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Abstract— In the setting of continuous-time, discrete-time,
and hybrid systems, including differential inclusions and differ-
ence inclusions, relaxations are given for Lyapunov functions
to establish uniform global pre-asymptotic stability (UGAS) of
compact sets. It is shown that for a compact set, if there exist
a Lyapunov function and two lower semicontinuous functions
that are positive definite with respect to the compact set and
whose negations are upper bounds on the rate of change of the
Lyapunov function during flows and jumps, respectively, then
the compact set is UGAS. Under additional regularity conditions,
conditions sufficient to show that a compact set is UGAS are
further weakened to merely require the rate of change of the
Lyapunov function is negative definite. Simplified conditions on
hybrid time domains, compared to existing results, are given
to establish that a set is UGAS for hybrid systems when the
Lyapunov function is merely nonincreasing during either flows
or jumps.

I. INTRODUCTION

In several Lyapunov-like theorems found in the control
theory literature, assumptions are imposed on a function
h : Rn → R in the form

h(x) ≤ −ρ(|x|A) ∀x ∈ Rn, (1)

where |x|A is the distance from x ∈ Rn to a set A, and
ρ : [0,∞) → [0,∞) is continuous and positive definite.
E.g., for a system ẋ = f(x) with a differentiable Lyapu-
nov function V , we would use h := V̇ , where V̇ (x) :=
⟨∇V (x), f(x)⟩. Examples of assumptions in the form (1)
include the hybrid Lyapunov theorem [1, Thm. 3.19(3)], (ro-
bust) control Lyapunov functions [1, Defs. 10.2 and 10.14],
and input-to-state stability (ISS) Lyapunov functions [2], [3].
In some results, namely [4, Thms. 4.1 and 4.9], assumptions
are given without using the distance function in the form

h(x) ≤ −σ(x) ∀x ∈ Rn, (2)

where σ : Rn → [0,∞) is continuous and positive definite
with respect to A, but such existing results assume A = {0}.

In this paper, we relax the assumptions on Lyapunov
functions for the case where A is compact. This work
builds upon the hybrid Lyapunov theorems [5, Thm. 3.18]
and [1, Thm. 3.19]. In particular, [1, Thm. 3.19] asserts that
a given set A is uniformly globally asymptotically stable with
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respect to a given hybrid system H under given assumptions.
This paper relaxes the assumptions of [1, Thm. 3.19] by
i) relaxing bounds on the rate of change of V that are given as
a function of the distance from A, as in (1), to only a function
of the state, as in (2), ii) allowing for bounds to be lower
semicontinuous instead of continuous, iii) relaxing the typical
K∞ upper-bound on V , and iv) simplifying conditions on
hybrid time domains when V is merely nondecreasing during
flows or across jumps. We prove our results in the context
of hybrid dynamical systems, with the results for discrete-
time and continuous-time systems following as special cases.
Along the way, we also prove several auxiliary results relating
to finding lower bounds for positive definite lower semi-
continuous functions that may be useful in other contexts.

The remainder of this paper is structured as follows.
Section I-A introduces notation and definitions, Section I-B
introduces hybrid systems, and Section I-C defines stability
properties. Section II contains insertion theorems that assert
the existence of functions between constraints. Section III
presents our main result, a Lyapunov theorem to show that
compact sets are UGAS for hybrid systems, which relaxes
results in [1], [5]. In Section III-A, simplified conditions are
provided for establishing bounds on the amount of flow versus
the number of jumps in a hybrid time domain. Section III-B
presents corollaies of our hybrid Lyapunov theorem for the
special cases of continuous-time and discrete-time systems.
Due to limited space, proofs are omitted or abbreviated.

A. Preliminaries

Let R≥0 := [0,∞) and N := {0, 1, 2, . . .}. The Euclidean
norm of x ∈ Rn is written |x| and the inner product between
x and y ∈ Rn is written ⟨x, y⟩. We write the unit ball in Rn

as B :=
{
x ∈ Rn : |x| ≤ 1

}
. For a set S ⊂ Rn, we denote

the boundary as ∂S, the interior as int(S), and the closure
as S. We write the convex hull of S as conv(S). If S is
nonempty, then the distance from x ∈ Rn to S is |x|S :=
infy∈S |y − x|. If S ⊂ Rn is nonempty, then the contingent
cone of S at x ∈ S is denoted TS(x) [6].

Given f : Rn → Rm, its domain is denoted dom f . If
f is differentiable at x ∈ dom f , then the gradient of f at
x is denoted ∇f(x). We say f is smooth if it is infinitely
differentiable. We say f is lower semicontinuous (LSC) if

f(x0) ≤ lim inf
x→x0

f(x) ∀x0 ∈ dom f.

If f is LSC, then g := −f is upper semicontinuous (USC).
The domain of a set-valued map F : Rn ⇒ Rm is written

domF := {x ∈ Rn | F (x) ̸= ∅}. We say F is outer semi-
continuous (OSC) [1, Def. A.32] if for each x0 ∈ domF ,
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each sequence {xi}∞i=1 in domF converging to x0, and each
convergent sequence {yi}∞i=1 with each yi ∈ F (xi), we have
that limi→∞ yi ∈ F (x0). We say F is locally bounded if for
each x0 ∈ domF , there exists a neighborhood U of x0 such
that F (U ∩ domF ) is bounded [1, Def. A.11].

A continuous function α : [0, c) → R≥0 is class–K
if α is zero at zero and strictly increasing. A continuous
function α : R≥0 → R≥0 is said to be in class–K∞ if it
is zero at zero, strictly increasing, and limr→∞ α(r) = ∞.
A function ρ : R≥0 → R≥0 is positive definite if ρ(0) = 0
and ρ(r) > 0 for all r > 0. We write the set of all positive
definite functions on R≥0 as PD(0). Given nonempty sets
A ⊂ Rn and X ⊂ Rn, a function σ : Rn → R≥0 is said to
be positive definite on X with respect to A if σ(x) = 0 for
all x ∈ A ∩ X and σ(x) > 0 for all x ∈ X \A. The set of all
positive definite functions on X = Rn with respect to A is
denoted PD(A). A function f is said to be negative definite
if g := is positive definite. Throughout this paper, we use the
notation “ρ” to denote positive definite functions on R≥0 and
“σ” to denote positive definite functions on Rn with respect
to A (i.e., ρ ∈ PD(0) and σ ∈ PD(A)).

For nonsmooth functions, we use the Clarke generalized
gradient and Clarke generalized directional derivative [7].
For a locally Lipschitz function V : Rn → R, the Clarke
generalized gradient of V at any x ∈ Rn is

∂◦V (x) := conv

{
lim
i→∞

∇V (xi)

∣∣∣∣ ∃(xi → x) s.t. V is
differentiable at each xi

}
.

The Clarke generalized directional derivative of V at x ∈ Rn

in the direction w ∈ Rn is given by

V ◦(x,w) = max
ζ∈∂◦V (x)

⟨ζ, w⟩. (3)

B. Hybrid Systems

We consider hybrid systems on Rn, as in [1], [5],

H :

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(4)

with state x ∈ Rn, flow set C ⊂ Rn, flow map F : C ⇒ Rn,
jump set D ⊂ Rn, and jump map G : D ⇒ Rn. We write H
compactly as H = (C,F,D,G).

A solution ϕ to H is defined on a hybrid time domain
domϕ ⊂ R≥0 × N, which parameterizes the solution by
ordinary time t ∈ R≥0 and discrete time j ∈ N. Roughly
speaking, the set domϕ is a hybrid time domain if there
either exists a (finite or infinite) sequence

0 ≤ t1 ≤ t2 ≤ · · · (5)

such that for every (T, J) ∈ domϕ,

domϕ ∩
(
[0, T ]×{0, 1, . . . , J}

)
=

(
[0, t1]×{0}

)
∪
(
[t1, t2]×{1}

)
∪ · · · ∪

(
[tJ , T ]×{J}

)
,

and for all (t, j), (t′, j′) ∈ domϕ,

t ≥ t′ ⇐⇒ j ≥ j′.

Each tj in (5) is called a jump time in domϕ. If the interval
Ij := {t | (t, j) ∈ domϕ} has a nonempty interior, then Ij

is called an interval of flow. At each jump time tj in domϕ,
the solution ϕ must satisfy ϕ(tj , j − 1) ∈ D and

ϕ(tj , j) ∈ G
(
ϕ(tj , j − 1)

)
.

For each interval of flow Ij , ϕ must satisfy ϕ(t, j) ∈ C for
all t ∈ int Ij and

dϕ

dt
(t, j) ∈ F (ϕ(t, j)) for almost all t ∈ Ij .

Let supt domϕ := sup{t ∈ R≥0 | (t, j) ∈ domϕ} and
supj domϕ := sup{j ∈ N | (t, j) ∈ domϕ}. We say ϕ is
complete if domϕ is unbounded (namely, supt domϕ = ∞
or supj domϕ = ∞). A solution ϕ to H is said to be a
maximal solution if there does not exist another solution ϕ′

to H such that ϕ is a truncation of ϕ′ with domϕ a strict
subset of domϕ′.

A hybrid system H is called well-posed if its set of
solutions is sequentially compact, meaning that the limit of
any graphically convergent sequence of solutions is also a
solution. Well-posedness is useful for establishing properties
such as robustness of asymptotic stability of compact sets.
The following conditions are sufficient for a hybrid system
to be well-posed.

Assumption 1 (Hybrid Basic Conditions [1, Def. 2.20]). A
hybrid system H = (C,F,D,G) on Rn is said to satisfy the
hybrid basic conditions if

(A1) C and D are closed;
(A2) C ⊂ domF , F is outer semicontinuous and locally

bounded relative to C, and F (x) is convex for each
x ∈ C; and

(A3) D ⊂ domG, and G is outer semicontinuous and locally
bounded relative to D. ⋄

C. Stability Properties

We consider uniform global pre-asymptotic stability of
sets, which is a stronger condition than global pre-asymptotic
stability due to requiring that for each ε > 0 and r > 0, there
is a uniform bound T > 0 on the hybrid time it takes any
hybrid solution that starts within a distance of r from A
to converge within a distance ε from A. The prefix “pre-”
indicates that these properties allow for maximal solutions
that terminate after finite time (e.g., due to leaving C ∪D).

Definition 1 ([1, Def. 3.7]). For a hybrid system H on Rn,
a nonempty set A ⊂ Rn is said to be

• uniformly globally stable for H if there exists a class-
K∞ function α such that every solution ϕ to H satisfies
|ϕ(t, j)|A ≤ α(|ϕ(0, 0)|A) for each (t, j) ∈ domϕ; and

• uniformly globally pre-attractive (UGpA) for H if for
each ε > 0 and r > 0, there exists T > 0 such that every
solution ϕ to H with |ϕ(0, 0)|A ≤ r satisfies |ϕ(t, j)|A ≤ ε
for all (t, j) ∈ dom(ϕ) such that t+ j ≥ T .

• If A is both uniformly globally stable and uniformly
globally pre-attractive for H, then it is said to be uniformly
globally pre-asymptotically stable (UGpAS) for H. ⋄



A nonempty set A ⊂ Rn is said to be forward pre-invariant
for H if each solution ϕ to H with ϕ(0, 0) ∈ A satisfies
ϕ(t, j) ∈ A for all (t, j) ∈ domϕ [1, Def. 3.13].

If every maximal solution to H is complete, then the “pre-”
prefixes are omitted, in which case, if A is UGpA, UGpAS,
or forward pre-invariant, then we say A is, respectively,
uniformly globally attractive (UGA), uniformly globally
asymptotically stable (UGAS), or forward invariant.

II. POSITIVE DEFINITE AND K∞ INSERTION THEOREMS

In the field of topology, an insertion theorem asserts the
ability to insert a function between two other functions. An
example is the Katětov–Tong insertion theorem [8], which
allows for the insertion of a continuous function between any
USC function ℓ : R → R and LSC function u : R → R such
that ℓ ≤ u. In this section, we introduce results for inserting
positive definite functions between zero and another positive
definite function. These results are used, in Section III, to
relax conditions such as (1) and (2).

A. Positive Definite Functions

Our first result shows that given any LSC function σLSC ∈
PD(A), we can construct a Lipschitz continuous function
σC ∈ PD(A) such that σC ≤ σLSC.

Proposition 1. Consider a closed set X ⊂ Rn, a compact
set A ⊂ X , a function σLSC : X → R≥0, and any ℓ > 0. Let
σC : X → R≥0 be defined by

σC(x) := inf
x∗∈X

(
ℓ|x∗ − x|+ σLSC(x

∗)
)

∀x ∈ X . (6)

If σLSC is in PD(A) and LSC, then σC is in PD(A),
ℓ–Lipschitz continuous, and

σC(x) ≤ σLSC(x) ∀x ∈ X . (7)

Proof Sketch. For each x0 ∈ X , let

x 7→ Lx0
(x) := ℓ|x− x0|+ σLSC(x) ∀x ∈ X . (8)

Substituting Lx0 into (6), it can be shown that

σC(x0) = inf
x∈X

Lx0
(x) = min

x∈K
Lx0

(x),

where K := x0 + σLSC(x0)B is compact. Since x0 ∈ K, we
have that σC(x0) ≤ σLSC(x0).

To establish that σC is positive definite on X with respect
to A, we see that if x0 ∈ A, then σC(x0) = σLSC(x0) = 0.
Suppose, alternatively, that x0 ̸∈ A and let x∗ ∈ K
be a minimizer of Lx0 . If x∗ = x0, then σC(x0) =
ℓ|x0 − x∗|+ σLSC(x

∗) > 0 because σLSC(x
∗) > 0. Otherwise,

σC(x0) = ℓ|x0 − x∗|+ σLSC(x
∗) > 0 because |x0 − x∗| > 0.

Lipschitz continuity is shown by taking any x0, x1 ∈ X
and (as before) x∗ ∈ K that minimizes Lx0

(x). Using the
fact that σC(x0) = Lx0

(x∗) and σC(x0) ≤ Lx1
(x∗), and

applying the inverse triangle inequality, we find

σC(x1)− σC(x0) ≤ Lx1(x
∗)− Lx0(x

∗) ≤ ℓ|x1 − x0|.

Swapping x0 and x1 completes the proof.

Example 1. To see why σLSC is assumed to be LSC in Propo-
sition 1, consider σ : R≥0 → R≥0 defined for all x ≥ 0 by

σ(x) := x(1− x) if x ∈ [0, 1) and σ(x) := 1 if x ≥ 1.

Although σ is positive definite with respect to A := {0}, it
cannot be lower bound by a continuous function in PD(A)
because σ is not LSC at x = 1 and lim infx→1 σ(x) = 0. In
particular, for any continuous function σC : R≥0 → R≥0 such
that σC(x) ≤ σ(x), it must be that σC(1) = 0 because σC is
squeezed to zero by σ as x approaches 1 from the left. ⋄

The next result allows us to weaken assumptions in the
form of (1), with ρ continuous, into an inequality in the form
of (2) with σ LSC.

Lemma 1. Consider a continuous function σC : Rn → R≥0

and a compact set A ⊂ Rn. If σC ∈ PD(A), then

r 7→ ρLSC(r) := inf
{
σC(x) : |x|A = r

}
∀r ≥ 0 (9)

is LSC, positive definite, and satisfies

ρLSC(|x|A) ≤ σC(x) ∀x ∈ Rn. (10)

Proof Sketch. For each r ≥ 0, σC attains a minimum on the
compact set {x : |x|A = r}, and the minimum is positive if
and only if r > 0 since σC ∈ PD(A). Thus, ρLSC ∈ PD(0).

To establish that ρLSC is LSC, we exploit the fact that A
is compact and σC is continuous. For each r ≥ 0, we pick a
compact set Kr containing an open neighborhood of A+rB.
Since σC is continuous, its restriction to the compact set Kr

is uniformly continuous. This allows us to do a δ-ε proof of
lower semicontinuity.

The next example shows a case where the function ρLSC

in Lemma 1 is merely LSC—not continuous.

Example 2. Consider A := {−1, 1} ⊂ R, and let σC(x) :=
|x2 − 1| for all x ∈ R. Then, for all r ≥ 0,

ρLSC(r) =
{
|x2 − 1| : |x|A = r

}
=

{
r(2− r) if r ≤ 1

r(2 + r) if r > 1,

so ρLSC jumps from ρLSC(1) = 1 to ρLSC(1.001) > 2. ⋄

The following result asserts that for every LSC func-
tion σLSC ∈ PD(A) with A compact, we can construct a
continuous function ρC ∈ PD(0) that—when composed with
the distance from A, as in (1)—is a lower bound on σLSC.

Proposition 2. Consider a compact set A ⊂ Rn. For each LSC
function σLSC : Rn → R≥0 in PD(A) and each ℓ > 0, there
exists an ℓ-Lipschitz continuous and positive definite function
ρC : R≥0 → R≥0 such that

ρC(|x|A) ≤ σLSC(x) ∀x ∈ Rn. (11)

Proof. Suppose σLSC ∈ PD(A) is LSC. By Proposition 1,
there exists a continuous function σC ∈ PD(A) such that

σC(x) ≤ σLSC(x) ∀x ∈ Rn.



By Lemma 1, there exists an LSC and positive definite
function ρLSC ∈ PD(0) such that

ρLSC(|x|A) ≤ σC(x) ∀x ∈ Rn.

Again, by Proposition 1, for any ℓ > 0 there exists an ℓ-
Lipschitz continuous function ρC ∈ PD(0) such that

ρC(r) ≤ ρLSC(r) ∀r ≥ 0.

Thus, for all x ∈ Rn,

ρC(|x|A) ≤ ρLSC(|x|A) ≤ σC(x) ≤ σLSC(x).

B. K∞ Insertion Theorems

This section shows that for any nonempty compact set A
and continuous function V : Rn → R≥0, there exists
α ∈ K∞ such that

V (x) ≤ α(|x|A) ∀x ∈ domV. (12)

Lemma 2. Consider a closed and nonempty set X ⊂ Rn, a
compact and nonempty set A ⊂ X , and a continuous function
V : X → R≥0. If V (x) = 0 for all x ∈ A, then there exists
α ∈ K∞ such that V (x) ≤ α(|x|A) for all x ∈ X .

To see why the conclusion in Lemma 2 does not gener-
ally hold if A is unbounded, consider A := R× {0} and
(x1, x2) 7→ V (x1, x2) = (|x1|+ 1)|x2|.

III. LYAPUNOV THEOREMS FOR COMPACT SETS

In this section, we present a Lyapunov theorem with re-
laxed assumptions for showing that a compact set is UGpAS
for a hybrid system. The following definition establishes the
class of functions permissible as Lyapunov functions.

Definition 2 ([1, Def. 3.17]). Consider a hybrid system
H = (C,F,D,G) on Rn and a set A ⊂ Rn. A function
V : domV ⊂ Rn → R is a Lyapunov function candidate
with respect to A for H if C ∪ D ∪ G(D) ⊂ domV ,
V is positive definite on C ∪D ∪G(D) with respect to A,
V is continuous, and V is locally Lipschitz on an open
neighborhood of C. ⋄

A key part of any Lyapunov-like theorem is establishing
an upper bound on the change in a Lyapunov function
candidate V . For hybrid systems, the following functions
provide upper bounds on the rate of V during flows and
across jumps.

Definition 3. Consider a hybrid system H = (C,F,D,G)
on Rn, a nonempty set A ⊂ Rn, and a Lyapunov function
candidate V with respect to A for H. We define

uC(x) := sup
f∈F (x)∩TC(x)

V ◦(x, f) ∀x ∈ C (13)

uD(x) := sup
g∈G(x)

V (g)− V (x) ∀x ∈ D. (14)

The suprema are defined as −∞ if the domains are empty
(e.g., if F (x) ∩ TC(x) = ∅, then uC(x) = −∞). Recall that
TC(x) is the contingent cone of C at x. ⋄

For any solution ϕ to H and all (t1, j1), (t2, j2) ∈ domϕ,

V
(
ϕ(t2, j2)

)
− V

(
ϕ(t1, j1)

)
≤

∫ t2

t1

uC

(
ϕ(t, j(t))

)
dt+

j2−1∑
j=j1

uD

(
ϕ(t(j), j)

)
,

where j and t are defined for all (t, j) ∈ domϕ by

j 7→ t(j) := min{t′ | (t′, j) ∈ domϕ}
t 7→ j(t) := min{j′ | (t, j′) ∈ domϕ}.

The main result of this paper, which follows the structure of
[1, Thm. 3.19(3)], is presented next. In particular, Theorem 1
provides sufficient conditions for a compact set to be UGpAS.

Theorem 1. Consider a hybrid system H = (C,F,D,G)
on Rn, a nonempty compact set A ⊂ Rn, and a Lyapunov
function candidate V with respect to A for H. Suppose there
exists α1 ∈ K∞ such that

α1(|x|A) ≤ V (x) ∀x ∈ C ∪D ∪G(D). (15)

Then, the set A is UGpAS for H if any of the following
conditions hold:
(a) Strict decrease during flows and jumps: There exist LSC
functions σc, σd ∈ PD(A) such that

uC(x) ≤ −σc(x) ∀x ∈ C (16)
uD(x) ≤ −σd(x) ∀x ∈ D. (17)

(b) Strict decrease during flows, nonincreasing at jumps:
There exists an LSC function σc ∈ PD(A) such that

uC(x) ≤ −σc(x) ∀x ∈ C (*16)
uD(x) ≤ 0 ∀x ∈ D, (18)

and, for each r > 0, there exist γr ∈ K∞ and Nr ≥ 0 such
that for each solution ϕ to H with |ϕ(0, 0)|A ∈ (0, r],

t ≥ γr(t+ j)−Nr (t, j) ∈ domϕ. (19)

(c) Strict decrease at jumps, nonincreasing during flows:
There exists an LSC function σd ∈ PD(A) such that

uC(x) ≤ 0 ∀x ∈ C (20)
uD(x) ≤ −σd(x) ∀x ∈ D, (*17)

and, for each r > 0, there exist γr ∈ K∞ and Nr ≥ 0 such
that for each solution ϕ to H with |ϕ(0, 0)|A ∈ (0, r],

j ≥ γr(t+ j)−Nr ∀(t, j) ∈ domϕ. (21)

(d) This item is skipped to keep the enumeration consistent
with [1, Thm. 3.19].
(e) Bounded flow time: There exist λ ∈ R and an LSC
function σd ∈ PD(A) such that

uC(x) ≤ λV (x) ∀x ∈ C (22)
uD(x) ≤ −σd(x) ∀x ∈ D, (*17)

and, for each r > 0, there exists Tr ≥ 0 such that for each
solution ϕ to H with |ϕ(0, 0)|A ∈ (0, r],

domϕ ⊂ [0, Tr]× N. (23)



(f) Finite number of jumps: There exist an LSC function
σc ∈ PD(A) and a continuous function λ : R≥0 → R≥0 with
λ(0) = 0 such that

uC(x) ≤ −σc(x) ∀x ∈ C (*16)
V (g) ≤ λ(V (x)) ∀x ∈ D, ∀g ∈ G(x), (24)

and, for each r ≥ 0, there exists Jr ∈ N such that for every
solution ϕ to H,

domϕ ⊂ R× {0, 1, . . . , Jr}. (25)

Proof Sketch. The proof proceeds by showing that the as-
sumptions in each case imply the assumptions of the cor-
responding case in [1, Thm. 3.19(3)]. The class-K∞ lower
bound on V in [1, Eq. 3.26] holds by assumption, and the
upper bound is established by Lemma 2.

Under the assumption that there exists an LSC function
σc ∈ PD(A) that satisfies (16), there exists, by Proposition 2,
a continuous function ρc ∈ PD(0) that satisfies [1, Eq. 3.27].
Similarly, if we assume the existence of an LSC function
σd ∈ PD(A) that satisfies (17), then there exists a continuous
function ρd ∈ PD(0) that satisfies [1, Eq. 3.28].

The next example Theorem 1 can be applied to prove that
a set is UGpAS without needing to construct a bound on uC

in the form of (1).

Example 3 (Bouncing Ball). Consider a bouncing ball mod-
eled as in [5, Example 3.19] with height x1 ≥ 0 and vertical
velocity x2 ∈ R. The bouncing ball is modeled as the hybrid
system H := (C,F,D,G) with state x := (x1, x2) ∈ R2

and dynamics given by

F (x) :=

[
x2

−γ

]
∀x ∈ C :=

{
x ∈ R2

∣∣ x1 > 0
}

G(x) :=

[
0

−λx2

]
∀x ∈ D :=

{
x ∈ R2

∣∣ x1 = 0, x2 < 0
}
,

where γ > 0 is acceleration due to gravity and λ ∈ [0, 1) is
the coefficient of restitution when the ball hits the floor. The
sets C and D are not closed, so (A1) of the hybrid basic
conditions is violated. To show that A := {(0, 0)} is UGpAS,
we take the Lyapunov function candidate

x 7→ V (x1, x2) :=
(
1 + θ atan(x2)

)(
x2
2/2 + γx1

)
where θ :=

(
1− λ2

)/(
2 + 2λ2

)
. Equation (15) holds with

s 7→ α1(s) :=
1

1−θ min
{
s2/4, γs/

√
2
}
.

Since V is continuously differentiable and F is single
valued, we have that for all x := (x1, x2) ∈ C,

uC(x) = ⟨∇V (x), F (x)⟩ = −γθ
(
x2
2/2 + γx1

)/(
1 + x2

2

)
.

Thus, uC is continuous and negative definite with respect to A,
and σc := −uC satisfies (16). For each x := (0, x2) ∈ D,

uD(x) =
[
λ2 − 1− θ

(
atan(λx2)λ

2 + atan(x2)
)]x2

2

2
,

which is continuous. For any x ∈ D \ A, we have

θ
(
atan(−λx2)λ

2 − atan(x2)
)
≤ θ(λ2 + 1) < λ2 − 1 < 0,

so uD is negative definite. Thus, σd := −uD satisfies (17).
Therefore, by Theorem 1, (0, 0) is UGpAS for H. ⋄

As we saw in Examples 3 and 4, if uC and uD are negative
definite and USC, then we can simply use the functions
σC ≡ −uC and σC ≡ −uD for the assumptions in Theorem 1.
This approach holds in general if we introduce additional
(weak) assumptions on F and G, which are a subset of the
hybrid basic conditions. In particular, F is assumed to be
locally bounded and OSC, as in (A2), but not assumed to
have convex values. The assumptions on G match (A3).

Proposition 3. Consider a hybrid system H = (C,F,D,G)
on Rn, a compact set A ⊂ Rn, and a Lyapunov function
candidate V with respect to A for H. Suppose F is OSC and
locally bounded, and uC is negative definite with respect to A.
Then, σc ≡ −uC is LSC and satisfies (16), and there exists a
continuous function ρ ∈ PD(0) such that uC(x) ≤ −ρ(|x|A)
for all x ∈ Rn.

Proposition 4. Consider a hybrid system H = (C,F,D,G)
on Rn, a compact set A ⊂ Rn, and a Lyapunov function
candidate V with respect to A for H. Suppose that G is
OSC and locally bounded, and uD is negative definite with
respect to A. Then, σd ≡ −uD is LSC and satisfies (17),
and there exists a continuous function ρ ∈ PD(0) such that
uD(x) ≤ −ρ(|x|A) for all x ∈ Rn.

A. Simplified Assumptions on Hybrid Time Domains

In Theorem 1, the conditions on the hybrid time domain
of solutions given in (19) of case (b) and (21) of case (c)
are rather non-intuitive and are often difficult to show. Thus,
in Propositions 5 and 6, we provide sufficient conditions
for (19) and (21), respectively, that are easier to check while
remaining general enough to apply to most systems that
satisfy (19) or (21).

Proposition 5. Consider a hybrid system H and a nonempty
closed set A. Suppose that for each r ≥ 0, there exist
∆T > 0 and ∆J > 0 such that for every solution ϕ with
|ϕ(0, 0)|A ∈ (0, r] and for every (t0, j0), (t1, j1) ∈ domϕ,

|t1 − t0| ≤ ∆T =⇒ |j1 − j0| ≤ ∆J . (26)

Then, for each r ≥ 0, there exist Nr ≥ 0 and γr ∈ K∞ such
that for each solution ϕ to H with |ϕ(0, 0)|A ∈ (0, r],

t ≥ γr(t+ j)−Nr ∀(t, j) ∈ domϕ. (*19)

Informally, the assumptions of Proposition 5 state that for
every solution that starts within a given distance of A, there
exists a bound ∆J on the number of jumps that can occur
during any time interval a given length ∆T .

Proof Sketch. It can be shown that for each r ≥ 0 and each
solution ϕ to H with |ϕ(0, 0)|A ∈ (0, r],

j ≤ ∆J +
∆J

∆T
t ∀(t, j) ∈ domϕ. (27)



Then, by some algebra, we find

t ≥
(

∆T

∆T +∆J

)
(t+ j)− ∆T∆J

∆T +∆J
∀(t, j) ∈ domϕ.

Therefore, the conclusion holds with

s 7→ γr(s) :=

(
∆T

∆T +∆J

)
s and Nr :=

∆T∆J

∆T +∆J
.

The analogous result with flows and jumps switched is
presented next.

Proposition 6. Consider a hybrid system H and a nonempty
closed set A. Suppose that for each r ≥ 0, there exists
∆T > 0 and ∆J > 0 such that for every solution ϕ to H with
|ϕ(0, 0)|A ∈ (0, r] and for all (t0, j0), (t1, j1) ∈ domϕ,

|j1 − j0| ≤ ∆J =⇒ |t1 − t0| ≤ ∆T . (28)

Then, for each r > 0, there exist γr ∈ K∞ and Nr ≥ 0 such
that for each solution ϕ to H with |ϕ(0, 0)|A ∈ (0, r],

j ≥ γr(t+ j)−Nr ∀(t, j) ∈ domϕ. (*21)

B. Continuous-Time and Discrete-Time Systems

The following corollaries are special cases of Theorem 1
for continuous- and discrete-time systems.

Corollary 1 (Continuous-time Lyapunov Theorem). Consider
compact set A ⊂ Rn, a continuous-time system on C ⊂ Rn

ẋ ∈ F (x) x ∈ C, (29)

and a Lyapunov function candidate V with respect to A
for (29). Suppose there exists α1 ∈ K∞ and an LSC function
σc ∈ PD(A) such that

α1(|x|A) ≤ V (x) and uC(x) ≤ −σc(x) ∀x ∈ C.

Then, A is UGpAS for (29).

Corollary 2 (Discrete-time Lyapunov Theorem). Consider
compact set A ⊂ Rn, a discrete-time system on D ⊂ Rn

x+ ∈ G(x) x ∈ D, (30)

and Lyapunov function candidate V with respect to A
for (30). Suppose there exists α1 ∈ K∞ and an LSC function
σd ∈ PD(A) such that

α1(|x|A) ≤ V (x) ∀x ∈ D ∪G(D)

uD(x) ≤ −σd(x) ∀x ∈ D.

Then, A is UGpAS for (30).

The next example illustrates how Theorem 1 can be used
to show that a compact set is UGpAS for ẋ = F (x) with F
discontinuous.

Example 4. Consider the continuous-time system

ẋ = F (x) := −⌊x⌋ x ∈ C := R,

where ⌊x⌋ is the largest integer m such that m ≤ x and ⌈x⌉
is the smallest integer n such that n ≥ x. The ⌊·⌋ function

is USC and ⌈·⌉ is LSC. Let A := [0, 1] and consider x 7→
V (x) := |x|2A. We find that

uC(x) =

{
(−|x|A)⌊x⌋ if x ≥ 0

(|x|A)⌊x⌋ if x < 0,

which is neither LSC nor USC. Let

−σc(x) :=

{
|x|A(1− ⌈x⌉) if x ≥ 0

(|x|A)⌊x⌋ if x < 0.

We see −σc is USC, so σc is LSC. For x ≤ 0, uC(x) =
−σc(x), and for x ≥ 0, −⌊x⌋ ≥ 1−⌈x⌉, so uC(x) ≤ −σc(x),
thus (16) holds. It can be easily checked that σc ∈ PD(A).
Therefore, A is UGpAS for ẋ = F (x), by Corollary 1. ⋄

IV. CONCLUSION

In this paper, we presented a relaxation of the hybrid
Lyapunov theorem, along with corollaries for continuous-
time and discrete-time systems. One avenue for future work
is to find an alternative function definition to uC in (13). In
particular, we have found systems with where uC is positive
at points where V cannot increase, indicating uC is an over-
conservative upper bound.
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[7] F. H. Clarke, Optimization and Nonsmooth Analysis (Classics
in Applied Mathematics), 2nd ed. SIAM, 1990.

[8] K. Yamazaki, “The range of maps on classical insertion theo-
rems,” Acta Mathematica Hungarica, vol. 132, no. 1, pp. 42–48,
Jul. 2011.

https://orcid.org/0000-0001-8894-8573
http://dx.doi.org/10.1007/978-1-4471-5102-9
http://dx.doi.org/10.1109/CDC.2016.7798314
http://dx.doi.org/10.1109/CDC.2016.7798314
http://dx.doi.org/10.1007/978-0-8176-4848-0_4
http://dx.doi.org/10.1137/1.9781611971309
http://dx.doi.org/10.1007/s10474-011-0096-0
http://dx.doi.org/10.1007/s10474-011-0096-0

	Introduction
	Preliminaries
	Hybrid Systems
	Stability Properties

	Positive Definite and K∞ Insertion Theorems
	Positive Definite Functions 
	Class K-infty insertion Theorems

	Lyapunov Theorems for Compact Sets
	Simplified Assumptions on Hybrid Time Domains
	Continuous-Time and Discrete-Time Systems

	Conclusion
	Acknowledgements

