": 4880, "icache_size": null,
"F_brake_max": 6507, "dcache_size": null
"max_brake_acceleration": 3.2,

"max_brake_acceleration_front": 5.0912,
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SHARC Parallelization

Simulation in Scarab is 10,000x slower than executing directly on the host processor.

= Simulating slow controllers on a long time horizon can require several days
—> We designed a parallelization scheme that allows many time steps to be
run in parallel
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SHARC Parallelization
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SHARC Parallelization
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SHARC Parallelization

Simulation in Scarab is 10,000x slower than executing directly on the host processor.

— Simulating slow controllers on a long time horizon can require several days
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Comparison: Serial vs. Parallel
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Simulation Time
» Serial: 1 hour, 20 minutes
» Parallel: 40 minutes

Fidelity loss due to discarding memory
effects between time steps.
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Example: Nonlinear Inverted Pendulum Example

Norm of State ||x||
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minimize |angle error|? § 20

+ |control effort|? £ T
subject to Nonlinear Dynamics 5_40
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Conclusion

Future Work

» Expand systems simulated in SHARC.

» Generate models of computation time conditioned on state, controller parameters,
and hardware configuration.

» Use models of computation time to accelerate parallelization.

v

Use SHARC to establish guarantees on system performance.

» Use SHARC for co-design of hardware and controllers by joint optimization.
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Linear MPC Problem Formulation for ACC Example

minimize Ko+, ko-+Np—1 ko+Np—2
T (20 ko w0 ko) = D (ko = vaes)” + D Wl Ritagiy + @ D [thi1jky = Uiro|”
k=ko k=ko k=ko
with respect to
Tholkos L(ko+ 1) kos -+ » Tkot Np)lko € Ros Ukolkos U(ko41)[kos - - » Ulko+ Np—Dlko € R
subject to
Tholko = LTho»
and for each k = ko, ko +1, ..., ko +Np — 1,
Tt 1iko = A(00) Tk, + B(00)up i, + Ba(0o)w(k|ko),
and for each k = ko, ko +1, ..., ko + Np,
0 < Ukky < Umaxs 0 < Upppey S Uhpay 0< u,*;‘,m <l hmin < Pk s

and for k = ko + N,
hk|k0 > (UmaX/Q‘aD'UMkO - ﬁg(k|k0)/2‘aF| + hanin.
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Nonlinear MPC Problem Formulation

minimize
ko+N.—1 ko+Np—1
J(x()lkov“( Iko Z C( l‘k\ko’“k\ko Z C(xk\kmu(ko—&-Nc—lﬂko)
k=ko k=ko+N.
with respect to
Lholkos T(ko+1)|ko> - -+ 5 L(ko+Np)|ko € R, Uko|kor W(ko+1)|koo  + + » W(ko+Ne—1)|ko € R™
subject to
Tholko = Tho>
and for each k = kg, ko +1, ..., ko+ Np—1
Tt1iko = S (Tkiko» Ukiko )
and for each k = ko, ko +1, ..., ko + Ny,
G(Thikos Yklkos Uklko) < 05 Le(Tkirgs Ulky) = 0.
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