Relaxed Lyapunov Conditions for Compact Sets in Dynamical Systems

Paul K. Wintz Ricardo G. Sanfelice

American Control Conference – July 8, 2025 – Denver, CO.

Given: A dynamical system $\dot{x} = f(x)$ on \mathbb{R}^n and a set $\mathcal{A} \in \mathbb{R}^n$.

To prove $\mathcal A$ globally asymptotically stable, construct a function $V:\mathbb R^n\to[0,\infty)$ such that

- 1. V is positive definite with respect to \mathcal{A} .
- 2. For each solution $t \mapsto x(t)$, V(x(t)) decreases while $x(t) \notin A$.

Lyapunov-like Theorems (Smooth Systems)

Consider a set $\mathcal{A} \subset \mathbb{R}^n$, a differentiable function $V : \mathbb{R}^n \to [0, \infty)$ and

 $\dot{x} = f(x),$

we write the rate of change of V at x as

$$\dot{V}(x) := \mathcal{L}_f V(x) := \langle \nabla V(x), f(x) \rangle.$$

If f is locally Lipschitz, then, the $\ensuremath{\textit{Lyapunov conditions}}$ are

1. For all $x \in A$, V(x) = 0 and $\dot{V}(x) = 0$. 2. For all $x \notin A$, V(x) > 0 and $\dot{V}(x) < 0$.

Lyapunov-like Theorems (Non-smooth Systems)

We consider a more general setting that allows for

- 1. V non-differentiable and
- 2. nonsmooth dynamics
 - differential inclusions: $\dot{x} \in F(x)$
 - difference inclusions: $x^+ \in G(x)$

$$\blacktriangleright \text{ hybrid systems: } \mathcal{H}: \begin{cases} \dot{x} \in F(x) & \forall x \in C \\ x^+ \in G(x) & \forall x \in D. \end{cases}$$

For non-smooth systems,

$$\left(\dot{V}(x) < 0 \text{ for all } x \notin \mathcal{A}\right) \implies \left(\mathcal{A} \text{ is globally asymptotically stable}\right)$$

Example: V < 0 without convergence to 0

Lyapunov-like Theorems (Discontinuous Systems)

To ensure convergence despite discontinuities, we replace " $\dot{V}(x) < 0$ " with

$$\dot{V}(x) \le -\rho_{\rm C}(|x|_{\mathcal{A}}) \qquad \forall x \in \mathbb{R}^n,$$

where $\rho_{\rm C}: [0,\infty) \to [0,\infty)$ is continuous and positive definite (w.r.t. 0).

It can be difficult to construct the function $\rho_{\rm C}$ to satisfy

$$\dot{V}(x) \le -\rho_{\rm C}(|x|_{\mathcal{A}}) \quad \forall x \in \mathbb{R}^n,$$
(1)

In this work, we show that if \mathcal{A} is compact, then we can instead construct a lower semicontinuous function $\sigma_{\text{LSC}}: \mathbb{R}^n \to [0,\infty)$

$$\dot{V}(x) \le -\sigma_{\rm LSC}(x) \quad \forall x \in \mathbb{R}^n,$$
(2)

A function f is *lower semicontinuous* (LSC) at x_0 if

 $\liminf_{x \to x_0} f(x) \ge f(x_0).$

Remark. For any function $f : \mathbb{R}^n \to \mathbb{R}$, the function

$$x \mapsto \liminf_{x' \to x} f(x')$$

is lower semicontinuous and

$$\liminf_{x' \to x} f(x') \le f(x) \qquad \forall x \in \mathrm{dom}\, f$$

Thus, if we pick

$$x_0 \mapsto \sigma_{\text{LSC}}(x_0) := \liminf_{x \to x_0} \left(-\dot{V}(x) \right),$$

then

$$\dot{V}(x) \leq -\sigma_{\text{LSC}}(x_0).$$

Given:

▶ $\mathcal{A} \subset \mathbb{R}^n$ compact ▶ $\sigma_{\text{LSC}} : \mathbb{R}^n \to [0, \infty)$ that is

- 1. lower semicontinuous
- 2. positive definite (w.r.t. A).

Goal: Construct $\rho_{\scriptscriptstyle \mathrm{C}}:[0,\infty)\to[0,\infty)$ that is

continuous

positive definite (w.r.t. 0)

such that

$$\ \ \, \blacktriangleright \ \, \rho_{\rm C}(|x|_{\mathcal A}) \leq \sigma_{\rm LSC}(x) \ \, {\rm for \ \, all} \ \, x \in \mathbb R^n. \ \ \, {\rm Then, \ for \ \, all} \ \, x \in \mathbb R^n,$$

$$(\dot{V}(x) \leq -\sigma_{\rm LSC}(x)) \implies (\dot{V}(x) \leq -\sigma_{\rm LSC}(x) \leq -\rho_{\rm C}(|x|_{\mathcal{A}})).$$

Construction of $\rho_{\rm C}$ Outline

Lemma ($\sigma_{\rm LSC}(x) \geq \sigma_{\rm C}(x)$).

- Given $\sigma_{\scriptscriptstyle \mathrm{LSC}}:\mathbb{R}^n o [0,\infty)$
 - Iower semicontinuous
 - ▶ positive definite w.r.t. A

Let

$$\sigma_{\mathrm{C}}(x) := \inf_{x' \in \mathbb{R}^n} \left(\ell |x' - x| + \sigma_{\mathrm{LSC}}(x') \right) \quad \forall x \in \mathbb{R}^n.$$

Then,

- $\sigma_{\rm C}$ is Lipschitz continuous with Lipschitz constant ℓ
- \blacktriangleright $\sigma_{\rm C}$ is positive definite w.r.t. ${\cal A}$
- $\blacktriangleright \ \sigma_{\rm LSC}(x) \geq \sigma_{\rm C}(x) \text{ for all } x \in \mathbb{R}^n.$

Construction of $\sigma_{\rm C}$

Given $x_0 \in \operatorname{dom} \sigma_{\text{LSC}}$,

Consider

$$\sigma_1(x) := \begin{cases} x(1-x) & \text{ if } x \in [0,1) \\ 1 & \text{ if } x \ge 1 \end{cases}$$

Positive definite (w.r.t. 0)

 \bigotimes Not lower semicontinuous at x = 1.

Any continuous function σ_2 between 0 and σ_1 is 0 at x = 1 because

 $\liminf_{x \to 1} \sigma_1(x) = 0,$

Lemma $(\sigma_{\rm C}(x) \ge \rho_{\rm LSC}(|x|_{\mathcal{A}})).$

Given $\sigma_{\scriptscriptstyle \mathrm{C}}:\mathbb{R}^n o [0,\infty)$

continuous

▶ positive definite w.r.t. A

Let

$$\rho_{\text{LSC}}(r) := \inf \left\{ \sigma_{\text{C}}(x) : |x|_{\mathcal{A}} = r \right\} \quad \forall r \ge 0.$$

Then,

- $\blacktriangleright~\rho_{\rm LSC}$ is lower semicontinuous
- \triangleright ρ_{LSC} is positive definite (w.r.t. 0)
- $\blacktriangleright \ \sigma_{\rm C}(x) \ge \rho_{\rm LSC}(|x|_{\mathcal{A}}) \text{ for all } x \in \mathbb{R}^n.$

Construction of $\sigma_{\rm C}$

Wintz, Sanfelice — Relaxed Lyapunov Conditions

Given $ho_{\scriptscriptstyle \mathrm{LSC}}:[0,\infty)
ightarrow [0,\infty)$

- lower semicontinuous,
- ▶ positive definite w.r.t. 0.

There exists $\rho_{\rm C}$ such that

- \blacktriangleright $\rho_{\rm C}$ is Lipschitz continuous
- $\rho_{\rm C}$ is positive definite w.r.t. 0
- $\blacktriangleright \ \rho_{\rm LSC}(s) \geq \rho_{\rm C}(s) \ \text{for all} \ s \geq 0.$

Proposition ($\sigma_{\text{LSC}}(x) \ge \rho_{\text{C}}(|x|_{\mathcal{A}})$)

Given $\sigma_{\text{LSC}}: \mathbb{R}^n \to [0,\infty)$

- lower semicontinuous,
- **>** positive definite w.r.t. A.

For any $\ell > 0$, there exists $\rho_{\rm C}$ such that

- ▶ $\rho_{\rm C}$ is *l*-Lipschitz continuous,
- \blacktriangleright $\rho_{\rm C}$ is positive definite w.r.t. 0, and
- $\sigma_{\text{LSC}}(x) \ge \rho_{\text{C}}(|x|_{\mathcal{A}})$ for all $x \in \mathbb{R}^n$.

Hybrid Dynamical Systems

$$\mathcal{H}: \begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D \end{cases}$$

- $\blacktriangleright \text{ flow set } C \subset \mathbb{R}^n$
- flow map $F: C \rightrightarrows \mathbb{R}^n$

▶ jump set $D \subset \mathbb{R}^n$

 \blacktriangleright jump map $G: D \rightrightarrows \mathbb{R}^n$

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ on \mathbb{R}^n and a set $\mathcal{A} \subset \mathbb{R}^n$.

A continuous function $V : \mathbb{R}^n \to \mathbb{R}$ is a Lyapunov function candidate with respect to \mathcal{A} for \mathcal{H} if

- 1. V is positive definite with respect to \mathcal{A} ,
- 2. V is locally Lipschitz on an open neighborhood of \overline{C} .

Rate of change of \boldsymbol{V}

Consider

$$\dot{x} \in F(x) \quad x \in C \subset \mathbb{R}^n.$$
 (*)

and a locally Lipschitz function $V : \mathbb{R}^n \to \mathbb{R}$.

Let

$$\sup \dot{V}(x) := \sup\{\langle \zeta, f \rangle \mid \zeta \in \underbrace{\partial^{\circ} V(x)}_{\text{Generalized Gradient}}, f \in F(x) \cap \underbrace{T_C(x)}_{\text{Tangent Cone}}\} \qquad \forall x \in C,$$

For any solution ϕ to (\star) and all $t_1, t_2 \in \operatorname{dom} \phi$,

$$V(\phi(t_2)) - V(\phi(t_1)) \le \int_{t_1}^{t_2} \sup \dot{V}(\phi(t)) dt.$$

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ on \mathbb{R}^n , a nonempty compact set $\mathcal{A} \subset \mathbb{R}^n$, and a Lyapunov function candidate V with respect to \mathcal{A} for \mathcal{H} .

Suppose that there exists $\alpha \in \mathcal{K}_{\infty}$ such that $\alpha(|x|_{\mathcal{A}}) \leq V(x)$ for all $x \in \mathbb{R}^{n}$, and

1. there exist lower semicontinuous functions σ_c, σ_d that are positive definite w.r.t. \mathcal{A} such that

$$\sup \dot{V}(x) \le -\sigma_c(x) \qquad \qquad \forall x \in C$$
$$V(g) - V(x) \le -\sigma_d(x) \qquad \qquad \forall x \in D, \ g \in G(x).$$

Then, \mathcal{A} is (uniformly) globally pre-asymptotically stable for \mathcal{H} .

Relaxed Hybrid Lyapunov Theorem

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ on \mathbb{R}^n , a nonempty compact set $\mathcal{A} \subset \mathbb{R}^n$, and a Lyapunov function candidate V with respect to \mathcal{A} for \mathcal{H} .

Suppose that there exists $\alpha \in \mathcal{K}_{\infty}$ such that $\alpha(|x|_{\mathcal{A}}) \leq V(x)$ for all $x \in \mathbb{R}^n$, and

2. there exists lower semicontinuous function σ_c that is positive definite w.r.t. \mathcal{A} such that

$$\sup \dot{V}(x) \le -\sigma_c(x) \qquad \qquad \forall x \in C$$
$$V(g) - V(x) \le 0 \qquad \qquad \forall x \in D, \ g \in G(x)$$

and, for each r > 0, there exist $\Delta_T > 0$ and $\Delta_J > 0$ such that for each solution ϕ to \mathcal{H} with $|\phi(0,0)|_{\mathcal{A}} \leq r$,

• ϕ does not jump more than Δ_J times any interval of time shorter than Δ_T .

Then, \mathcal{A} is (uniformly) globally pre-asymptotically stable for \mathcal{H} .

Relaxed Hybrid Lyapunov Theorem

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ on \mathbb{R}^n , a nonempty compact set $\mathcal{A} \subset \mathbb{R}^n$, and a Lyapunov function candidate V with respect to \mathcal{A} for \mathcal{H} .

Suppose that there exists $\alpha \in \mathcal{K}_{\infty}$ such that $\alpha(|x|_{\mathcal{A}}) \leq V(x)$ for all $x \in \mathbb{R}^n$, and

3. there exists lower semicontinuous function σ_d that is positive definite w.r.t. \mathcal{A} such that

$$\begin{split} \sup \dot{V}(x) &\leq 0 & \forall x \in C \\ V(g) - V(x) &\leq -\sigma_d(x) & \forall x \in D, \ g \in G(x), \end{split}$$

and, for each r > 0, there exist $\Delta_T > 0$ and $\Delta_J > 0$ such that for each solution ϕ to \mathcal{H} with $|\phi(0,0)|_{\mathcal{A}} \leq r$,

• during any interval of time longer than Δ_T , ϕ has at least Δ_J jumps.

Then, \mathcal{A} is (uniformly) globally pre-asymptotically stable for \mathcal{H} .

Example (Continuous-time with discontinuous F)

Consider the continuous-time system

$$\dot{x} = f(x) := -\lfloor x \rfloor \quad \forall x \in \mathbb{R},$$

Let $\mathcal{A} := [0,1]$ and $x \mapsto V(x) := |x|_{\mathcal{A}}^2$.

$$\dot{V}(x) = \begin{cases} -\lfloor x \rfloor |x|_{\mathcal{A}} & \text{ if } x \ge 0 \\ \lfloor x \rfloor |x|_{\mathcal{A}} & \text{ if } x < 0. \end{cases}$$

Let

 $\sigma_{\rm LSC}(x) := \liminf_{x' \to x} -\dot{V}(x)$

 $\begin{array}{l} \implies \dot{V}(x) \leq -\sigma_{\rm \tiny LSC}(x). \\ \implies \mathcal{A} \text{ is globally asymptotically stable.} \end{array}$

Conclusion

We presented a relaxation of the hybrid Lyapunov theorem and several insertion theorems for positive definite functions.

Future Work: Find a better upper bounded on the rate of change of V than

$$\sup \dot{V}(x) := \sup \{ \langle \zeta, f \rangle \mid \zeta \in \partial^{\circ} V(x), f \in F(x) \cap T_{C}(x) \}$$

Consider

$$\begin{split} \dot{x} \in F(x) &:= \begin{cases} 1 & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ -1 & \text{if } x > 0, \end{cases} \\ V(x) &:= |x| \end{split}$$

The origin is asymptotically stable... ...but $\sup(\dot{V}(0)) > 0.$ Wintz, Sanfelice — Relaxed Lyapunov Conditions

Questions?

Slides and paper available at paulwintz.com/publications.

Funding

Hybrid Basic Conditions

A hybrid system \mathcal{H} is called *well-posed* if its set of solutions is sequentially compact, meaning that the limit of any graphically convergent sequence of solutions is also a solution. Well-posedness is useful for establishing properties such as robustness of asymptotic stability of compact sets. The following conditions are sufficient for a hybrid system to be well-posed.

Assumption 1 (Hybrid Basic Conditions Sanfelice, 2021, Def. 2.20)

- A hybrid system $\mathcal{H} = (C, F, D, G)$ on \mathbb{R}^n is said to satisfy the *hybrid basic conditions* if
- (A1) C and D are closed;
- (A2) $C \subset \operatorname{dom} F$, F is outer semicontinuous and locally bounded relative to C, and F(x) is convex for each $x \in C$; and
- (A3) $D \subset \operatorname{dom} G$, and G is outer semicontinuous and locally bounded relative to D.

 \diamond

Definition (Uniform Global Asymptotic Stability).

For a continuous-time system $\dot{x} = f(x)$, a nonempty set $\mathcal{A} \subset \mathbb{R}^n$ is said to be

- uniformly globally stable for $\dot{x} = f(x)$ if there exists a class- \mathcal{K}_{∞} function α such that every solution ϕ to $\dot{x} = f(x)$ satisfies $|\phi(t)|_{\mathcal{A}} \leq \alpha(|\phi(0)|_{\mathcal{A}})$ for each $t \in \operatorname{dom} \phi$; and
- uniformly globally attractive (UGpA) for $\dot{x} = f(x)$ if for each $\varepsilon > 0$ and r > 0, there exists T > 0 such that every solution ϕ to $\dot{x} = f(x)$ with $|\phi(0)|_{\mathcal{A}} \le r$ satisfies $|\phi(t, j)|_{\mathcal{A}} \le \varepsilon$ for all $t \in \operatorname{dom}(\phi)$ such that $t + j \ge T$.
- ▶ If \mathcal{A} is both uniformly globally stable and uniformly globally pre-attractive for $\dot{x} = f(x)$, then it is said to be *uniformly globally pre-asymptotically stable* (UGpAS) for $\dot{x} = f(x)$.

The prefix "pre-" indicates that these properties allow for maximal solutions that terminate after finite time (e.g., due to leaving $C \cup D$).

Consider a hybrid system \mathcal{H} and a nonempty closed set \mathcal{A} . Suppose that for each $r \geq 0$, there exist $\Delta_T > 0$ and $\Delta_J > 0$ such that for every solution ϕ with $|\phi(0,0)|_{\mathcal{A}} \in (0,r]$ and for every $(t_0, j_0), (t_1, j_1) \in \operatorname{dom} \phi$,

$$|t_1 - t_0| \le \Delta_T \implies |j_1 - j_0| \le \Delta_J.$$
(3)

Then, for each $r \ge 0$, there exist $N_r \ge 0$ and $\gamma_r \in \mathcal{K}_{\infty}$ such that for each solution ϕ to \mathcal{H} with $|\phi(0,0)|_{\mathcal{A}} \in (0,r]$,

$$t \ge \gamma_r(t+j) - N_r \quad \forall (t,j) \in \operatorname{dom} \phi.$$
 (4)

Proposition (Simplified Conditions for Persistent Jumps).

Consider a hybrid system \mathcal{H} and a nonempty closed set \mathcal{A} . Suppose that for each $r \geq 0$, there exists $\Delta_T > 0$ and $\Delta_J > 0$ such that for every solution ϕ to \mathcal{H} with $|\phi(0,0)|_{\mathcal{A}} \in (0,r]$ and for all $(t_0, j_0), (t_1, j_1) \in \operatorname{dom} \phi$,

$$|j_1 - j_0| \le \Delta_J \implies |t_1 - t_0| \le \Delta_T.$$
(5)

Then, for each r > 0, there exist $\gamma_r \in \mathcal{K}_{\infty}$ and $N_r \ge 0$ such that for each solution ϕ to \mathcal{H} with $|\phi(0,0)|_{\mathcal{A}} \in (0,r]$,

$$j \ge \gamma_r(t+j) - N_r \quad \forall (t,j) \in \operatorname{dom} \phi.$$
 (6)

Proof that $\rho_{\text{LSC}}(|x|_{\mathcal{A}}) \leq \sigma_{\text{C}}(x)$.

For any $x \in \mathbb{R}^n$, $\rho_{\text{LSC}}(|x|_{\mathcal{A}}) = \inf\{\sigma_{\text{C}}(x') : |x|_{\mathcal{A}} = |x'|_{\mathcal{A}}\} \le \sigma_{\text{C}}(x)$.

Proof that $\rho_{\rm LSC}$ is positive definite.

For each $r \ge 0$, $\sigma_{\rm C}$ attains a minimum on the compact set $\{x : |x|_{\mathcal{A}} = r\}$. The minimum is positive if and only if r > 0 since $\sigma_{\rm C}$ is positive definite w.r.t. \mathcal{A} . Therefore, $\rho_{\rm LSC}$ is positive definite (w.r.t. 0).

Proof sketch that $\rho_{\rm LSC}$ is lower semicontinuous.

To establish that ρ_{LSC} is LSC, we exploit the fact that \mathcal{A} is compact and σ_{C} is continuous. For each $r \geq 0$, we pick a compact set K_r containing an open neighborhood of $\mathcal{A} + r\mathbb{B}$. Since σ_{C} is continuous, its restriction to the compact set K_r is uniformly continuous. This allows us to do a δ - ε proof of lower semicontinuity.