
Sharc: Simulator for Hardware Architecture
and Real-time Control

Paul K. Wintz∗
University of California, Santa Cruz

Santa Cruz, California, USA
pwintz@ucsc.edu

Yasin Sonmez∗
University of California, Berkeley

Berkeley, California, USA
yasin_sonmez@berkeley.edu

Paul Griffioen
University of California, Berkeley

Berkeley, California, USA
griffioen@berkeley.edu

Mingsheng Xu
University of California, Santa Cruz

Santa Cruz, California, USA
mxu61@ucsc.edu

Surim Oh
University of California, Santa Cruz

Santa Cruz, California, USA
soh31@ucsc.edu

Heiner Litz
University of California, Santa Cruz

Santa Cruz, California, USA
hlitz@ucsc.edu

Ricardo G. Sanfelice
University of California, Santa Cruz

Santa Cruz, California, USA
ricardo@ucsc.edu

Murat Arcak
University of California, Berkeley

Berkeley, California, USA
arcak@berkeley.edu

ABSTRACT

Tight coupling between computation, communication, and con-
trol pervades the design and application of cyber-physical systems
(CPSs). Due to the complexity of these systems, advanced design
procedures that account for these tight interconnections are para-
mount to ensure the safe and reliable operation of control algo-
rithms under computational constraints. This paper presents the
Simulator for Hardware Architecture and Real-time Control (Sharc)
to assist in the co-design of control algorithms and the compu-
tational hardware on which they are run. Sharc simulates the
execution of a user-specified control algorithm on a given proces-
sor microarchitecture configuration, evaluating how computational
constraints affect the dynamical properties of the closed-loop sys-
tem. We illustrate the power of Sharc by examples of MPC applied
to adaptive cruise control and the stabilization of an inverted pen-
dulum. Sharc can be found at github.com/pwintz/sharc.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; Processors andmemory architectures; Real-
time system architecture; • Software and its engineering → Soft-
ware verification and validation.

KEYWORDS

Microarchitecture simulator, Feedback Control, Real-time systems,
Safety

ACM Reference Format:

Paul K. Wintz, Yasin Sonmez, Paul Griffioen, Mingsheng Xu, Surim Oh,
Heiner Litz, Ricardo G. Sanfelice, and Murat Arcak. 2025. Sharc: Simulator

∗Both authors contributed equally to this research.

HSCC ’25, May 6–9, 2025, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 28th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC ’25),
May 6–9, 2025, Irvine, CA, USA, https://doi.org/10.1145/3716863.3718046.

for Hardware Architecture and Real-time Control. In 28th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC ’25), May 6–9,
2025, Irvine, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3716863.3718046

1 INTRODUCTION

Cyber-physical systems (CPSs) are engineered systems that incor-
porate digital sensors, computers, and actuators interacting with
physical processes. CPSs are ubiquitous in modern critical infras-
tructure such as transportation systems, energy delivery, and health
care. Typically, a CPS has strong coupling between its computa-
tional hardware, physics, and control algorithms. CPU designers,
however, usually optimize for generic instruction sets—not for a
specific algorithm—whereas control designers typically do not de-
sign their algorithms for a particular hardware architecture. Many
properties of the physical system, including stability, safety, and
liveness, are affected by the latency of computing the next con-
trol input. The computational delay depends on the underlying
computational hardware on which the control algorithm is run.
Thus, to develop CPSs that satisfy demanding design specifications,
engineers must jointly consider the computing power and control
methods. To address this challenge, this paper introduces a tool
called the Simulator for Hardware Architecture and Real-time Con-
trol (Sharc) that simulates the physical evolution of a CPS and the
execution of control algorithms on different computing platforms
to incorporate realistic controller delays in the closed-loop simula-
tion. The ability to incorporate accurate computation delays into
simulations allows system designers to gain a better understanding
of how computational limitations affect the behavior of the system,
thereby informing better designs.

To allow for quick and easy installation of Sharc, a Dockerized
version of Sharc is provided. To aid in the development of Sharc
and implementation of controllers and dynamics using Sharc, the
project is configured to support running Docker images in a Dev-
container. A suite of unit tests is included in the Sharc to verify
Sharc’s internal logic.

https://github.com/pwintz/sharc
https://doi.org/10.1145/3716863.3718046
https://doi.org/10.1145/3716863.3718046
https://doi.org/10.1145/3716863.3718046

HSCC ’25, May 6–9, 2025, Irvine, CA, USA Wintz, Sonmez, et al.

1.1 Problem Setting

Creating tools to analyze CPSs is challenging due to the interactions
between computational hardware, physics, and control software.
There has been a trend toward consolidating control software com-
ponents onto shared multicore processors to reduce size, weight,
and power while improving performance. The adoption of multi-
core hardware in practical CPSs, including automotive [19], avion-
ics [17], and medical systems [24], brings many benefits but also
introduces a new host of challenges for modeling and analysis. In a
multicore processor, some resources, such as the caches, memory
bus, and random access memory (RAM), are shared between cores,
which affects the timing of the control software in complex ways,
making the timing difficult to model and predict.

Beyond traditional CPUs, specialized computing hardware is
becoming prevalent in CPSs, including highly-parallelized proces-
sors (GPUs), configurable hardware (e.g., field programmable gate
arrays, or FPGAs), and domain-specific accelerators (such as Tesla’s
Full Self-Driving Application-Specific Integrated Circuit [2]). These
components are critical for the unique demands of real-time ma-
chine learning, computer vision, and other applications. On the
other hand, control software is also becoming increasingly com-
plex, with diverse and rapidly changing resource requirements and
performance goals [10]. Computation-aware control algorithms
require detailed information about the performance of the compu-
tational hardware via strong performance monitoring capabilities
in order to understand how to safely and effectively optimize the
hardware and control algorithms.

Creating tools that can assess and simulate complicated inter-
actions between hardware and software is critical for automotive,
avionics, and other domains in which computationally-intensive
processes play a significant role at runtime. In particular, it is im-
portant to ensure that advanced control algorithms can run on
the available computing hardware with high confidence. For exam-
ple, automotive original equipment manufacturers (OEMs) need
to evaluate whether updated software for advanced controllers or
perception algorithms can be safely deployed on vehicle models
of the previous year. To ensure that advanced control algorithms
can run on available computing hardware, regression analysis of
candidate controllers should be concurrently tested in situ for de-
ployed systems. Some algorithms for achieving robust autonomy,
such as model predictive control (MPC), have limited deployment
due to insufficient computing power. By using Sharc to simulate,
analyze, and optimize controllers and hardware platforms, engi-
neers can design solutions that improve the use of onboard energy
and computational sources, allowing cheaper and more efficient
implementations of advanced control schemes.

1.2 Literature Review

Prior research has investigated quantifying the computational de-
mands of various control algorithms and mitigating the effects of
computational delays. The authors of [3, 4, 6, 8, 22] investigate
the effects of the worst-case execution time on the performance of
several control algorithms, including linear quadratic control (LQR),
model predictive control (MPC), and state-dependent Riccati equa-
tion (SDRE) nonlinear control. In particular, linear and nonlinear

MPC schemes that preserve stability and performance under compu-
tational delays are presented in [12, 14, 31] with a brief introduction
given in [14, Section 7.6]. However, none of these schemes provides
a tool or methodology that explicitly accounts for the effects of
many kinds of computational hardware, including hardware that
has not yet been fabricated. In contrast to these works, Sharc is able
to analyze the effects of diverse microarchitectures—including hy-
pothetical configurations—on the performance of the closed-loop
system. This allows the user to conduct both microarchitecture
design exploration and control design optimization.

CPU manufacturers and computer architecture researchers rely
on microarchitectural simulation to explore the hardware design
space, prototype new hardware ideas, and evaluate application
performance on hypothetical hardware. Microarchitecture simula-
tors model the internal hardware architecture of CPUs, including
branch predictors, instruction fetch and decode units, functional
units, instruction schedulers, and memory subsystems with mul-
tiple levels of caches. Some noteworthy microarchitecture sim-
ulators are gem5 [5], ChampSim [13], ZSim [25], MARS [30], and
Sniper [9]. While these simulators enable accurate application simu-
lation and performance modeling, they are not designed to simulate
controllers interacting in a closed-loop with a physical system. In
particular, they cannot be directly integrated into a model where
the controller interacts with a physics simulation since microarch-
itecture simulators do not incorporate methods for synchronizing
the passage of time in dynamical simulations with the execution of
the controller code inside the microarchitecture simulator.

Prior works have proposed tools for testing control algorithms
interacting with physical systems via co-simulations and via hard-
ware-in-the-loop (HIL). Co-simulation tools [15, 29] provide simu-
lations of the CPU capable of modeling hardware events such as
interrupts, but they do not provide a cycle-accurate timing simula-
tion, which is necessary to ensure the safe and reliable operation of
control algorithms under computational constraints. Hardware-in-
the-loop simulation integrates real-time hardware into a simulated
environment, enabling realistic validation of control algorithms.
The system’s physics are simulated on a real-time platform, inter-
acting in a closed loop with actual hardware, such as an embedded
controller. HIL is widely used in automotive and aerospace ap-
plications to evaluate controllers for autonomous vehicles, flight
control systems, and industrial automation, ensuring robust per-
formance before deployment [11, 20]. However, traditional HIL
setups rely on fixed hardware, limiting flexibility in exploring dif-
ferent architectures or optimizing control algorithms under varying
constraints. Sharc overcomes these limitations by using a reconfig-
urable cycle-accurate microarchitectural simulator in a closed-loop
with a simulation of the system’s physics.

The remainder of the paper is structured as follows. Section 2
introduces the modeling framework for the physics and the com-
putational hardware, as used by Sharc. Section 3 describes the
implementation and basic usage of the simulator, with a serial exe-
cution mode described in Section 3.1 and a parallel mode described
in Section 3.2. Two examples are presented in Section 4. In par-
ticular, section Section 4.1 contains an example of adaptive cruise
control for longitudinal vehicle control via linear MPC and Sec-
tion 4.2 demonstrates simulation of an inverted pendulum system

Sharc HSCC ’25, May 6–9, 2025, Irvine, CA, USA

stabilized by a nonlinear MPC controller. To conclude, Section 5
describes future research directions.

2 MODELING

In this section, we introduce our modeling framework for the
physics, controller, and computational hardware of a CPS, and
their interconnection.

2.1 Physics and Controller

A physical system controlled by a controller is typically called a
plant. The physics of a plant are often modeled as a differential
equation, which we write as

¤𝑥 = 𝑓 (𝑡, 𝑥,𝑢,𝑤), (1a)
𝑦 = ℎ(𝑥,𝑢,𝑤), (1b)

where the plant has state 𝑥 ∈ R𝑛𝑥 , control input 𝑢 ∈ R𝑛𝑢 , output
𝑦 ∈ R𝑛𝑦 , and a disturbance 𝑤 ∈ R𝑛𝑤 . The disturbance (or exoge-
nous input) is given as a function 𝑡 ↦→ 𝑤 (𝑡) ∈ R𝑛𝑤 for all 𝑡 ≥ 0.
Although physical systems are nicely represented mathematically
by differential equations, most methods for numerically simulating
continuous-time systems use discretization. In Sharc, we use a
discrete model on an evenly-spaced time grid with period 𝑇 > 0,
defined by 𝑡𝑘 := 𝑘𝑇 for each 𝑘 ∈ N. We write the discrete dynamics
of the plant as

𝑥𝑘+1 = 𝑓 (𝑡𝑘 , 𝑥𝑘 , 𝑢𝑘 ,𝑤 (𝑡𝑘)), (2)

where 𝑓 is a discretization of the physics with sample time 𝑇 , and
𝑥𝑘 := 𝑥 (𝑡𝑘), 𝑢𝑘 := 𝑢 (𝑡𝑘), and 𝑦𝑘 := 𝑦 (𝑡𝑘) for each 𝑘 . Figure 1
illustrates the discretization of the continuous-time physics in (1).

Discretized Physics Model:

Continuous-time

Model of Physics MeasurementsZero-Order Hold

Figure 1: A continuous-time physics model as in (1) can be

discretized by interpolating a discrete input 𝑢𝑘 using zero-

order hold and sampling the 𝑦𝑘 output at sample times 𝑡𝑘 .

The input 𝑢 is generated by a control algorithm that evaluates a
control function (𝑡, 𝑦) ↦→ 𝑔(𝑡, 𝑦) ∈ R𝑛𝑢 . We assume that the control
values are only updated at sample times. When discretizing (1), as
shown in Fig. 1, Sharc interpolates the input between consecutive
time steps 𝑡𝑘 and 𝑡𝑘+1 using zero-order hold. In particular,𝑢 (𝑡) = 𝑢𝑘
for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), where 𝑢𝑘 is the value of the control input
received from the controller at 𝑡𝑘 . The output𝑦𝑘 represents periodic
sensor measurements.

Users of Sharc can implement the physics of their system in
two ways. If they are starting with a continuous-time system, they
can provide 𝑓 to have Sharc automatically generate and evaluate
the discretization 𝑓 via numerical integration. Alternatively, users
can provide 𝑓 directly if they wish to implement other types of
models, such as hybrid systems or stochastic differential equations.

Discrete Physics Model

Controller with Computational Delay

While computation pending

When computation finished

Figure 2: A feedback diagram of the closed-loop model of

the physics with a controller that has computational delays.

After a control computation is started but before its computa-

tion time has elapsed in the simulation, it is stored as 𝑢̃𝑘 . The

values of 𝑢 and 𝑢̃ are held constant until the computation is

finished.

2.2 Interaction between Physics and Controller

with Computation Delays

In an idealized system, the controller 𝑔 provides the next control
value 𝑔(𝑡𝑘 , 𝑦𝑘) immediately at time 𝑡𝑘 . In realistic systems, how-
ever, computing the control update takes time, so the new control
value is not available until after some computation delay 𝜏𝑘 > 0.
To capture the delay, we execute the controller code to calculate
𝑔(𝑡𝑘 , 𝑦𝑘) and store the “pending” control value in amemory variable
𝑢̃𝑘+1 := 𝑔(𝑡𝑘 , 𝑦𝑘) until the next sample time after 𝑡𝑘+1 := 𝑡𝑘 + 𝜏𝑘 . To
determine the computation delay 𝜏𝑘 , Sharc simulates the execution
of the controller code on a given processor using a cycle-accurate
microarchitectural simulator, as described in Section 2.3. The sys-
tem continues to use 𝑢 = 𝑢𝑘 until the next sample time after 𝑡𝑘 ,
at which point the input is set to the control value that was being
computed: 𝑢 = 𝑢̃𝑘 .

The model used by Sharc for the closed-loop dynamics of a
CPS’s controlled by a computationally delayed controller is

𝑥𝑘+1 = 𝑓
(
𝑡𝑘 , 𝑥𝑘 , 𝑢𝑘 ,𝑤 (𝑡𝑘)

)
(3a)

𝑦𝑘 = ℎ
(
𝑥𝑘 , 𝑢𝑘 ,𝑤 (𝑡𝑘)

)
(3b)

If 𝑡𝑘+1 < 𝑡𝑘 ,
(Computation
in progress)


𝑢𝑘+1 = 𝑢𝑘
𝑢̃𝑘+1 = 𝑢̃𝑘
𝑡𝑘+1 = 𝑡𝑘

(3c)

If 𝑡𝑘+1 ≥ 𝑡𝑘 ,
(Computation

finished)


𝑢𝑘+1 = 𝑢̃𝑘
𝑢̃𝑘+1 = 𝑔(𝑡𝑘 , 𝑦𝑘)
𝑡𝑘+1 = 𝑡𝑘 + 𝜏𝑘 for computing 𝑔(𝑡𝑘 , 𝑦𝑘),

(3d)

where the initial state 𝑥0 ∈ R𝑛𝑥 and initial control value 𝑢0 ∈ R𝑛𝑢
are given, the initial pending control value is 𝑢̃0 = 𝑔(𝑡0, 𝑦0), and
𝑡0 := 𝜏0 is the time required to execute 𝑔(𝑡0, 𝑦0). In (3c), the memory
variable 𝑢̃ and the end time 𝑡 of the computation are held con-
stant while the computation is in progress. When the computation
finishes, 𝑢 is set to 𝑢̃ . Then 𝑢̃ and 𝑡 are updated to record a new ex-
ecution of the calculation of 𝑔(𝑡𝑘 , 𝑦𝑘). Figure 2 shows the feedback
diagram for the closed-loop system in (3).

HSCC ’25, May 6–9, 2025, Irvine, CA, USA Wintz, Sonmez, et al.

2.3 Computational Hardware Simulation

In this section we introduce how we model and simulate the com-
putational hardware. To calculate the computational delay of a
given controller, we use a microarchitectural simulator. Existing
microarchitectural simulators can execute accurate simulations of
arbitrary computer programs on a given hardware platform. We
will discuss in Section 3 how Sharc jointly simulates the hard-
ware execution of a control algorithm and the physics of a system.
Sharc uses the Scarab Microarchitectural Simulator [1, 21] to per-
form hardware simulation. To simulate the execution time of a
control algorithm, Scarab processes either compiled x86 binaries or
traces of x86 assembly instructions. The microarchitectural simula-
tor is agnostic to the programming language because it consumes
compiled assembly code.

Although it is possible to directly measure application execution
times on a physical processor, simulating a controller executable
with Scarab provides the following advantages:

(1) Scarab allows for arbitrary modification of hardware pa-
rameters, such as the cache size, clock frequency, and the
depth and width of the CPU pipeline, to allow for analysis
of hypothetical computing platforms without necessitating
fabrication. Thus, by using Scarab with Sharc, we can proto-
type new hardware components and measure the resulting
changes in a system’s dynamical performance.

(2) Scarab produces detailed statistics, making the internal hard-
ware state observable and thereby allowing for better perfor-
mance analysis. This is in contrast to physical CPUs, which
only provide limited visibility through existing performance
monitoring unit (PMU) counters.

Both of these aspects are crucial for performing optimal hardware-
software co-design of control systems.

The simulation of control algorithms in Scarab provides high
precision and fidelity because Scarab models both the architectural
and microarchitectural states of the CPU at the level of individual
clock cycles. The architectural state includes all registers, program
counters (PC), and the memory of the processor as specified by
the instruction set architecture (ISA). The microarchitectural state
comprises the tables and internal meta-data utilized by the branch
predictor [26], prefetchers, and cache replacement mechanisms. In
a microarchitectural simulator, each simulated assembly instruc-
tion moves through a pipeline of various stages during its lifetime,
including the fetch, decode, execution, and retirement stages. At each
stage, the instruction triggers events along its path. Modern CPUs
implement instruction pipelines that are deep and wide, meaning
that there can be hundreds of instructions in the pipeline at the same
time, each one triggering events in every cycle. The full pipeline of
instruction processing is accurately modeled by Scarab.

Furthermore, the modern CPU architecture, as emulated by the
Scarab simulator, follows an out-of-order CPU design that can be
divided into two parts, as shown in Fig. 3. The front-end identifies
the next instructions to be fetched from main memory, stores them
into the fetch target queue (FTC) and instruction cache, and decodes
them. The front end is also responsible for handling control-flow
instructions, such as jumps and branches, utilizing a TAgged GEo-
metric (TAGE) history length branch predictor [26], branch target
buffer (BTB), and return address stack (RAS) predictor.

Branch
Predictor,
BTB, CRS

FTQ
Fetch Unit,

Memory
Hierarchy

Decoder
PC

Fetch
Instruction

Reservation
Station 1

Reservation
Station 2

Reservation
Station n

Function
Unit 1

Function
Unit 2

Function
Unit n

...

...

Back-End
Front-End

Target

Fetch

Target

Decoded Instruction

Fetch

Figure 3: Scarab’s Architecture. Modern CPUs are comprised

of the Frontend, responsible for predicting future executed in-

structions (Branch Predictor), buffering their instruction ad-

dress (FTQ), fetching them from the instruction cache (Fetch),

and decoding their arithmetic operation (Decoder). Decoded

instructions are then forwarded to the Backend, which con-

tains the instruction schedulers (Reservation Stations) se-

lecting ready instructions to be processed by the functional

units (Units 1 through N).

The back-end consumes the stream of instructions provided by
the front-end and executes them through different functional units
based on the instruction type (e.g., loads, stores, Arithmetic Logic
Unit (ALU), vector instruction queues) acting as reservation sta-
tions [28]. The instruction scheduler picks instructions as soon as
they are ready (all source operands are available) and forwards
them to the appropriate functional units. The execution stage also
detects mispredicted branch instructions to trigger pipeline flushes
ensuring correct execution. To emulate, serve, load, and store in-
structions, the simulator models three cache levels and implements
a detailed Dynamic Random Access Memory (DRAM) model utiliz-
ing Ramulator [16].

The Scarab simulator provides observability of over a thousand
low-level events, including the number of executed CPU cycles,
mispredicted control-flow instructions, data and instruction cache
misses, and a tally of the number of cycles each functional unit is
busy. Analyzing these statistics reveals which CPU components
limit the performance of a particular program and thereby pro-
vides insights into how to improve the hardware architecture or
software implementation. Scarab features two simulator frontends:
execution-driven and trace-based. We utilize trace-based simulation
to supply instructions to the CPU pipeline. The traces, captured
using DynamoRIO [7], preserve a precise continuous sequence of
dynamically executed instructions including memory addresses
for load and store operations. DynamoRIO is a runtime code ma-
nipulation system that enables dynamic analysis, profiling, and
optimization by allowing arbitrary modifications to application
instructions on various architectures and operating systems.

3 SHARC SIMULATOR

In Sharc, the microarchitectural simulator is executed in parallel
with a simulation of the physics. Figure 4 illustrates how Sharc
simulates the physics and the control algorithm in parallel. The

Sharc HSCC ’25, May 6–9, 2025, Irvine, CA, USA

simulation of the physics is executed through a user-provided imple-
mentation of a Python interface, which may call external physics
simulators. The particular dynamics of a system are defined by
writing a subclass of a Python class named Dynamics, provided
by Sharc. Pseudocode for a MyDynamics subclass of Dynamics is
shown here:

class MyDynamics(Dynamics):
def evolve_state(self, t0, x0, u, tf):
Evolve the state from t0 to tf given
initial state x0 and control input u.
return xf # Final state of the system at tf.

def get_output(self, x, u, w):
return y # Generate output

def get_exogenous_input(self, t):
return w # Generate exogenous input

Similarly, a controller is defined in C++ by writing a subclass of a
C++ class provided with Sharc named Controller. Pseudocode
for a MyController subclass of Controller is as follows:

class MyController : public Controller {
void calculateControl(int k, double t, const Vec &y){

// Evaluate u = g(t, y) and set the
// object's 'control' property to the result.
control = u;

}
};

Whenever a new control 𝑔(𝑡, 𝑦) is computed in a Sharc simula-
tion, the code in the calculateControl function is simulated by
Scarab to determine the computational delay of computing 𝑔(𝑡, 𝑦).
A noteworthy feature of Sharc’s design is that the same controller
code can be used by Sharc as would be deployed on an actual
cyber-physical system.

3.1 Serial Mode

The Sharc simulator supports two modes. While the serial mode is
optimized for maximum accuracy, the parallelized mode minimizes
simulation time through parallel processing. We will describe the
serial mode in the following and refer to Section 3.2 for a detailed
description of the parallel mode. When running in serial mode,
Sharc executes the controller in a single subprocess that runs for
the entire duration of the simulation.1 The controller subprocess
simulates the controller with Scarab using an “execution-driven”
mode, which allows for statistics, such as CPU cycle counts, to be
accessed during the execution of the simulation, as opposed to hav-
ing to wait until the simulation completes. At each time step, Sharc
sends the current time step 𝑘 , the current time 𝑡𝑘 and output 𝑦𝑘 to
the controller. The exogenous input 𝑤 is generated at each time
𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] using the get_exogenous_input function. Once the
values are received by the controller, Scarab begins recording statis-
tics while the control value is computed, at which point the statistics
are saved, and the control value𝑢 is sent back to the Python process
running the physics simulator. The inter-process communication
between the dynamics simulator and the controller is accomplished
using named pipe files. After 𝑢 is received by the physics simulator,
1Here, “serial” vs. “parallel” mode refers only to whether one time step or many are
computed concurrently. In the serial mode, parallelization is used to run controller
and physics concurrently.

Output

Hardware Simulator

Scarab Microarchitectural
Simulator

Controller

User-defined C++ Program

Delay Physics Simulator

Python

Physics

User-defined Python Class

SHARC

Control

Figure 4: Diagram of the Sharc simulator structure. The

physics simulator and hardware simulators run in sepa-

rate processes, with inter-process communication done via

named pipe files.

Sharc reads the computation statistics from Scarab, which it uses
to determine the computation time 𝜏 for computing 𝑢.

3.2 Parallel Mode

For computationally intensive control algorithms, running simu-
lations in serial mode can take a long time. Due to simulating the
microarchitectural components of a CPU, the time to simulate a
controller algorithm with Scarab can be over 10,000 times longer
than computing the same algorithm on physical hardware. To ad-
dress this challenge, we developed a method to improve simulation
times through parallel execution.

Recall that the discretized physics are assumed to use a periodic
time grid 𝑡0 := 0, 𝑡1 := 𝑇 , 𝑡2 := 2𝑇 , . . . , with both the sensor mea-
surements and control inputs discretized at a constant sampling
rate of 𝑇 . This allows Sharc to parallelize simulations across time
steps. Figure 5 provides an overview of the parallelized approach,
where full-state feedback is used for simplicity (𝑦𝑘 = 𝑥𝑘). Each
column of Steps 2 and 3 are executed in parallel.

The simulation takes the initial state value 𝑥0 ∈ R𝑛𝑥 and initial
control value 𝑢0 ∈ R𝑛𝑢 (which is to be applied until the first control
update is finished) and runs over a time horizon 𝐾 ∈ N. It is divided
into batches each containing 𝑐-many time steps, where 𝑐 is typically
the number of processors available. During Step 1, the simulator
assumes that each control update 𝑢𝑘+1 can be computed within one
sample time (𝜏𝑘 < 𝑇) and thus always updates the control at the
next time step. The resulting sequence 𝑥𝑘0 , 𝑥𝑘0+1, . . ., 𝑥𝑘0+𝑐 is an
initial guess of the trajectory that the system would take if every
control update is computed within one sample time (𝜏𝑘 < 𝑇). Since
Step 1 assumes no delays in computing the control inputs, Scarab
is not used to record computation times, so this step is executed
very quickly.

In Steps 2 and 3, Sharc backtracks to check whether the compu-
tational delay of updating the control at each time step is actually
less than 𝑇 . In particular, Sharc creates 𝑐-many processes—one
for each time step in the batch. Each process is assigned a unique
𝑡𝑘 ∈ {𝑡𝑘0 , 𝑡𝑘0+1, . . . , 𝑡𝑘0+𝑐−1}. Using the precomputed value 𝑥𝑘 and
𝑢𝑘 , the simulator recomputes the control update 𝑢𝑘+1 = 𝑔(𝑡𝑘 , 𝑦𝑘),
but this time Sharc runs the controller executable with DynamoRIO
to generate a trace of its execution (Step 2) which is then simulated
using Scarab to generate the computation time 𝜏𝑘 (Step 3).

HSCC ’25, May 6–9, 2025, Irvine, CA, USA Wintz, Sonmez, et al.

Simulate physics and controller for , recording

Recompute Recompute Recompute

Repeat until

Step 1

Step 2

Step 3

Step 4

Is ?Simulate Trace

with Scarab

Find the first time step where or

Is ? Is ?⋯

Trace Controller

with DynamoRIO

Step 5

 from user from user

Is ?

Set No

Simulate physics from to the first time step
such that , using

Yes

⋯

Set

Figure 5: Diagram of Sharc’s parallel mode using a simulation horizon of 𝐾 time steps parallelized across 𝑐 processors. Each

column is executed in parallel. In this diagram, full-state feedback 𝑦𝑘 = 𝑥𝑘 is used, for simplicity.

In Step 4, Sharc searches for the first time step 𝑘𝑓 where the
computation time 𝜏𝑘𝑓 exceeds 𝑇 . If such a time step is found, then
any subsequent time steps (𝑘 > 𝑘𝑓) are invalid because the states
were generated using control values that were applied (in the simu-
lation) before the controller could compute them. If all of the control
updates took less than the sample time (𝜏𝑘 < 𝑇), then 𝑘𝑓 is defined
as the last sample in the batch (𝑘𝑓 := 𝑘0 + 𝑐) or the simulation
(𝑘𝑓 := 𝐾), whichever is first.2

In Step 5, Sharc checks whether there was a missed computa-
tion (𝜏𝑘𝑓 > 𝑇), revises the simulation trajectory accordingly, and
then continues to the next batch. If 𝜏𝑘𝑓 ≤ 𝑇 , then controller has
computed each update within the sample time, so the simulation
either moves to the next batch with 𝑘0 = 𝑘𝑓 + 1 (if 𝑘𝑓 < 𝐾) or ter-
minates (if 𝑘𝑓 = 𝐾). On the other hand, if 𝜏𝑘𝑓 > 𝑇 , then the control
computation that was started at 𝑡𝑘𝑓 will not be available at 𝑡𝑘𝑓 +1,
violating the assumption in Step 1. Thus, Sharc must recompute
the system’s trajectory starting from 𝑥𝑘𝑓 using 𝑢 = 𝑢𝑘𝑓 until the
control update finishes. As in Section 2.1, let 𝑡𝑘𝑓 := 𝑡𝑘𝑓 + 𝜏𝑘𝑓 (which
typically is not a sample time) and let 𝜅̃ be the smallest integer such
that 𝑡𝑘𝑓 ≤ 𝜅̃𝑇 . In other words, 𝜅̃𝑇 is the first sample time after the
computation that started at 𝑡𝑘𝑓 finishes. We recompute the portion
of the trajectory computed in Step 1 from 𝑘𝑓 to 𝜅̃ according to (3a)
with 𝑢𝑘 = 𝑢𝑘𝑓 held constant:

𝑥𝑘+1 = 𝑓
(
𝑡𝑘 , 𝑥𝑘 , 𝑢𝑘𝑓 ,𝑤 (𝑡𝑘)

)
∀𝑘 ∈ {𝑘𝑓 , 𝑘𝑓 + 1, . . . , 𝜅̃ − 1}.

Then, the simulation moves to the next batch, using 𝑘0 := 𝜅̃ or
terminates (if 𝜅̃ ≥ 𝐾). The simulation from 𝑘𝑓 to 𝜅̃ does not require
using Scarab since we already know the end time of the pending
computation, so it can be computed quickly without parallelization.
At 𝜅̃, however, the controller will start computing a new control
value, so Sharc starts a new batch of parallelization.

Due to the large slowdown incurred by using Scarab, paralleliza-
tion is important for simulating computationally intensive control
algorithms, but parallelization somewhat reduces the fidelity of
the simulation. In particular, the parallelized mode is somewhat
2In practice, Sharc truncates any batches that would extend past 𝐾 .

less accurate in determining computation times because running
each time step in a separate process prevents the simulator from
accounting for some sequential computational effects between time
steps, such as memory caching. In contrast, running Sharc in serial
mode allows transient memory effects to persist between time steps.
The results, however, of Section 4.1, below, show that there is only
a small difference between the delays calculated by the parallelized
and serial modes. Given the large reduction in simulation durations,
the trade-off between accuracy and speed often justifies the use of
the parallelized mode.

Parallelization is useful for mitigating the 10,000× slowdown
incurred by simulating the controller with Scarab. The speedup
in the parallelized approach, compared to the serial mode comes
from Steps 2 and 3 in Fig. 5. To quantify the possible improvements
gained by parallelizing, Theorem 3.1 describes how much simula-
tion time is reduced by using the parallel approach instead of the
serial approach. In particular, it examines how much time it takes
to compute 𝑁 many jobs parallelized across 𝑐 many CPU cores. In
this case, each job corresponds to running Scarab once to determine
the computation time of a control input at a particular time step.

Theorem 3.1. Consider a computational system managing 𝑁 jobs,
each requiring a fixed amount of time—defined as one unit of time—to
execute on a single CPU core. The system employs 𝑐 CPU cores for
parallelization where 𝑐 ≤ 𝑁 . Assume that the probability of failure
for each job is i.i.d. with probability 𝑝 and that the system restarts
from the job index 𝑘 + 1 after each failure at job index 𝑘 . Then, the
average time 𝑇 to complete all the jobs is

𝑇 (𝑐, 𝑝) = 𝑁𝑝

1 − (1 − 𝑝)𝑐 . (4)

Proof. The computational process described herein constitutes
a Bernoulli process as it consists of a sequence of independent
binary random variables representing job success or failure. To
analyze this, we calculate the average number of completed jobs,
denoted as 𝐾 , for each parallel task. A closed-form expression for

Sharc HSCC ’25, May 6–9, 2025, Irvine, CA, USA

𝐾 is derived as follows:

𝐾 =

𝑐−1∑︁
𝑖=0

(𝑖 + 1) · Pr{𝐾 = 𝑖} + 𝑐 · Pr{𝐾 = 𝑐},

= 𝑝 ·
𝑐−1∑︁
𝑖=0

(𝑖 + 1) · (1 − 𝑝)𝑖 + 𝑐 · (1 − 𝑝)𝑐 = 1 − (1 − 𝑝)𝑐
𝑝

.

(5)

This result leads to the expression for the average time to complete
all 𝑁 jobs:

𝑇 (𝑐, 𝑝) = 𝑁

𝐾
=

𝑁𝑝

1 − (1 − 𝑝)𝑐 . (6)
□

Note that 𝑇 (1, 𝑝) = 𝑁 , reflecting the case when all jobs are
processed sequentially, and lim𝑝→0𝑇 (𝑁, 𝑝) = 1, aligning with the
expectation that in the absence of failures, the system completes
all jobs in unit time. The parallelization gain, which is the speedup
factor for running 𝑁 jobs in parallel on 𝑐 cores instead of running
𝑁 jobs sequentially on one core, is

𝛿 (𝑐, 𝑝) ≜ 𝑇 (1, 𝑝)
𝑇 (𝑐, 𝑝)

=
𝑁(
𝑁𝑝

1−(1−𝑝)𝑐
) =

1 − (1 − 𝑝)𝑐
𝑝

. (7)

Thus, when using 𝑐 cores, the parallel approach is faster than
the serial approach by a factor of (1 − (1 − 𝑝)𝑐)/𝑝 . In the ideal
case with unlimited tasks and unlimited computational resources,
lim𝑐→∞ 𝛿 (𝑐, 𝑝) = 1/𝑝 . Therefore, when using Sharc’s parallel
mode to simulate a system that has a uniform probability 𝑝 at each
time step of the control delay 𝜏 being larger than 𝑇 , the expected
parallelization speedup is never better than 1/𝑝 , regardless of how
many CPUs are used to parallelize the simulation.

4 NUMERICAL EXPERIMENTS

In this section, we present two examples of the Sharc simulator
applied to systems using a model predictive controller (MPC). In
Section 4.1, MPC is used for adaptive cruise control of a vehicle
on a roadway. The resulting MPC problem is linear and thus can
be solved efficiently, allowing for the serial mode of Sharc to run
simulations in a reasonable time. We provide a comparison with
the parallelized mode to demonstrate the similarity of the results.
In Section 4.2, MPC is used to balance an inverted pendulum on
a rolling cart. For the inverted pendulum, the MPC problem is
nonlinear, which is significantly more computationally expensive
to solve than linear MPC. Thus, the serial simulation mode is not
practical, and only results from the parallelized mode are presented.

4.1 Adaptive Cruise Control

In this section, we present an example of applying Sharc to an
adaptive cruise control (ACC) system used for longitudinal control
of a vehicle on a highway. The dynamical model used in this exam-
ple is adapted from [27]. In particular, we consider an ego vehicle
velocity 𝑣 and a desired velocity 𝑣des := 15m/s. The ego vehicle
is following a public front vehicle that has velocity 𝑡 ↦→ 𝑣f (𝑡) that
we do not control and is considered as an exogenous input to the
system. The headway from the front of the ego vehicle to the rear
of the front vehicle is denoted ℎ.

The acceleration of the ego vehicle is

¤𝑣 = 1
𝑀

(
𝑢a − 𝑢b − 𝐹

)
,

where 𝑀 is the mass of the vehicle, 𝑢a is acceleration force, 𝑢b is
braking force, and 𝐹 is a resistive force on the ego vehicle due to
drag and friction. The controlled quantities are𝑢a and𝑢b. Assuming
travel on a level roadway, 𝑣 ↦→ 𝐹 (𝑣) := 𝛽 + 𝛾𝑣2,where 𝛽 ≥ 0 and
𝛾 ≥ 0 are determined empirically. Values for 𝜏 , 𝛽 , 𝛾 , and𝑀 can be
found in [27, Table 1]. The resulting dynamics are

¤ℎ = 𝑣f (𝑡) − 𝑣 (8)

¤𝑣 = 1
𝑀

(
𝑢a − 𝑢b − 𝐹 (𝑣)

)
. (9)

The quadratic friction term 𝐹 (𝑣) makes the system nonlinear, so
we linearize 𝐹 around 𝑣0 ≥ 0 as 𝑣 ↦→ (𝛽 − 𝛾𝑣20) + 2𝛾𝑣0𝑣 . The state
of the system is 𝑥 := (ℎ, 𝑣) ∈ R2 and the input is 𝑢 := (𝑢a, 𝑢b) ∈ R2.
We write the exogenous inputs to the system as𝑤 := (𝑣f, 1) ∈ R2,
where 𝑣f is the velocity 𝑣f of the front vehicle, and “1” in the second
component is used to incorporate a constant term (𝛾𝑣20 − 𝛽)/𝑀
arising from 𝐹 . The resulting system is

¤𝑥 =

[
0 −1
0 −2𝛾𝑣0/𝑀

]
𝑥 +

[
0 0

1/𝑀 −1/𝑀

]
𝑢 +

[
1 0
0 (𝛾𝑣20 − 𝛽)/𝑀

]
𝑤.

(10)
The continuous-time dynamics are discretized with a sample time
𝑇 := 0.1 s, resulting in a discrete-time system we write as

𝑥𝑘+1 = 𝐴(𝑣0)𝑥𝑘 + 𝐵(𝑣0)𝑢𝑘 + 𝐵𝑑 (𝑣0)𝑤𝑘 , (11)

where 𝑥𝑘 , 𝑢𝑘 , and𝑤𝑘 are the values of 𝑥 , 𝑢, and𝑤 , respectively, at
𝑡 = 𝑘𝑇 . Note that𝐴(𝑣0), 𝐵(𝑣0), and 𝐵𝑑 (𝑣0) depend on 𝑣0, the center
of the linearization.

4.1.1 MPC Problem Formulation. To generate control values at
each discrete time 𝑘0 ∈ N, we apply MPC with a prediction horizon
of 𝑁𝑝 ∈ N time steps. Given any discrete time 𝑘0 ∈ N, let 𝑥𝑘0
be a measurement-based estimate of 𝑥 at 𝑘0, and let 𝑣0 be the ve-
locity component of 𝑥𝑘0 . For each 𝑘 ∈

{
𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁𝑝

}
,

let 𝑘 ↦→ 𝑢𝑘 |𝑘0 be planned control values starting at 𝑘0, and let
𝑘 ↦→ 𝑥𝑘 |𝑘0 be the state prediction generated by (11) with initial
condition 𝑥𝑘0 |𝑘0 = 𝑥𝑘0 and using the control signal 𝑢𝑘 |𝑘0 .

The cost function of the MPC problem is a quadratic function
that penalizes the deviance of 𝑣𝑘 |𝑘0 from the desired velocity 𝑣des,
the control effort 𝑢𝑘 |𝑘0 , and changes to the control effort, which
roughly corresponds to the vehicle’s jerk (¥𝑣). A positive definite
matrix 𝑅 ∈ R2×2 defines the control weight matrix and 𝛼 ≥ 0 is a
jerk penalization parameter.

The ego vehicle must always satisfy the following constraints:
Headway: ℎ ≥ ℎmin := 6m
Velocity: 0m/s ≤ 𝑣 ≤ 𝑣max := 20m/s

Acceleration force: 0 N ≤ 𝑢a ≤ 𝑢amax := 4880N
Braking force: 0 N ≤ 𝑢b ≤ 𝑢bmax := 6507N.

To ensure the headway constraint ℎ ≥ ℎmin is satisfiable past the
end of the MPC prediction horizon, we also must include a terminal
constraint. In particular, ℎ and 𝑣 must satisfy

ℎ ≥ 𝑣2

2|𝑎 | −
𝑣2f

2|𝑎f |
+ ℎmin, (12)

HSCC ’25, May 6–9, 2025, Irvine, CA, USA Wintz, Sonmez, et al.

Problem 1 (Linear MPC).

minimize 𝐽
(
𝑥 (·) |𝑘0 , 𝑢 (·) |𝑘0

)
:=
𝑘0+𝑁𝑝∑︁
𝑘=𝑘0

(
𝑣𝑘 |𝑘0 − 𝑣des

)2
+
𝑘0+𝑁𝑝−1∑︁
𝑘=𝑘0

𝑢⊤
𝑘 |𝑘0𝑅𝑢𝑘 |𝑘0 + 𝛼

𝑘0+𝑁𝑝−2∑︁
𝑘=𝑘0

��𝑢𝑘+1 |𝑘0 − 𝑢𝑘 |𝑘0 ��2 (14a)

with respect to
𝑥𝑘0 |𝑘0 , 𝑥 (𝑘0+1) |𝑘0 , . . . , 𝑥 (𝑘0+𝑁𝑝) |𝑘0 ∈ R

2 (14b)

𝑢𝑘0 |𝑘0 , 𝑢 (𝑘0+1) |𝑘0 , . . . , 𝑢 (𝑘0+𝑁𝑝−1) |𝑘0 ∈ R
2 (14c)

subject to
𝑥𝑘0 |𝑘0 = 𝑥𝑘0 , (14d)

and for each 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁𝑝 − 1,
𝑥𝑘+1 |𝑘0 = 𝐴(𝑣0)𝑥𝑘 |𝑘0 + 𝐵(𝑣0)𝑢𝑘 |𝑘0 + 𝐵𝑑 (𝑣0)𝑤̂ (𝑘 |𝑘0), (14e)

and for each 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁𝑝 ,
0 ≤ 𝑣𝑘 |𝑘0 ≤ 𝑣max, (14f)
0 ≤ 𝑢a

𝑘 |𝑘0 ≤ 𝑢amax, (14g)

0 ≤ 𝑢b
𝑘 |𝑘0 ≤ 𝑢bmax, (14h)

ℎmin ≤ ℎ𝑘 |𝑘0 , (14i)
and for 𝑘 = 𝑘0 + 𝑁𝑝 ,

ℎ𝑘 |𝑘0 ≥ 𝑣max
2|𝑎 | 𝑣𝑘 |𝑘0 −

𝑣2f (𝑘 |𝑘0)
2|𝑎f |

+ ℎmin . (14j)

at the end of the prediction horizon, where 𝑎f < 0 is a lower bound
on the rate of deceleration of the front vehicle (that is ¤𝑣f ≥ 𝑎f)
and 𝑎 < 0 which is an upper bound on the deceleration of the ego
vehicle when maximum braking is applied (that is, ¤𝑣 ≤ 𝑎 when
𝑢a = 0 and 𝑢b = 𝑢bmax).

Equation (12) is not suitable as a linear MPC constraint, however,
because it includes a nonlinear term and depends on the future
velocity of the front vehicle, which is unknown. By assuming that
the front vehicle applies maximum braking, we estimate its worst-
case future velocity as a sequence 𝑘 ↦→ 𝑣f (𝑘 |𝑘0). Then, we use
𝑘 ↦→ 𝑤̂ (𝑘 |𝑘0) := (𝑣f (𝑘 |𝑘0), 1) as a worst-case prediction of the 𝑤 .
To remove the 𝑣2 nonlinearity in (12), we replace 𝑣2 with 𝑣𝑣max ≥ 𝑣2,
creating a more conservative terminal constraint:

ℎ (𝑘0+𝑁𝑝) |𝑘0 ≥ 𝑣max
2|𝑎 | 𝑣 (𝑘0+𝑁𝑝) |𝑘0 −

𝑣2f (𝑘0 + 𝑁𝑝 |𝑘0)
2|𝑎f |

+ ℎmin . (13)

The resulting MPC problem formulation is shown in Problem 1.
In Fig. 6, the results of simulating the ACC system are shownwith

a comparison between the results of serial and parallel simulation
schemes. We see that at as the headway decreases, the system hits
a point around 𝑡 = 3.5 s when the delays significantly increase,
rising above the sampling time. This increase causes the updated
control values to be delayed by six time steps. The delays increase at
this point because more MPC inequality constraints become active,
making the optimization problem harder to solve. In this simulation,
the vehicle recovers before colliding with the lead vehicle, but if the
front vehicle brakes more aggressively, the computational delays
could result in a collision.

Figure 6: Comparison of trajectories for theACC system from

Section 4.1 simulated using the serial and parallel modes. In

the Delays plot, the horizontal lines extend from the start

time of each computation to its completion time.

Figure 7 shows a comparison of Sharc simulations using instruc-
tion caches of size 1 KB, 8 KB, and 1MB. We see that computation
times increase as the size of the instruction cache shrinks, producing
significant deviation in 𝑣 and ℎ between simulations.

4.2 Inverted Pendulum System

We examine the inverted pendulum system as an example of a sys-
tem that requires significantly more computational resources than
the previous example. In contrast to the linear MPC used in the
ACC example, the inverted pendulum system is controlled using
nonlinear MPC because the dynamics are nonlinear. Since non-
linear MPC is much more computationally demanding, the serial
approach takes impractically long to simulate in Sharc, motivating
the parallel approach. Figure 8 illustrates the inverted pendulum
system. The system is initiated with a slight deviation from the
upright position, and the objective is to maintain the pole in an
upright orientation by controlling the horizontal force applied on
the cart. This control problem is substantially more challenging
than the ACC problem because of the nonlinear nature of the dy-
namics and the instability of the upright position. Additionally,
maintaining the pole in a vertical position requires the application
of control inputs at a much higher frequency, further compounding
the complexity of the problem.

4.2.1 Nonlinear MPC Formulation. Nonlinear Model Predictive
Control (MPC) addresses the solution of a generic nonlinear opti-
mization problem formulated as in Problem 2. The natural number
𝑁𝑐 is the control horizon, 𝑁𝑝 ≥ 𝑁𝑐 is the prediction horizon of the

Sharc HSCC ’25, May 6–9, 2025, Irvine, CA, USA

Figure 7: Comparison of Sharc simulations for the ACC

system in Section 4.1 using various sizes of instruction cache.

𝑀

𝜃

𝐹

ℓ,𝑚

𝑥

𝑦

Figure 8: Inverted pendulum system consisting of a pole

attached to a controlled cart. The goal is to balance the pole

vertically by controlling the horizontal force 𝐹 to the cart.

problem, and the control input 𝑢 is kept constant after the control
horizon 𝑁𝑐 steps. The nonlinear system underlying the MPC is

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘)
𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) .

A key feature of Model Predictive Control is the receding hori-
zon control strategy where the Problem 2 is solved over the finite
prediction horizon 𝑁𝑝 , resulting in an optimal sequence of control
inputs 𝑢𝑘0 |𝑘0 , 𝑢 (𝑘0+1) |𝑘0 , . . . , 𝑢 (𝑘0+𝑁𝑐−1) |𝑘0 . However, only the first
control input 𝑢𝑘0 |𝑘0 is applied to the system. Once 𝑢𝑘0 |𝑘0 is applied,
the state of the system is updated, and the optimization problem is
solved again using the new state as the initial condition.

Problem 2 (Nonlinear MPC).

minimize 𝐽
(
𝑥 (·) |𝑘0 , 𝑢 (·) |𝑘0

)
:=
𝑘0+𝑁𝑐−1∑︁
𝑘=𝑘0

𝐶
(
𝑥𝑘 |𝑘0 , 𝑢𝑘 |𝑘0

)
+
𝑘0+𝑁𝑝−1∑︁
𝑘=𝑘0+𝑁𝑐

𝐶
(
𝑥𝑘 |𝑘0 , 𝑢 (𝑘0+𝑁𝑐−1) |𝑘0

) (15a)

with respect to
𝑥𝑘0 |𝑘0 , 𝑥 (𝑘0+1) |𝑘0 , . . . , 𝑥 (𝑘0+𝑁𝑝) |𝑘0 ∈ R

𝑛𝑥 (15b)

𝑢𝑘0 |𝑘0 , 𝑢 (𝑘0+1) |𝑘0 , . . . , 𝑢 (𝑘0+𝑁𝑐−1) |𝑘0 ∈ R
𝑛𝑢 (15c)

subject to
𝑥𝑘0 |𝑘0 = 𝑥𝑘0 , (15d)

and for each 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁𝑝 − 1,
𝑥𝑘+1 |𝑘0 = 𝑓 (𝑥𝑘 |𝑘0 , 𝑢𝑘 |𝑘0), (15e)

and for each 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁𝑝 ,
ℓi (𝑥𝑘 |𝑘0 , 𝑦𝑘 |𝑘0 , 𝑢𝑘 |𝑘0) ≤ 0, (15f)
ℓe (𝑥𝑘 |𝑘0 , 𝑢𝑘 |𝑘0) = 0. (15g)

To solve Problem 2 in numerical experiments, the libmpc++
open-source C++ MPC library is used [23]. The optimization prob-
lem is solved using the Sequential Least Squares Quadratic Pro-
gramming (SLSQP) method [18] iteratively for various initial states
𝑥𝑘0 ∈ R𝑛𝑥 , aiming to minimize the user-defined cost function
𝐶 (𝑥𝑘 |𝑘0 , 𝑢𝑘 |𝑘0).

4.2.2 Inverted Pendulum System Dynamics. Consider the system
𝑥 := (𝑝, 𝑣, 𝜃, 𝜔) ∈ R4, where 𝑝 denotes the cart’s position, 𝑣 its ve-
locity, 𝜃 the pole’s angular deviation from the upright position, and
𝜔 the pole’s angular velocity. Assuming no friction, the nonlinear
continuous-time dynamics are:

¤𝑥 =


¤𝑝
¤𝑣
¤𝜃
¤𝜔

 = 𝑓 (𝑥,𝑢) =


𝑣

𝐹 +𝑚𝜔2ℓ sin𝜃 −𝑚ℓ ¤𝜔 cos𝜃
𝑚 +𝑀
𝜔

(𝑚 +𝑀)𝑔 sin𝜃 − (𝐹 +𝑚𝜔2ℓ sin𝜃) cos𝜃
ℓ
(
4(𝑚 +𝑀)/3 −𝑚 cos2 𝜃

)


.

(16)
In this formulation,𝑢 = 𝐹 denotes the control force applied to the

cart. The system parameters are the pole mass𝑚, the cart mass𝑀 ,
the pole length ℓ , and the gravitational constant 𝑔. The continuous-
time system ¤𝑥 = 𝑓 (𝑥,𝑢) is discretized with sample time 𝑇 := 0.1 s
to produce a discrete-time system as in Problem 2. No explicit
constraints are imposed on the inputs, states, or outputs. Instead,
the desired behavior is achieved by tailoring the cost function,
defined as a quadratic function of the state and input:

𝐶 (𝑥𝑘 |𝑘0 , 𝑢𝑘 |𝑘0) = 𝑥
⊤
𝑘 |𝑘0𝑄𝑥𝑘 |𝑘0 + 𝑢

⊤
𝑘 |𝑘0𝑅𝑢𝑘 |𝑘0 ,

where 𝑄 ∈ R𝑛𝑥×𝑛𝑥 and 𝑅 ∈ R𝑛𝑢×𝑛𝑢 are weighting matrices that
penalize deviations from the desired state and control effort, respec-
tively.

The parameters used in our experiments for the inverted pendu-
lum system are shown in Table 1. The system is initialized with a
2-degree angular deviation from the upright position, and the goal

HSCC ’25, May 6–9, 2025, Irvine, CA, USA Wintz, Sonmez, et al.

Parameter Notation Value

Sampling time 𝑇 0.1 s
Control horizon 𝑁𝑐 4 time steps

Prediction horizon 𝑁𝑝 20 time steps
State cost matrix 𝑄 diag(1, 1, 1, 1)
Input cost matrix 𝑅 1

Mass of cart 𝑀 1.0 kg
Mass of pole 𝑚 0.1 kg

Length of pole ℓ 1m
Initial state 𝑥0

[
0 0 2◦ 0

]⊤
Number of CPU cores 𝑐 16
Experiment Horizon 𝐾 64 time steps (6.4 s)

Table 1: Parameters used for the inverted pendulum system.

of the controller is to make the upright position asymptotically sta-
ble. Figure 9 shows the plots of the state norm, computational delays,
and control inputs across three distinct processor clock frequencies.
At 625MHz, the system achieves stability as the computational
delays consistently remain below the sample time (𝑇 = 0.1 s), albeit
approaching this threshold. However, as we slightly decrease the
clock frequency to 600MHz, we start to see delays longer than
sample time, causing the control input to be repeated for one or
more time steps. This suboptimal control action forces the inverted
pendulum system to move further from the equilibrium, causing
the computational difficulty to increase, leading to progressively
longer computation times. The cumulative effect of these cascading
delays ultimately prevents stabilization of the upright equilibrium.
As anticipated, further reduction of the clock frequency to 500MHz
aggravates this behavior by ending up with more delays. These
results underscore the critical importance of minimizing computa-
tional delays in control systems to maintain stability and optimal
performance.

The reason we utilized the parallel approach for this problem can
be understood by looking at the simulation durations. We utilized
𝑐 = 16CPU cores and ran the experiments for 𝐾 = 64 time steps.
Thus, if there are no delays the experiment is expected to be finished
in four batches as in the case with the blue curve in Fig. 9. The
start of each batch is denoted by a cross (×) on the plot of ∥𝑥 ∥.
Since each simulation step requires approximately 15minutes, the
serial approach would require roughly 16 hours to complete. In the
parallel mode, however, simulations terminated in 4 batches with
a 625MHz clock speed, 17 batches with 600MHz, and 20 batches
with 500MHz. The parallel approach yielded significant speedup,
with speedup factors of 16×, 3.76×, and 3.20× compared to the
serial method, which illustrates how the parallelization speedup is
larger when fewer time steps have long computational delays as
predicted by Theorem 3.1.

5 CONCLUSION

In this paper, we present Sharc as a tool to simulate user-specified
control algorithms on a given processor microarchitecture, eval-
uating how computational constraints affect the performance of
the control algorithm and the safety of the physical system. We
illustrated the power and usefulness of Sharc via two examples:
an adaptive cruise controller implemented with linear MPC and

Figure 9: Effect of the clock frequency on the inverted pen-

dulum system presented in Section 4.2.

an inverted pendulum system controlled by nonlinear MPC. By
providing insight into the impact of computing hardware on the
performance of a CPS, Sharc allows for the co-design of control
algorithms and the computational hardware on which they are run.
Future work includes 1) using Sharc to identify common bottle-
necks in particular classes of control algorithms and computational
hardware and 2) developing an automated framework for jointly
optimizing the parameters of the hardware and the control algo-
rithm.

ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-2039054, CCF-
1942754, and CNS-2111688; by AFOSR grants FA9550-19-1-0169,
FA9550-20-1-0238, FA9550-23-1-0145, and FA9550-23-1-0313; by
AFRL grants FA8651-22-1-0017 and FA8651-23-1-0004; by ARO
grant W911NF-20-1-0253; and by DOD grant W911NF-23-1-0158.

REFERENCES

[1] [n. d.]. Scarab. https://github.com/Litz-Lab/scarab
[2] 2023. Tesla Full Self-Driving Chip (FSD chip). https://en.wikichip.org/wiki/

tesla_(car_company)/fsd_chip
[3] Daniel Arnström. 2023. Real-Time Certified MPC: Reliable Active-Set QP Solvers.

Department of Electrical Engineering, Linköping University, Linköping.

https://github.com/Litz-Lab/scarab
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip

Sharc HSCC ’25, May 6–9, 2025, Irvine, CA, USA

[4] Daniel Arnström, David Broman, and Daniel Axehill. 2024. Exact Worst-Case
Execution-Time Analysis for Implicit Model Predictive Control. IEEE Trans.
Automat. Control 69, 10 (Oct. 2024), 7190–7196. https://doi.org/10.1109/TAC.
2024.3395521

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[6] Andrea Bonci, Sauro Longhi, Giacomo Nabissi, and Giuseppe Antonio Scala. 2020.
Execution Time of Optimal Controls in Hard Real Time, a Minimal Execution
Time Solution for Nonlinear SDRE. IEEE Access 8 (2020), 158008–158025. https:
//doi.org/10.1109/ACCESS.2020.3019776

[7] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An Infrastruc-
ture for Adaptive Dynamic Optimization. In Proc. International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimization.
IEEE Computer Society, USA, 265–275.

[8] M. Caccamo, G. Buttazzo, and Lui Sha. 2002. Handling Execution Overruns in
Hard Real-Time Control Systems. IEEE Trans. Comput. 51, 7 (July 2002), 835–849.
https://doi.org/10.1109/TC.2002.1017703

[9] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-
hout. 2014. An Evaluation of High-Level Mechanistic Core Models. ACM Trans.
Archit. Code Optim. 11, 3 (Aug. 2014), 28:1–28:25. https://doi.org/10.1145/2629677

[10] Robert N. Charette. 2009. This Car Runs on Code. IEEE Spectrum (Feb. 2009).
https://spectrum.ieee.org/this-car-runs-on-code

[11] Cyril Faure, Mongi Ben Gaid, Nicolas Pernet, Morgan Fremovici, Grégory Font,
and Gilles Corde. 2011. Methods for real-time simulation of Cyber-Physical
Systems: application to automotive domain. 1105–1110. https://doi.org/10.1109/
IWCMC.2011.5982695

[12] Rolf Findeisen, Lars Grüne, Jürgen Pannek, and Paolo Varutti. 2011. Robustness of
Prediction Based Delay Compensation for Nonlinear Systems. IFAC Proceedings
Volumes 44, 1 (Jan. 2011), 203–208. https://doi.org/10.3182/20110828-6-IT-1002.
03090

[13] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simulator:
Architectural Simulation for Education and Competition. https://doi.org/10.
48550/arXiv.2210.14324 arXiv:2210.14324 [cs]

[14] Lars Grüne and Jürgen Pannek. 2011. Nonlinear Model Predictive Control: Theory
and Algorithms. Springer London, London. https://doi.org/10.1007/978-0-85729-
501-9

[15] Makoto Ishikawa, D.J. McCune, George Saikalis, and Shigeru Oho. 2007. CPU
Model-Based Hardware/Software Co-design, Co-simulation and Analysis Tech-
nology for Real-Time Embedded Control Systems. In IEEE Real Time and Em-
bedded Technology and Applications Symposium. IEEE, 3–11. https://doi.org/10.
1109/RTAS.2007.9

[16] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters 15, 1 (Jan. 2016),
45–49. https://doi.org/10.1109/LCA.2015.2414456

[17] Larry M. Kinnan. 2009. Use of Multicore Processors in Avionics Systems and Its
Potential Impact on Implementation and Certification. In 2009 IEEE/AIAA 28th
Digital Avionics Systems Conference. IEEE, 1.E.4–1–1.E.4–6. https://doi.org/10.

1109/DASC.2009.5347560
[18] D. Kraft. 1988. A Software Package for Sequential Quadratic Programming. Wiss.

Berichtswesen d. DFVLR. https://books.google.com/books?id=4rKaGwAACAAJ
[19] Patrick Leteinturier, Simon Brewerton, and Klaus Scheibert. 2008. MultiCore

Benefits & Challenges for Automotive Applications. SAE Technical Paper 2008-01-
0989. SAE International, Warrendale, PA. https://doi.org/10.4271/2008-01-0989

[20] Franc Mihalič, Mitja Truntič, and Alenka Hren. 2022. Hardware-in-the-Loop
Simulations: A Historical Overview of Engineering Challenges. Electronics 11, 15
(2022). https://doi.org/10.3390/electronics11152462

[21] Surim Oh, Mingsheng Xu, Tanvir Ahmed Khan, Baris Kasikci, and Heiner Litz.
2024. UDP: Utility-Driven Fetch Directed Instruction Prefetching. In ACM/IEEE
51st Annual International Symposium on Computer Architecture. IEEE, 1188–1201.
https://doi.org/10.1109/ISCA59077.2024.00089

[22] Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Truong X. Nghiem, Joseph
Devietti, and Rahul Mangharam. 2015. Co-Design of Anytime Computation and
Robust Control. In IEEE Real-Time Systems Symposium. IEEE, San Antonio, TX,
USA, 43–52. https://doi.org/10.1109/RTSS.2015.12

[23] Nicola Piccinelli. [n. d.]. Libmpc++: A library to solve linear and non-linear MPC.
https://github.com/nicolapiccinelli/libmpc

[24] Dev Pradhan. 2010. Multicore Processors Bring Innovation to Medical Imaging.
Technical Report. Texas Instruments.

[25] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: fast and accurate micro-
architectural simulation of thousand-core systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (Tel-Aviv, Israel)
(ISCA ’13). Association for Computing Machinery, New York, NY, USA, 475–486.
https://doi.org/10.1145/2485922.2485963

[26] André Seznec and Pierre Michaud. 2006. A case for (partially) tagged geometric
history length branch prediction. The Journal of Instruction-Level Parallelism 8
(2006), 23.

[27] Stanley W. Smith, Yeojun Kim, Jacopo Guanetti, Ruolin Li, Roya Firoozi, Bruce
Wootton, Alexander A. Kurzhanskiy, Francesco Borrelli, Roberto Horowitz, and
Murat Arcak. 2020. Improving Urban Traffic ThroughputWith Vehicle Platooning:
Theory and Experiments. IEEE Access 8 (2020), 141208–141223. https://doi.org/
10.1109/ACCESS.2020.3012618

[28] R. M. Tomasulo. 1967. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal of Research and Development 11, 1 (Jan. 1967), 25–33. https:
//doi.org/10.1147/rd.111.0025

[29] Martin Torngren, Dan Henriksson, Karl-Erik Arzen, Anton Cervin, and Zdenek
Hanzalek. 2006. Tool Supporting the Co-Design of Control Systems and Their
Real-Time Implementation: Current Status and Future Directions. In IEEE Con-
ference on Computer Aided Control System Design. IEEE, Munich, Germany, 1173–
1180. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776809

[30] Kenneth Vollmar and Pete Sanderson. 2006. MARS: An Education-Oriented
MIPS Assembly Language Simulator. SIGCSE Bull. 38, 1 (March 2006), 239–243.
https://doi.org/10.1145/1124706.1121415

[31] VictorM. Zavala and Lorenz T. Biegler. 2009. The advanced-step NMPC controller:
Optimality, stability and robustness. Automatica 45, 1 (Jan. 2009), 86–93. https:
//doi.org/10.1016/j.automatica.2008.06.011

Revised 10 March 2025

https://doi.org/10.1109/TAC.2024.3395521
https://doi.org/10.1109/TAC.2024.3395521
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/ACCESS.2020.3019776
https://doi.org/10.1109/ACCESS.2020.3019776
https://doi.org/10.1109/TC.2002.1017703
https://doi.org/10.1145/2629677
https://spectrum.ieee.org/this-car-runs-on-code
https://doi.org/10.1109/IWCMC.2011.5982695
https://doi.org/10.1109/IWCMC.2011.5982695
https://doi.org/10.3182/20110828-6-IT-1002.03090
https://doi.org/10.3182/20110828-6-IT-1002.03090
https://doi.org/10.48550/arXiv.2210.14324
https://doi.org/10.48550/arXiv.2210.14324
https://arxiv.org/abs/2210.14324
https://doi.org/10.1007/978-0-85729-501-9
https://doi.org/10.1007/978-0-85729-501-9
https://doi.org/10.1109/RTAS.2007.9
https://doi.org/10.1109/RTAS.2007.9
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/DASC.2009.5347560
https://doi.org/10.1109/DASC.2009.5347560
https://books.google.com/books?id=4rKaGwAACAAJ
https://doi.org/10.4271/2008-01-0989
https://doi.org/10.3390/electronics11152462
https://doi.org/10.1109/ISCA59077.2024.00089
https://doi.org/10.1109/RTSS.2015.12
https://github.com/nicolapiccinelli/libmpc
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1109/ACCESS.2020.3012618
https://doi.org/10.1109/ACCESS.2020.3012618
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776809
https://doi.org/10.1145/1124706.1121415
https://doi.org/10.1016/j.automatica.2008.06.011
https://doi.org/10.1016/j.automatica.2008.06.011

	Abstract
	1 Introduction
	1.1 Problem Setting
	1.2 Literature Review

	2 Modeling
	2.1 Physics and Controller
	2.2 Interaction between Physics and Controller with Computation Delays
	2.3 Computational Hardware Simulation

	3 Sharc Simulator
	3.1 Serial Mode
	3.2 Parallel Mode

	4 Numerical Experiments
	4.1 Adaptive Cruise Control
	4.2 Inverted Pendulum System

	5 Conclusion
	Acknowledgments
	References

