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Introduction — Cyber-Physical Systems

Cyber-physical systems are electromechanical systems that include digital electronics
(e.g., sensors and computers) that interact with physical components or processes.

Heating and Air Conditioning

Chemical Plants Quadcopters

Autonomous Cars
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Introduction — Cyber-Physical Systems Control Problems

Fundamental Problems of Control Theory
» Don't Crash
» Get Where You're Going
» Minimize cost/Maximize rewards
Complicating Factors
» Complex dynamics
Uncertainty
Dynamic environments

>
>
» Computational limitations
>

Wintz — Exploiting Uncertified Controllers via Uniting Feedback



Introduction — Spectrum of Control Methods

Experiments Statistical Verification Barrier Functions
Reinforcement Learning Conformal prediction Lyapunov Functions
Simulations Model Predictive Control Reachability Analysis

/Easier to apply to complex systems
N

\
7

Stronger verification guarantees

= How can we combine these approaches?
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Control Objectives

Forward Invariance Global Asymptotic Stability
(“Don't Crash™) (“Get Where You're Going")
Every trajectory remains in A. Every trajectory moves toward A.
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Certificate Functions

To prove forward invariance and asymptotic stability, we use certificate functions.

Forward Invariance Asymptotic Stability

A

L |
0 [ |

Certificate: Barrier Function
Certificate: Lyapunov Function
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Uniting Feedback Control

Hybrid Control Strategy

> Switching
Logic

> 0 _‘)))\Lq
SRl fr (2 m (2

> K1 <E Plant

ko : certified controller, guaranteed to achieve
control objective

K1 : any controller
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Why Use an Uncertified Controller?

Certificates are hard to construct.
We may have an “advanced” controller that is difficult/impossible to certify but is

Uses less energy

>

» Produces faster convergence
» Requires less computation

>

Explores a region, collecting measurements.

Examples:

» Linear quadratic regulator (LQR) for the linearization of a system.
» Model predictive control (MPC) with computational delays.

» Black box controllers (e.g., neural network controllers).
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Introduction — Previous Uses of Switched Controllers

Sometimes, a single continuous controller cannot satisfy design requirements.

Switching has been used to. ..

» Achieve robust global asymptotic stability around obstructions.!

» Unite multiple Lyapunov-certified controllers (such as local and global controllers)
to achieve global asymptotic stability.?

1Mayhew, Ricardo G. Sanfelice, and Teel (2011), “Quaternion-Based Hybrid Control for Robust Global
Attitude Tracking”.

Ricardo G. Sanfelice et al. (2006), “Robust Hybrid Controllers for Continuous-Time Systems with
Applications to Obstacle Avoidance and Regulation to Disconnected Set of Points”.
2Prieur (2001), “Uniting Local and Global Controllers with Robustness to Vanishing Noise” .

Teel and Kapoor (1997), “Uniting Local and Global Controllers”.

El-Farra, Mhaskar, and Christofides (2005), “Output Feedback Control of Switched Nonlinear Systems
Using Multiple Lyapunov Functions”.
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Simplex architecture

The Simplex architecture is an approach for switching between an “advanced,”
unverified controller and a “simple,” easy-to-verify controller.3

Barrier functions have been used with the Simplex architecture to guarantee safety for
hybrid systems while using an unverified controller.

Prior approaches have drawbacks:

» Requires costly reachability analysis and only defines “one way" switching.*

» Only rectangular constraints are considered, and the switching criteria depends on
the extremal values of the vector field over the entire admissible set.?

3Rivera et al. (1996), An Architectural Description of the Simplex Architecture.
Seto et al. (1998), “The Simplex Architecture for Safe Online Control System Upgrades”.

*Yang et al. (2017), “A Simplex Architecture for Hybrid Systems Using Barrier Certificates” .

®Damare et al. (2022), “A Barrier Certificate-Based Simplex Architecture with Application to Microgrids .
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QOutline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants
Software Tools

Conclusion
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QOutline

Uniting Feedback for Safety
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Uniting Feedback for Forward Invariance

Given: A nonlinear plant

Hybrid Control Strategy

z=fo(z,u), ze€R"™ ueR™.

and controllers

kg : barrier-certified to render K forward
invariant

K1 : any controller

¥

> Switching
Logic

TING e

Goal: Design switching logic for ¢ € {0, 1} such that

» K is forward invariant.
> k1 is preferred over kg .

» Switching does not chatter.
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Barrier Function Certificate

2= fo(z) = fo(z, ko (2)).

mo |l 2 = folemy(2) |5
Plant

Has a barrier function B that certifies

K ={z € R"| B(z) < 0}

is forward invariant.
On some neighborhood U of K,

By (2) == (VB(2), fo (2)) <0
forall z€e U\ K.
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2= f1(2) = fr(z k1 (2)).

2= frlam() |

-

Plant

Rate of change of B when using k1 :

Bl (Z) :

(VB

(2), f1(2)) =77.
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Switching Criteria and Hold Ciriteria

Pick four thresholds 0y, 61, 09, 61, such that

50<51 <0 and 90<91 <0.
|

oo 0, Bi(z)
B(z)
ffffffffffffff j o
ZO»—>1 :
For ¢ = 0 (certified controller): For ¢ = 1 (uncertified controller):
» Hold ¢g=0 ifze Z. Hold ¢=1 ifze 2.
» Switchto ¢g=1 ifz€ Zp.1. Switchto ¢=0 ifz€ Z4.
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Switching Criteria and Hold Ciriteria

Ziso ={2€R"|B(z) > &, Bi(2) > 61}
201 :{ZGRn’B(Z>< dg or Bl( ) < 90}
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Dynamics of Closed-Loop System

Between switches:

» 2 evolves according to 2 = fp(2, Kq (2))

P> ¢ is constant
At each switch:

» 2 is unchanged

> ¢ is toggled to the opposite value in {0,1}
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Example: Linear and Affine Feedbacks

Consider the double integrator

S = fosu) = [8 é]w mu

Admissible set:
K:={zeR*:|z—(5,0)]>1}.

Controllers:
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Phase Plot
I
O Inadmissible $(0,0)
¢(q=0) v
$(g=1) /\ 2
% % % % \,
14
24 .
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Example: Linear and Affine Feedbacks

Phase Plot
I
O Inadmissible #(0,0)
¢ (g=0) e
} } . } \,
-1 1 3 w
14
24 2
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Switching Criteria

81(2)
B(z)
8o(2)
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Example: MPC with Computational Delays

MPC with Fast Computation

T T /¢(070) T

MPC with Slow Computation

&'
1k L d
3f5 411 4f5 il') 5f5 é 6f5 3f5 411 4f5 ;3 5f5 é 6f5
21 21
Delayed MPC with Supervision
T | T T T T
$(0,0)
——¢(¢=0)
o -05F -
N
-1 i
1 1 1 1 1 1 1
3.5 4 4.5 5 5.5 6 6.5

<1
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Theorem: Forward Invariance

Suppose that

» B is a continuously differentiable
barrier function of K for 2 = fo (2).

» fo and fi are continuous.

Then, K is forward invariant w.r.t. z for
the closed-loop system.

Remark. We also give conditions to ensure that

» Solutions exist for all ¢ > 0.

» The time between switches is not too short.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback

Closed-loop System

Hybrid Control Strategy

_)1‘\:1 Kq(2)

Switching
Logic
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QOutline

Uniting Feedback for Global Asymptotic Stability
Example: MPC with Slow Computation
Hybrid Control Strategy
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Problem Setting

Given: A control system

Hybrid Control Strategy

2= fo(z,u), ze€R™ ueR™. > Switching

Logic

and controllers g 7
ko : Lyapunov-certified to render A N

Kq(2)

globally asymptotically stable
K1 : any controller

¥

Goal: Design switching logic for ¢ € {0, 1} such that

> A is globally asymptotically stable
> k1 is preferred over kg

» switching does not chatter.
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Problem Setting — Lyapunov-certified Controller

For the Lyapunov-certified controller kg ,
there exists a Lyapunov function

Ve : R™ — [0, 00)
for
2= fo(z) = fo(z, /430(2/) )7

that guarantees A is globally
asymptotically stable.

Value of V; decreases outside A:

Vo := (VVe, fo(2)) < —0o(z).
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A

For the uncertified controller k1, no
assumptions on the rate of change
of Vp,

Vi = (VV, f1(2)) =77
for

= f1(2) = f(z r1(2) ).
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Example: Model Predictive Controller with Slow

Computation

Consider a nonlinear plant
2‘: = fp(Z7 u)
and two controllers:

ko: Lyapunov-certified controller

k1: Model predictive controller (MPC)
with a sampling period of 1 ms

Suppose new MPC feedback value is not
available at 1 ms.

When should we switch?
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100

Controller ko Only

80}
60
40
20

Ve (2)

100
80
60
40
20

t [ms]

Controller k1 Only

Vp(2)| A
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Switching Between kg and k;

100 T T T T
~
\\ o e_
AN V(2)
501 AN -
AN
N
\\
0 1 ! — T
1 T T T I
q i
O i 1 1 1 I ]
0 0.5 1 1.5 2 2.5

t [ms]

» The dynamics of v are described later.
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Hybrid Control Strategy — Switching Logic

Buffer function: Pick a continuous, positive function x +— §(z) > 0

For ¢ = 0 (certified controller): For ¢ = 1 (uncertified controller):

Vp is “small enough to switchto ¢=1"if  V; is “small enough to hold ¢=1" if

Vo(z)+0(2) <w Vi(z) <w
Vp is “large enough to hold ¢=0 " if Ve is “large enough to switchto ¢=0"
Ve(2) +6(2) 2 v Ve(z) > v

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Example: Switching Logic

Consider the plant
zZ=1u

with z > 0 and u € R and
controllers

ko(z) = —z

. 1
k1(z) = —2sin (W)
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Plant State

Ko only
K1 only

—— Switched
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Switching Criteria

10°N
-
~N e
N
1072
v(g=1)
ol T —Vp(2) +4(z
Vp(2)
1 . e
0 2 4 6 8 10
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Dynamics of Auxiliary v Variable

At each switch:
> v is set to max{V;(z),v}
Between switches:

» v evolves according to

¥ := —vytanh(v)op(z) — u(v — VP(Z)>7

where v > 0, i > 0, and oy is continuous and positive definite.

» v converges to 0.
» If ¢=0 and v < Vi(z), then v can increase gradually.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Example: Linear Quadratic Regulator of Linearized System

Consider the nonlinear plant

Z2=Az+ Bu+ f(z,u) .
——

Nonlinear
component

Let ko be an (inefficient) Lyapunov-certified controller.

Let x; be the LQR feedback that solves the following LQR problem:

minimize / 2(8)2 + u(t)|? dt
ul- 0

subject to 2 = Az + Bu.
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Example: LQR of Linearized System

Plant State Supervisor Values
2 v(g=0)
) vig=1)
2l 10 — -~ —Vp(2) +4(z
Ve(z)
5 10 ‘
T - 1077
21
2 ®) 1074
4t
100
6}
8 O 20
(g=0) 1
z 1
ol (¢=1)
0
0 0.5 1 1.5 2
t [s]
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Theorem:® Global Asymptotic Stability

Suppose that Closed-loop System
» A is compact; Hybrid Control Strategy
> fo and fi are continuous; SV{‘;";IC“%
» 14 is a Lyapunov function for _)\q
£=fo(2). 51O o)
Then, > K1 ] Plant

A:={(z,v,q) | z € A v =0}

is (uniformly) globally asymptotically
stable for the closed-loop system.

Remark. The asymptotic stability of A is robust to small perturbations.

®Paul K. Wintz, Ricardo G. Sanfelice, and Hespanha (2022), “Global Asymptotic Stability of Nonlinear
Systems While Exploiting Properties of Uncertified Feedback Controllers via Opportunistic Switching”.
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Summary

» Lyapunov-certified controller acts as a backup to ensure convergence while using
an uncertified controller.

» Exploit useful properties of any uncertified continuous controller without losing the
convergence guarantee.

Next steps
» We consider more general systems later.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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QOutline

Relaxed Lyapunov Conditions
Lyapunov Theorems for Non-smooth Systems
Insertion Theorems
Relaxed Lyapunov Theorem

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Lyapunov Theorems

Given: A dynamical system and a set A € R"™.
Goal: Prove that A is asymptotically stable. . A .
| ] [ |
Method: Construct V' : R™ — [0, 00) such that ’
1. V is positive definite with respect to A.

2. t— V(x(t)) is decreasing for each
solution t — xz(t) while z(t) ¢ A.

If f is Lipschitz continuous, then the “decreasing” condition for & = f(x) is

V() == (VV(z), f(z)) <0.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Lyapunov-like Theorems (Non-

smooth Systems)

We also consider non-smooth systems:
1. @ = f(x) with f discontinuous
2. & € F(x)
3. 2T € G(z)
teF(x) Vrel
4. H: "
" e G(r) VreD.
We can also have V' non-differentiable.

For non-smooth systems,

(Non-smooth ODE)
(differential inclusion)

(difference inclusion)

(hybrid system)

(V(x) <0 forall x & A) = (.A is globally asymptotically stable)

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Example: VV < 0 without convergence to 0

i = f(2)
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Lyapunov-like Theorems (Nonsmooth Systems)

For nonsmooth systems, prior results replace V(ac) < 0" with

V(z) £ —pc(|z[a) Yz eR, (1)

where p : [0,00) — [0, 00) is continuous and positive definite.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Lyapunov-like theorems — Relaxed Lyapunov Condition

It is often difficult to construct p.

» Must be continuous.
» Must be a function of the distance from A.

When A is compact, we found a relaxation of the Lyapunov conditions.”

If there exists such that
> is a function of x (instead of |x|4),
> is lower semicontinuous (instead of continuous),
> is positive definite with respect to A, and
> V(z) <

...then there exists p. (continuous and positive definite) such that

V(z) < —pellz]a).
"Paul K Wintz and Ricardo G Sanfelice (2025), “Relaxed Lyapunov Conditions”.
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Problem Statement: Construction of p

Given: A (compact) and

Goal: Construct p such that

Wintz — Exploiting Uncertified Controllers via Uniting Feedback

41



Construction of p. Outline

U|,><‘(1')

>0

Vo ¢ A.

orse ()

Yy

A

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Construction of p. Outline

ose(x) > oc(w) >0 Vo ¢ A.
continuous
ULS(‘(ZL')
oo(x)
X

A

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Construction of p. Outline

oise(r) 2 oo(z) = prsellz]a) >0 Vxé¢ A
continuous
orse ()
oo(z)
prsc(|z|a)
X

A A
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Construction of p. Outline

ose(r) 2 oc(r) > pusc(|z]a) = pol|z]a) >0 Vz ¢ A

continuous continuous

OLsc L)

oo(z)
prsc(|z|a)
pe(|z]a)

X

’

A A
Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Given o0 (1).
Make continuous

oc(x) == ;nel%(m\( )+ ]2 — x|)

Make function of distance (but LSC)
prse(r) i= min{oc(r) : [rla = r}.

Make continuous, function of distance

pc(r) = min(pLsc(r) + | - 7'|)
r’>0

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Relaxed Lyapunov Theorem for Continuous-time Systems

Consider a hybrid system & € F(z) on R™, a nonempty compact set A C R", and a
Lyapunov function candidate V' with respect to A for H.

Suppose that

1. there exists o € Ko such that a(|z|4) < V(z) for all z € R™, and
2. there exist LSC function that is positive definite w.r.t. A such that

V(z) < —0o0(z) Va € R"™.

Then, A is (uniformly) globally asymptotically stable for & € F(x).

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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How pick a good choice for

For any function f : R™ — R, the function

z + liminf f(z')
z'—x

is lower semicontinuous and

liminf f(2') < f(2) Va € dom f

z'—x

Thus, if we pick

then
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Example (Continuous-time with discontinuous f)

Consider the continuous-time system
&= f(x):=—|z|] VreR,

Let A:=[0,1] and z — V(z) := |z[%.
Let '
oo (x) == liminf =V (x)

' —x

— V(:IJ) < —ffl_.\(‘(x)-
= A is globally asymptotically stable.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Summary

We presented

» relaxation of Lyapunov conditions

» several insertion theorems for positive definite functions.
Future Work

» Generalize relaxed Lyapunov conditions:

> consider .4 non-compact
» Other types of Lyapunov functions, e.g., ISS Lyapunov functions.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Uniting Feedback with Hybrid Controllers and Hybrid Plants

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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z Certified Controller

’HKO Plant p
; Hp
v m 5
»~ | Uncertified Controller :
i E Mo !
v .
X S
. upervisor
U9 P < z ),
................... Hs J
§ J
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Hybrid Systems as Models of Cyber-Physical Systems

Hybrid dynamical systems are a type of mathematical model of dynamical systems that
combine continuous flows and discrete jumps.

Hybrid dynamical systems are a natural choice for modeling cyber-physical systems.

flows » continuous evolution of physical state.

jumps  » evolution of digital components
» impacts in physical states
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Hybrid Dynamical Systems
H:{ji:f(x) zeC
T reD

» jumpset D C R"

> flow set C' C R"
» flow map f:C — R"

» jump mapg:D — R"

Hybrid Time Domain

3T
21
1 .
0
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Hybrid Dynamical Systems with Set-valued Dynamics

JrelF(x) zel
|2t €Gx) zeD

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Hybrid Solutions

A solution ¢ to H is defined on a hybrid time domain dom ¢ C [0, 00) x N:

dom ¢ = ([to. t1] x {0}) U ([t1,22] x {1}) U+ .
0=ty <ty <ty <-oe.

A hybrid arc (t,j) — ¢(t,7) is a solution to H if

> o(t,j) € F(¢(t, ) for almost all ¢ in each intervals of flow [t;, ;1]
> o(tj,j+1) € G(o(t;,7)) for each jump time ¢; in dom(¢).

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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z Certified Controller

’HKO Plant p
; Hp
v m 5
»~ | Uncertified Controller :
i E Mo !
v .
X S
. upervisor
U9 P < z ),
................... Hs J
§ J
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2t € Gp(z,u) (2z,u) € Dy

{ z2€ Fo(z,u) (z,u) € Cp

Certified Controller
770 € FKO (27770) (27770) € CKO
Hio : §ng € Gxo (2,m0) (2,m0) € Dig
up = Ko (2,M0).
Uncertified Controller
771 S FK1 (.’L‘) T € C}(1
HKl : T]f E GK1 (x) X 6 DK1

i . o . . UlEHl(QE%
Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Supervisor Design for Global Asymptotic Stability

Given a Lyapunov function (z,19) — Vi (2,7n) for Hp x Hg, that certifies that A is
asymptotically stable for (z,70).

We extended the previous supervisor design as follows:

|:Z:| — |:fv(zao770av):| (2,770,771,%(]) c CS
Hs :
) vt max{V (z v
|:q+:| — |: A {Vlv(_’g())’ }:| ('ZanO’nlaUvq) € DS

where
fu(z,m0,v) = —ytanh(v)og(z,m0) — u(v — Vp(z,no)).

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Theorem: Global Asymptotic Stability

Suppose that

» A, is compact,

» Regularity conditions hold (outer semicontinuity, local boundedness of functions,
closed sets)

» V4 is a Lyapunov function for Hp x Hy, with strict decrease during flows.

» The state of Hg, is constrained to compact set

Then, the set Ap x {0} is (uniformly) asymptotically stable for (z, 70, 2).
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Proof Sketch

We introduce a new Lyapunov function
V(IE) = ma’X{VP('Z’ 770)> U},

then show that it satisfies our relaxed Lyapunov conditions.

Let
() = { oo(zm)  if Velz,m) > v
—f(zmo,v)  if Ve(z,mo) < v
We show
> is LSC and positive definite with respect to A on C
> V(z) < —orec(@).
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Proof Sketch

At jumps
v" = max{Vi(2,7m), v}

Thus,
V(z™) = max{Vs(z,m0),v"} < V(z),

so V(z) does not increase at jumps.

We apply a hybrid version of our relaxed Lyapunov theorem to get existence of solutions.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Proof Sketch

We prove existence of solutions with unbounded domains:
1. At each point in C'\ D, solutions can flow because
F(x)NTo(x) # 2.
2. The state cannot jump out of C'U D because
G(D)cCuUD.
To show that ¢t — oo in the domain of each solution:

» For each subsystem, there is a minimum time between sequential jumps, so
number of jumps is bounded in finite time.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Software Tools
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Software Tools for Hybrid Systems

SIMULATOR FOR HARDWARE ARCHITECTURE & REAL-TIME CONTROL

Simulate cyber-physical
systems with accurate
computational delays.

Hybrid Equations Conical Transition
Toolbox Graphs

Algorithmically check
asymptotic stability in
hybrid systems.

Simulation and plotting of
composite hybrid systems
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Conclusion

Wintz — Exploiting Uncertified Controllers via Uniting Feedback
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Questions?



QOutline

SHARC: Simulator for Hardware Architecture and Real-time Control
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Motivating Example: Adaptive Cruise Control (ACC)

Ego Vehicle Front Vehicle
Headway
(  Computational )
Hardware Sensors

L.l
/—J'ﬁ

Actuators

@
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Motivating Example: Adaptive Cruise Control (ACC)

v X
Headway O
ey Y-

If no computational delays: If computational delays:

—> Guaranteed minimum headway = 777

Computational delays depend on

» Control Algorithm, implementation, and parameters
» Computational hardware
» Current state and measurements

> Recent computations
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Sharc: Simulator for Hardware Architecture and

Real-time Control

SIMULATOR FOR HARDWARE ARCHITECTURE & REAL-TIME CONTROL

-

SHARC

~

-

Physics Simulator

Python

Physics

N

Delay 7
<

<

Control u

4 Hardware Simulator h

Scarab Microarchitectural
Simulator

User-defined Python Class

Output y

K\

\ 4

Controller

User-defined C++ Program

>,

Features

> Uses same executable as would be deployed.

» Parallelized to shorten run times.

» Dockerized and easy configuration via JSON files.
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Mathematical Model of Delayed Computations

w

Discrete Physics Model ] y

. Tpi1 = f(tk, xk,uk,w(tk))
yr = h(zk, up, w(ty)) }

Controller with Computational Delay

While computation pending | | When computation finished
{ Uk+1 = U Uk+1 = U
Upy1 = Ug Gigr1 = g(th, Yr)
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Controller Execution Simulation

To estimate controller run time, we use the Scarab Microarchitectural Simulator.

» Low level simulation of controller binary on CPU

» Simulates caching, branch prediction, pipelining, etc.
» Customizable processor parameters

» Cache size
» Clock speed
> Architecture

» Provides detailed statistics.
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ACC Example: Instruction Cache Size Comparison

i = Velocity
Problem 1 (Linear MPC) £
> 101
§ —— Front Velocity
2 0
- Headway
£
e . 2 = 50
minimize |velocity error| s
2 § 7 == Minimum Headway hmin
+ |control effort| $ ofmmmm=gmo—mmmpooooo :
o Delays
subject to 7 10
. . s == Sample Time (0.2 s)
Linear System Dynamics zos e e
[=}
- . 0.0 +
Linear Safety Constraints = Control
; 2000 ... — Acceleration Force -+ Braking Forc-é"
T—: 1000 ]
— Performance degrades if instruction g o , , ; ; ;
o 0 5 10 15 20 25

cache is only 1 KB. Time [s]

— 2MB x Batch start
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Conical Transition Graph
Methods for Constructing Conical Transition Graphs
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Introduction — Problem Setting

Goal: Develop graph-based analysis of asymptotic stability for conical hybrid systems

» Allows determining local asymptotic stability of non-conical hybrid systems by
using their conical approximations.
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Introduction — Graph-based Analysis for Hybrid Systems

Previous work using discrete graphs to analyze hybrid systems:

» Asymptotic stability for

> switched discrete-time linear systems (Philippe et al., 2016)
» switched discrete-time nonlinear systems (Kundu and Chatterjee, 2016)
» switched continuous-time linear systems (Langerak and Polderman, 2005)

» Infinite-horizon reachability for linear hybrid automata (Bogomolov et al., 2017).

The present work is (to the best of our knowledge) the first graph-theoretic approach to
analyze asymptotic stability in non-switched hybrid systems.
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Introduction — Hybrid Dynamical Systems Framework

t =f(x) z€C
H:oq |
" =g(x) ze€D
» flow set C' C R" » jump set D C R”
» flow map f:C — R" » jump mapg:D — R”

The continuous-time component of H = (C, f, D, g) is written

(5 ).
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Introduction — Conical Approximations

Definition 1

Given a hybrid system H = (C, f, D, g) and a point , € C U D such that g(z.) = .,
the conical approximation of H at xz, is

f(x) := Constant or linear approximation of f, C := Tangent cone of C' at x,,
g(z) := Linear approximation of g, D := Tangent cone of D at x,,

with each approximation centered at x.. o

Theorem 1 (Goebel and Teel, 2010)

Under sufficient regularity assumptions:

If 0,, is pAS for the conical approximation of H at x., then x, is pAS for H.
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Conical Approximations with Constant Flows

Let H = (C, f, D, g) be a hybrid system with z, € C'N D such that

> g(zi) =24
» g is continuously differentiable at x,.

> f(l'*) #On

> f is continuous at x,.

Then, the conical approximation of H at z, is

- & =f(z):=f(z,) [constant], C:=Te(x,),
| 2T =g(x) := Apz [linear], D:=Tp(x,),

where Ap is the Jacobian matrix of g at x,.
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Example 1: Conical Hybrid System

flx) = [(1)] Ve e C:= {x6[0,00)2‘a:22:n1}
0 _
g(z) = [7551] Ve e D := rayH],
with v > 0.

» How to prove the origin asymptotically
stable (without a Lyapunov function)?

1

0.5]

X1
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Introduction — Radial Homogeneity

r
¥

\“ o ,:'r‘ »(0,
vy Op 0
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Introduction — Mapping R" to Unit Sphere

g(D)

e 0,
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Introduction — Normalized Radial Vectors

The normalized radial vector function

1 1 RTL o®
nrv: R" — S§ :=8S""U{0,} **Tay(v)
Sn*l v
is defined for each v € R™ as ' nrv(v)

On

0, if v=20, Q

mv(e) =3 Uy 2o,
o] nrv(Op)
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Introduction — Conical Transition Graph (Sketch)
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Introduction — Directed Graphs with Weights

A directed graph consists of a set of vertices

1
V= {v1,v2,v3,v4,v5} A)m

connected by arrows:

[0, 1)
"4 = {Cll,ﬂQ,ﬂg,EtC.}. _]2} [0, 1)
172} ) J
Each arrow connects two vertices, e.g., 172} F/—\C
{2,4,6,...}

ay = v Bvg, ag = vz Lovq, etc

Each arrow is assigned a weight, defined by a weight function WW : V = R. We write
the weight of a as W(a) C R.
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Introduction — Walks Through Graphs

A walk w through a graph G is a sequence of arrows in A:
w:(ao, ap, ..., Clel) =v9 — V1 — V2 —

such that a; = v; = v;41 foreach ¢ =0,1,..., N — 1.
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Introduction — Walk Weights

The set-valued weight of a finite-length walk w = (ag, as,...,ax_1) is defined as the
Minkowski product of the weights

W(w) = {7’0 T TN—1 ‘ ro € W(ao), r € W(al), ..., TNZ1 € W(a]v_l)}

For an infinite-length walk w := (ag, a1, ... ), we have that W(w) = {0} if and only if
i T =0
k=0

for every sequence {r}7°, with 7, € W(ay,) for all k € N.
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Definition: Conical Transition Graph (CTG)

The conical transition graph (CTG) of a conical hybrid system H = (C, f, D, g) is a

weighted, directed graph
G=WV,AW).

The set of vertices is defined as

V:i=(DUg(D))NnSy!

For each v® € VN D, there is a jump arrow from v° to

o® = nrv(g(v))
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Definition: Conical Transition Graph (CTG) — Flow Arrows

For each

v® eVng(D) and v eVND,

there is a flow arrow from v©® to v if for some T > 0, there exists a function

that satisfies

[0,T] 5t &(t)

£0) =
§(t)=f(E) vte(0,T) (Flow Arrow ODE)
£t)ed vt € (0,7)
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Definition: Conical Transition Graph (CTG) — Weights

The weight of each jump arrow a’ = v° L 0% is

Wi(a') := {lg(v")I}.

The weight of each flow arrow a = v©® £ ¢ is

W(a") := {|¢(T)| | ¢ satisfies the Flow Arrow ODE for some T' > 0}.
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Example 1 (Continued): Construction of CTG

f(z):= [(1)] Vee(C = {xe[O,oo)Q‘:mle}, @ F\

H:
se) = 0 | voeD—rayli) N1
with v > 0.
Vertices
V ={0,,v1,v2} J |
Arrows

The weights of the arrows are:

A= {Oni>0n, vg Lyvg, vq i)’02}. W(On L>On) = {0}
Wi(vs Lv1) = {v/V2}
W(Ul i)'UQ) = {\@}
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Example 2

Using f and g from Example 1, consider
the flow and jump sets:

O = {l’ € [0, 00)? ‘ 2r9 > xl}
D':=ray[{] Utay[{].

The weights of the arrows are:

W(On i> On) = {0}
W(vz L 01) = {v/V2} W(vr & ) = {V2}
W(vs L 01) = {27/V5} W(vr £ v3) = {V/5}.
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Example 3 — Non-singleton Set-valued Weights

Conical hybrid system:

= f(x)=-1, C:=][0,00),
" {$+ =g(z) :==2/2, D:=][0,00).

The origin is asymptotically stable
for H.

Vertices

V={0,1}

Arrows

A={0%0,1251,150,151}.

Sl

Wintz — Exploiting Uncertified Controllers via Uniting Feedback

94



Main Result

Theorem 2

Let H = (C, f,D,g) be a conical hybrid system with conical transition graph
G =V, A,W). Suppose the following:

1. The origin is pre-asymptotically stable for (C, f).

2. There exists M > 0 such that every walk w through G satisfies sup W(w) < M.

3. Every well-formed infinite-length walk w through G satisfies W(w) = {0}.
Then, the origin of H is pAS.

When V is finite:
» Condition 2 is implied by 3 if each individual arrow weight is bounded.
» Condition 3 is satisfied if and only if sup W(w) < 1 for every well-formed
elementary cycle w in G.
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Example 2 — Continued

Arrow Weights:

W(On L n) = {O}

W(ve Lo1) = {v/V2}  W(v B ) = {v2}
W(vs L 01) = {29/V5} W(v £ v3) = {V5}.

Weights of Elementary Cycles:

W(0n % 0,) = {0}

W('Ul i)v2i>vl) = W('l)Qi)'l)l E)UQ) = {’y}

W(vr B vg L o) = W(vs L o1 Boz) = {27}

= For all 0 < v < 1/2, the origin is pAS.
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Future Work

Directions for future work:

1. Expand the scope of systems for which our approach is tractable.

» Construct CTG's for conical hybrid systems with linear flows.
» Handle CTG's that have a large or infinite number of vertices.

2. Extend the CTG results to more general hybrid systems:

» Hybrid systems with switching between logical modes.
» Hybrid systems with set-valued flow and jump maps.
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Proposition 1 (Flow Arrows — Constant Flows)

Let H be a conical system with constant flows and let G be the CTG of H.

Then, v Es v js a flow arrow in G from

v@ e VNg(D) tov® € VN D if and only if
» nrv(v?) = nrv(v?),

» v #£0, or v9 £ 0,,

> (00— ®, (0,) >0,

> o0 £0, = (0 — O, £(0,)) >0,

> v +(1-0)w" eC VOelo1].

A formula for the weight of a' := v©® £ v® is given in the paper.
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Computational Considerations for Finite Conical Transition
Graphs

A walk through a graph is called an elementary cycle if it starts and ends at the same
vertex and does not visit any other vertex more than once.

We can enumerate over all of the elementary cycles using Johnson's enumeration
algorithm (Johnson, 1975). The worst-case time complexity of Johnson's algorithm is

O((no. of vertices + no. of edges)(no. of elementary cycles + 1)).
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Technical Definitions
Non-smooth Analysis
Set-valued Lie derivative
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Definition of UGAS

Definition 2
A nonempty set A C R" is said to be

» wuniformly globally stable if there exists a continuous, strictly increasing function «
such that every solution x to # satisfies |x(¢,7)|4 < a(|z(0,0)|4) for each
(t,j) € domx; and

» uniformly globally attractive for H if every maximal solution is complete and for all
€ >0 and r > 0, there exists T" > 0 such that every solution x to H with
|£(0,0)| 4 < r satisfies |x(¢,7)|4 < e for all (¢,j) € domz such that ¢t +j > T.

» If A is both uniformly globally stable and uniformly globally attractive for H, then
it is said to be uniformly globally asymptotically stable (UGAS) for H.
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Because kg is Lyapunov-certified there exists a Lyapunov function
V:iR™ — [0,00)
that guarantees A is UGAS for

zZ = fr(z,r0(2)).

Namely, there exist a1, a2 € Ko and a continuous positive definite function p such that

ai(lzla) < V(z) < aa(|z]a) Vz e R",
Vo(2) < —p(|2]a) Vz € R".
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Hybrid Systems

We consider hybrid systems modeled as

%:{.«t:f(m) zeC

v =g(x) xeD

with
» jumpset D C R"

> flow set C' C R"
» jump mapg:D — R”

» flow map f:C — R"
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Definition (Lower Semicontinuous)

A function f is lower semicontinuous (LSC) at x¢ if

f(zo) < liminf f(z).

T—T0
LN SN SN
:L!O > 1[0 > :L[O >
Lower Semicontinuous (LSC). Upper Semicontinuous (USC). Not LSC, not USC.
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Contingent Cone

Let S C R™ be nonempty and let z € S. The contingent cone & to S at z is denoted
Ts(x), and is given by The contingent cone Ts(x) is the set of all vectors v € R™ such
that there exist a sequence of positive real numbers h; — 07 and a sequence of vectors

v; — v such that
T+ hv; €S

for all 7 € N,
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Clark Generalized Gradient and Directional Derivative

For a locally Lipschitz function V : R™ — R, the Clarke generalized gradient of V at
x €R"is

o°V(x) := conv{ lim VV (z;) ‘ A(x; — x) s.t. Vis differentiable at each xz} (2)

1—00

The Clarke generalized directional derivative of V' at x in the direction w € R" is given
by V°(z,w) = maxccgoy(2)(C, w). The Clarke generalized directional derivative of V'
at x € R" in the direction w € R is given by

Ve(x,w) = Cer;o%« , w). (3)
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Lie Derivative

For a differential inclusion # € F'(x) with a set-valued map F': R” = R" and a
Lipschitz continuous function V' : R™ — R, we define the set-value Lie derivative of V'
along F' as
LpV(x) :=sup{((, f) [ ¢ € 0°V(x), [ € F(x)NTo(x)}.
S~—— S~

Generalized Gradient Tangent Cone
Furthermore, since LrV (z) is a set in R, we can write the least upper bound as
sup LV (x).
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Rate of change of V for i € F(x)

Consider
teF(x) ze€CCR" (%)

and a locally Lipschitz function V : R" — R.

For each z € C,

V()= LpV(z) =suw{(¢, f) | ¢ € °V(2), f € F(z) NTo(x)}.
—

Generalized Gradient Tangent Cone

For any solution ¢ to (x) and all ¢;,t2 € dom ¢,

V(o(t2)) = V(o(t1)) < /t2 V(o(t)) dt.

t1
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Additional Results for Uniting Feedback
Positive Lower Bound on Time Between Switches
Results for Uniting Feedback for UGAS
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Theorem (Forward Invariance Without Chattering)

Suppose that

» B is a C! barrier function of K for 2 = fy (2).
» fo and f1 are globally Lipschitz continuous with Lipschitz constants Ly and L;.
» 0y, 01, 6o, and 01 are continuous and satisfy the threshold function inequalities.

» There exists T > 0 such that for all 20 € 2y and z' € Zi59,

|ZO = z1| > Tmax{| fo (zo)| exp(LoT), | fi (21)] exp(Llr)}.
Then,

» 7 s a lower bound on the time between jumps for all solutions to H.

» Every maximal solution ¢ to H is complete and sup, dom ¢ = oo.
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Proof Sketch of Section 1

» Forward pre-invariance is proven using the same barrier function as in Theorem 1.
» Solutions to 2 = fy () and 2 = f1 (z) cannot escape to infinity in finite time

because fp and f; are globally Lipschitz.

> Let 2° € Zp; and 2! € Zi,0. To prove T is a lower bound on the time
between jumps, we show

> The (unique) solution to z = fo (2) starting at 2" satisfies

20— 21 > 7] fo (") exp(Lo7) > [2(t) — 2] Vit € [0,7].

Thus, in time 7, a solution to H cannot move from (2°,1) € g( Do.s1 ) to
(Zl, 1) S Dl,_>0 .
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Proof Sketch of Section 1

> The (unique) solution to # = f; (2) starting at 2! satisfies
120 = 24 > 7] f1 (2D)|exp(Ly7) > |2(t) — 2| Vte]0,7].
Thus, in time 7, a solution to H cannot move from (z1,0) € g( D10 ) to

(ZO,O) € Do .
» The time to move from g(D) to D is at least 7.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback

112



Example: Lower Bound on Switching Times

Consider the plant Satisfies Theorem 1 — K is forward invariant.

. z
z= fo(z,u) = [ul] Phase Plot
_22 “\ Inadmissible
with z = (z1,22) € R? and u € R. \\\ Z10
o -40 —
Admissible Set: Lower Half Plane of R2 \ \ ¢ (q=0)
60 ¢(g=1)
Controllers: kg (z) := —|z1| -80 201
k1 (2) i= +|z1] 0
21
Barrier Function: B(z) := zs.
Solutions are unbounded = Theorem 1 does not
Thresholds:  dg (z) := —2 — 2|z1|  guarantee solutions existence for all £ > 0.

61 (2) = —1—al.
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Example: Lower Bound on Switching Times

We find that for 7 := 0.25,

29 +1
0 a1 2 D o ) exptzo),
0o_ .1 >’zﬂ7+1 1
0 =2t 2 B s o o exp(ar)

o ) The time between jumps is at least 7 = 0.25.
Satisfies Section 1 — ] ) .
Every maximal solution exists for all ¢ > 0.
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Clarke Generalized Gradient of V()

For the function N
V(z) := max{V (z), v},

the Clarke generalized gradient at « = (z, v, q) in the direction w = (w,, w,,0) is

B (V.V(2), w) if V(z) > v,
VO (z,w) = { max{{V.V(2), w,),wy} if V(2) =, (4)
Wy if V(Z) < .
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Further Results for Relaxed Lyapunov Conditions
Insertion Theorems
Simplified Conditions on Hybrid Time Domains
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ULSC(-T) > Uc(x)-

Given o .

For all x € R"™, let
oc(x) == inf (0,0(a’) + ]2’ — zl).

z/€R™

Then,

» o is Lipschitz continuous with
Lipschitz constant /¢

» o is positive definite w.r.t. A
» 050(x) > oc(x) for all z € R™.
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Construction of o

Given zp € dom(o ),

oc(zg) = iil/f((fm(‘(x,) + |2’ — xg\).

OLsc (37)

vH

A o
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Construction of o

Given zp € dom(o ),

A o
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Construction of o

Given zp € dom(o ),

A o
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Construction of o

Given zp € dom(o ),

A o
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Construction of o

Given zp € dom(o ),

A o
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Construction of o

Given zp € dom(o ),

0(7(1'0) = iil’,f(f7145<f(x,> + ’1'/ - x()‘)

vH
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Non-Example

Consider

o1() = {:c(l —x) if z €10,1)

1 if o> 1 = % g

@ Positive definite (w.r.t. 0).

€ Not lower semicontinuous at = = 1.

Any continuous function oo between 0 and o7 is 0 at = 1 because

liminf oy (z) = 0,
z—1

@ Continuous
© Not Positive definite (w.r.t. 0)
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oc(x) > pusc(lz|a)-

Given oc.

Let
prse(r) == inf{oc(z) : |zla =71} Vr>0.

Then,
» pisc is lower semicontinuous
» pisc is positive definite (w.r.t. 0)
» oo(z) > puse(|z]a) for all z € R™.
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Construction of o

pusc(r) = inf{oc(x) : fela =7} V>0,

oc(x)
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Construction of o

pusc(r) = inf{oc(x) : fela =7} V>0,
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Construction of o

pusc(r) = inf{oc(x) : fela =7} V>0,
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Construction of o

prsc(r) 1nf{o’c |x|A—7“} Yr > 0.

7“:|2.9 A r
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Construction of o

pusc(r) = inf{oc(x) : fela =7} V>0,

 prse(lz]4)
|

Wintz — Exploiting Uncertified Controllers via Uniting Feedback



prsc(|z]a) > pe(|z|a)

Given prsc.

There exists p¢ such that
» pc is Lipschitz continuous
» . is positive definite w.r.t. 0
> pise(s) > pe(s) for all s > 0.
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prsc(|z]a) = pe(|z|a)

prsc(|]4)
po(|z|a)

\ A

122




Proposition 2

Suppose A is compact and
Oise : R™ — [0,00) is
» lower semicontinuous, and

» positive definite w.r.t. A.
Then, there exists p. such that

» ¢ is Lipschitz continuous,
» . is positive definite w.r.t. 0, and
» gisc(x) > po(|z|a) for all z € R™.
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oLse(T)

pe(|z]a)

\ A
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Proof Sketch

Suppose € PD(A) is LSC. By ??, there exists a continuous function o € PD(A)

such that
oo(z) < (x) VzeR"™

By ?7?, there exists an LSC and positive definite function p sc € PD(0) such that
prsc(|zla) < oc(x) Ve eR™

Again, by 7?, for any ¢ > 0 there exists an ¢-Lipschitz continuous function p. € PD(0)

such that
po(r) < puse(r) Vr>0.

Thus, for all x € R™,

pe(lela) < pusc(lz]a) < oc(@) <o ().
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Proposition (Simplified Conditions for Persistent Flows).

Consider a hybrid system # and a nonempty closed set .A. Suppose that for each r > 0,
there exist A7 > 0 and Ay > 0 such that for every solution ¢ with |#(0,0)|4 € (0, 7]
and for every (to, jo), (t1,J1) € dom ¢,

[t1 —to| < Ar = |j1 —Jo| < Ay (5)

Then, for each r > 0, there exist N, > 0 and ~, € K such that for each solution ¢
to H with |#(0,0)|4 € (0,7],

t > (t+37) = Ny V(t,j) € domo. (6)
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Proposition (Simplified Conditions for Persistent Jumps).

Consider a hybrid system # and a nonempty closed set .A. Suppose that for each r > 0,
there exists Ap > 0 and Ay > 0 such that for every solution ¢ to H with
|¢(0,0)| 4 € (0,7] and for all (to, jo), (t1,71) € dom ¢,

lj1 —Jol <Ay = [t1 —to] < Ar. (7)

Then, for each r > 0, there exist v, € Ko and N, > 0 such that for each solution ¢
to H with |#(0,0)|4 € (0,r],

JZv(t+7) =N V() € domo. (8)
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PrOOf that pLSC(|$’A) S U(;(.T).
For any z € R",

PLsc(|CU|A) = inf{0<i‘($/) : |5U‘A = |$/|A} < U<:7($)~
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Proof that p.sc is positive definite.

For each r > 0, o attains a minimum on the compact set {x : x| 4 =7},
The minimum is positive if and only if » > 0 since o is positive definite w.r.t. A.

Therefore, pisc is positive definite (w.r.t. 0). O

Proof sketch that p s is lower semicontinuous.

To establish that p g is LSC, we exploit the fact that A is compact and o is
continuous. For each r > 0, we pick a compact set K, containing an open
neighborhood of A + rB. Since o, is continuous, its restriction to the compact set K,
is uniformly continuous. This allows us to do a §-¢ proof of lower semicontinuity. O
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