

Exploiting Uncertified Controllers via Uniting Feedback

Paul K. Wintz

PhD Defense – October 3, 2025

Introduction – Cyber-Physical Systems

Cyber-physical systems are electromechanical systems that include digital electronics (e.g., sensors and computers) that interact with physical components or processes.

Heating and Air Conditioning

Spacecraft

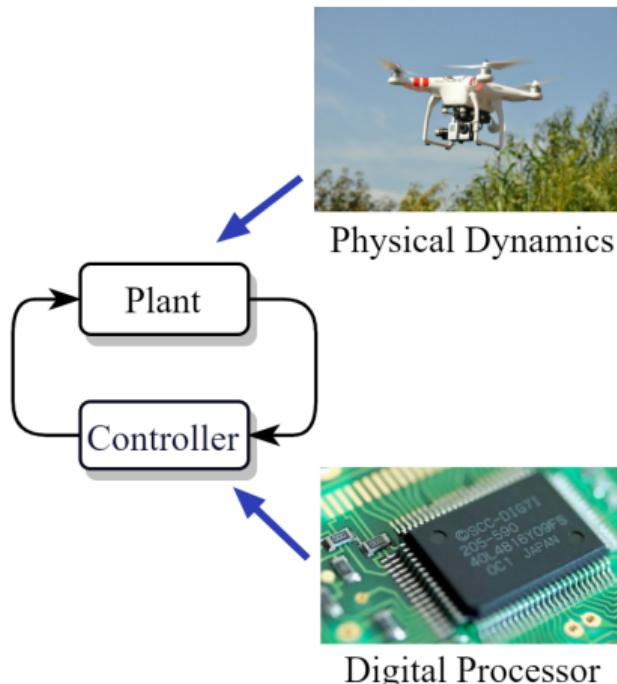
Walking Robots

Chemical Plants

Quadcopters

Autonomous Cars

Introduction – Cyber-Physical Systems Control Problems



Fundamental Problems of Control Theory

- ▶ Don't Crash
- ▶ Get Where You're Going
- ▶ Minimize cost/Maximize rewards

Complicating Factors

- ▶ Complex dynamics
- ▶ Uncertainty
- ▶ Dynamic environments
- ▶ Computational limitations
- ▶ ...

Introduction – Spectrum of Control Methods

Experiments

Statistical Verification

Barrier Functions

Reinforcement Learning

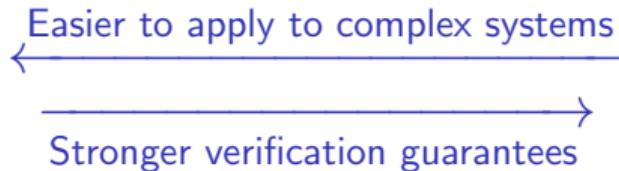
Conformal prediction

Lyapunov Functions

Simulations

Model Predictive Control

Reachability Analysis



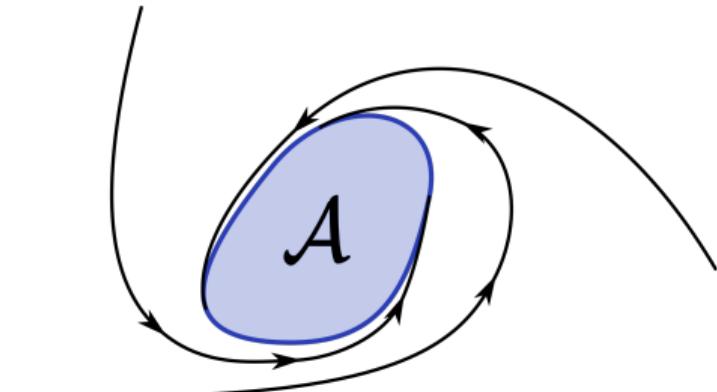
→ How can we combine these approaches?

Control Objectives

Forward Invariance
("Don't Crash")

Every trajectory remains in \mathcal{A} .

Global Asymptotic Stability
("Get Where You're Going")



Every trajectory moves toward \mathcal{A} .

Certificate Functions

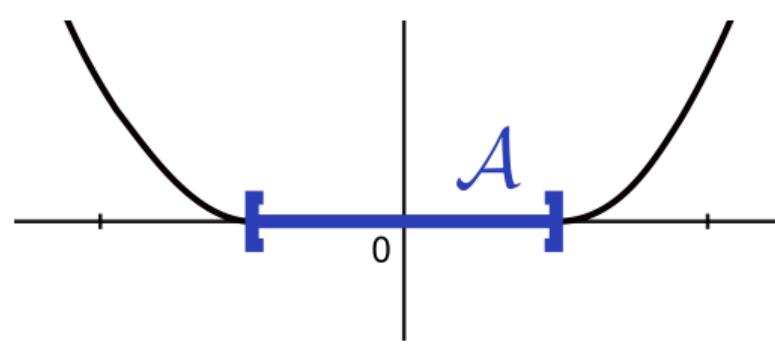
To prove forward invariance and asymptotic stability, we use *certificate functions*.

Forward Invariance



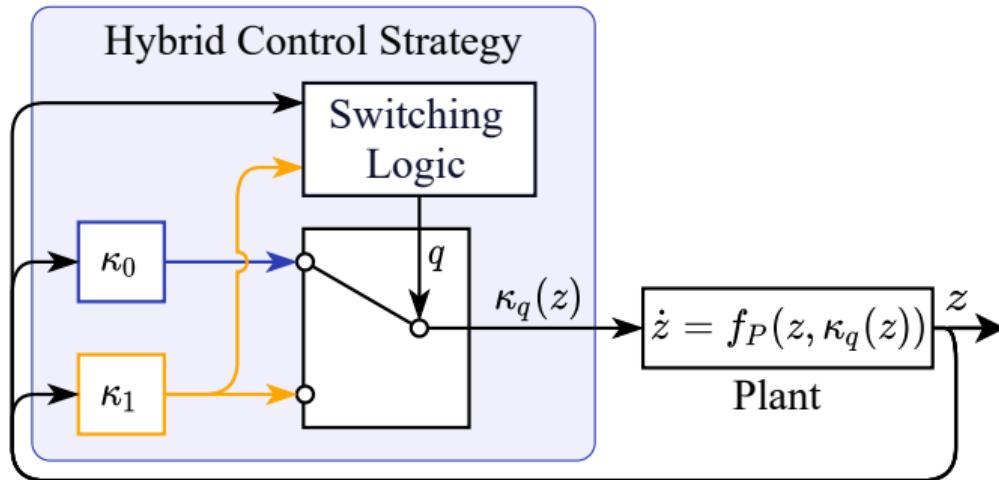
Certificate: Barrier Function

Asymptotic Stability



Certificate: Lyapunov Function

Uniting Feedback Control



κ_0 : certified controller, guaranteed to achieve control objective

κ_1 : any controller

Why Use an Uncertified Controller?

Certificates are hard to construct.

We may have an “advanced” controller that is difficult/impossible to certify but is

- ▶ Uses less energy
- ▶ Produces faster convergence
- ▶ Requires less computation
- ▶ Explores a region, collecting measurements.

Examples:

- ▶ Linear quadratic regulator (LQR) for the linearization of a system.
- ▶ Model predictive control (MPC) with computational delays.
- ▶ Black box controllers (e.g., neural network controllers).

Introduction – Previous Uses of Switched Controllers

Sometimes, a single continuous controller cannot satisfy design requirements.

Switching has been used to...

- ▶ Achieve robust global asymptotic stability around obstructions.¹
- ▶ Unite multiple Lyapunov-certified controllers (such as local and global controllers) to achieve global asymptotic stability.²

¹ Mayhew, Ricardo G. Sanfelice, and Teel (2011), “Quaternion-Based Hybrid Control for Robust Global Attitude Tracking”.

Ricardo G. Sanfelice et al. (2006), “Robust Hybrid Controllers for Continuous-Time Systems with Applications to Obstacle Avoidance and Regulation to Disconnected Set of Points”.

² Prieur (2001), “Uniting Local and Global Controllers with Robustness to Vanishing Noise”.

Teel and Kapoor (1997), “Uniting Local and Global Controllers”.

El-Farra, Mhaskar, and Christofides (2005), “Output Feedback Control of Switched Nonlinear Systems Using Multiple Lyapunov Functions”.

Simplex architecture

The *Simplex architecture* is an approach for switching between an “advanced,” unverified controller and a “simple,” easy-to-verify controller.³

Barrier functions have been used with the Simplex architecture to guarantee safety for hybrid systems while using an unverified controller.

Prior approaches have drawbacks:

- ▶ Requires costly reachability analysis and only defines “one way” switching.⁴
- ▶ Only rectangular constraints are considered, and the switching criteria depends on the extremal values of the vector field over the entire admissible set.⁵

³Rivera et al. (1996), *An Architectural Description of the Simplex Architecture*.

Seto et al. (1998), “The Simplex Architecture for Safe Online Control System Upgrades”.

⁴Yang et al. (2017), “A Simplex Architecture for Hybrid Systems Using Barrier Certificates”.

⁵Damare et al. (2022), “A Barrier Certificate-Based Simplex Architecture with Application to Microgrids”.

Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion

Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion

Uniting Feedback for Forward Invariance

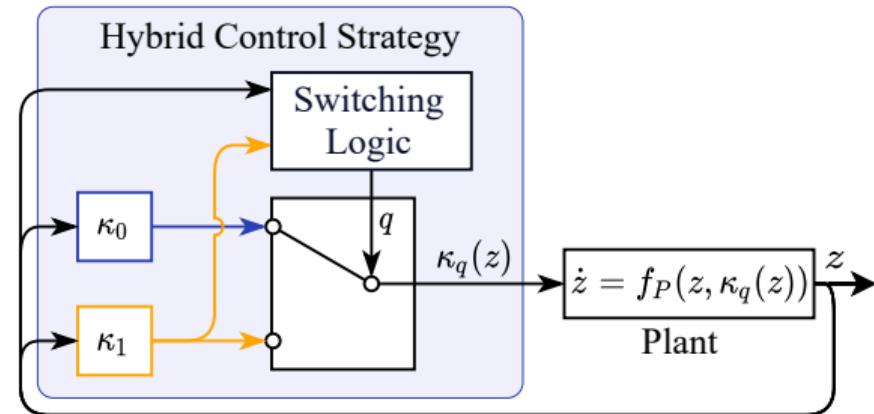
Given: A nonlinear plant

$$\dot{z} = f_p(z, u), \quad z \in \mathbb{R}^{n_p}, \quad u \in \mathbb{R}^{m_p}.$$

and controllers

κ_0 : barrier-certified to render K forward invariant

κ_1 : any controller

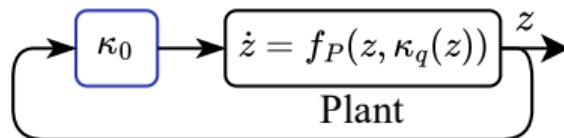


Goal: Design switching logic for $q \in \{0, 1\}$ such that

- ▶ K is forward invariant.
- ▶ κ_1 is preferred over κ_0 .
- ▶ Switching does not chatter.

Barrier Function Certificate

$$\dot{z} = f_0(z) := f_{\text{P}}(z, \kappa_0(z)).$$



Has a *barrier function* B that certifies

$$K = \{z \in \mathbb{R}^n \mid B(z) \leq 0\}$$

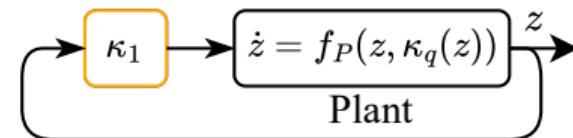
is forward invariant.

On some neighborhood U of K ,

$$\dot{B}_0(z) := \langle \nabla B(z), f_0(z) \rangle \leq 0$$

for all $z \in U \setminus K$.

$$\dot{z} = f_1(z) := f_{\text{P}}(z, \kappa_1(z)).$$



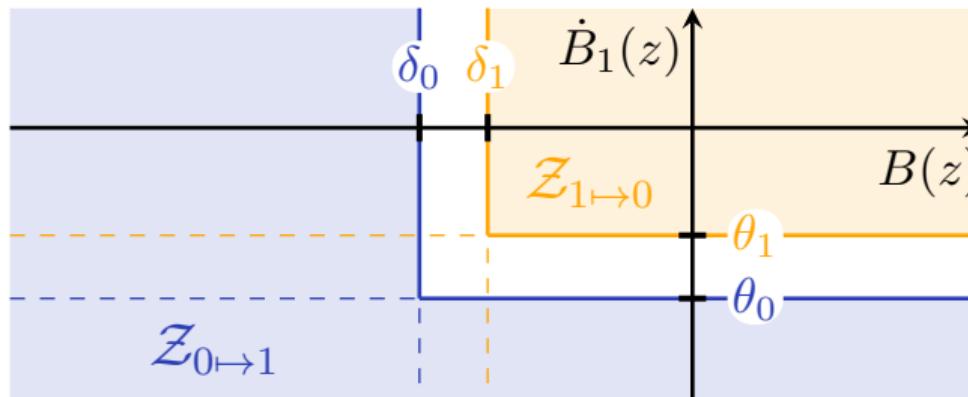
Rate of change of B when using κ_1 :

$$\dot{B}_1(z) := \langle \nabla B(z), f_1(z) \rangle = ??.$$

Switching Criteria and Hold Criteria

Pick four *thresholds* δ_0 , δ_1 , θ_0 , θ_1 , such that

$$\delta_0 < \delta_1 \leq 0 \quad \text{and} \quad \theta_0 < \theta_1 \leq 0.$$



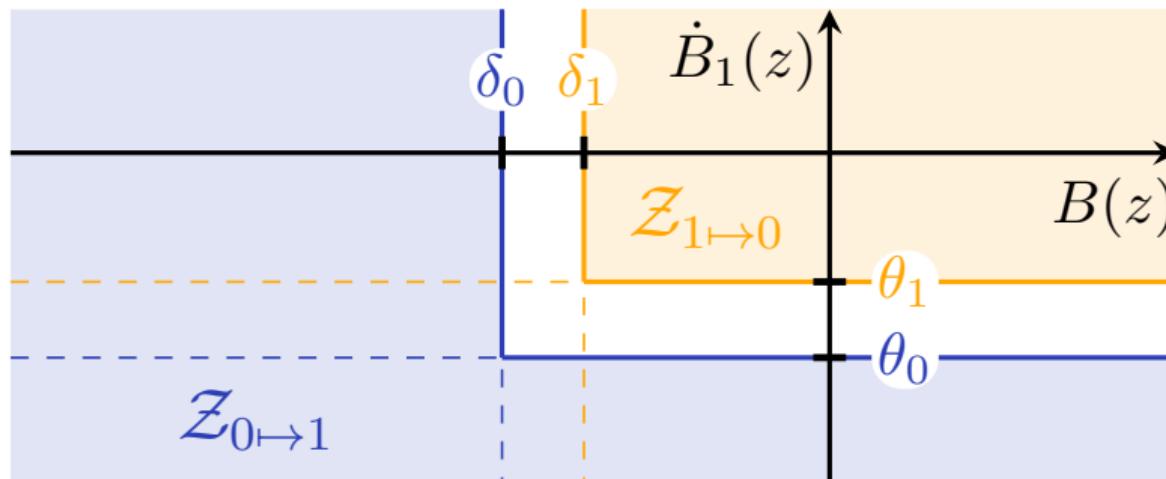
For $q = 0$ (certified controller):

- ▶ Hold $q = 0$ if $z \in \mathcal{Z}_0$.
- ▶ Switch to $q = 1$ if $z \in \mathcal{Z}_{0 \mapsto 1}$.

For $q = 1$ (uncertified controller):

- ▶ Hold $q = 1$ if $z \in \mathcal{Z}_1$.
- ▶ Switch to $q = 0$ if $z \in \mathcal{Z}_{1 \mapsto 0}$.

Switching Criteria and Hold Criteria



$$\mathcal{Z}_{1 \mapsto 0} := \{z \in \mathbb{R}^n \mid B(z) \geq \delta_1, \dot{B}_1(z) \geq \theta_1\}$$

$$\mathcal{Z}_{0 \mapsto 1} := \{z \in \mathbb{R}^n \mid B(z) \leq \delta_0 \text{ or } \dot{B}_1(z) \leq \theta_0\}.$$

Dynamics of Closed-Loop System

Between switches:

- ▶ z evolves according to $\dot{z} = f_p(z, \kappa_q(z))$
- ▶ q is constant

At each switch:

- ▶ z is unchanged
- ▶ q is toggled to the opposite value in $\{0, 1\}$

Example: Linear and Affine Feedbacks

Consider the double integrator

$$\dot{z} = f_p(z, u) := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} z + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u.$$

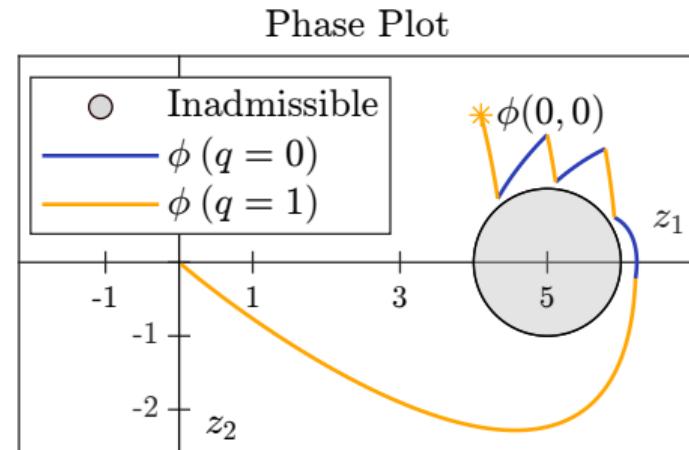
Admissible set:

$$K := \{z \in \mathbb{R}^2 : |z - (5, 0)| \geq 1\}.$$

Controllers:

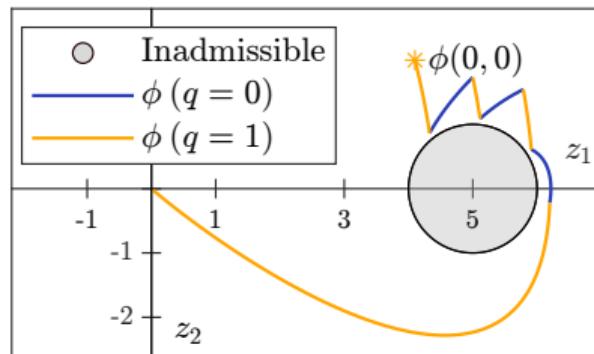
$$\kappa_0(z) = \begin{bmatrix} -1 & 1 \end{bmatrix} (z - c) \quad (\text{certified})$$

$$\kappa_1(z) = \begin{bmatrix} -1 & -2 \end{bmatrix} z \quad (\text{uncertified})$$

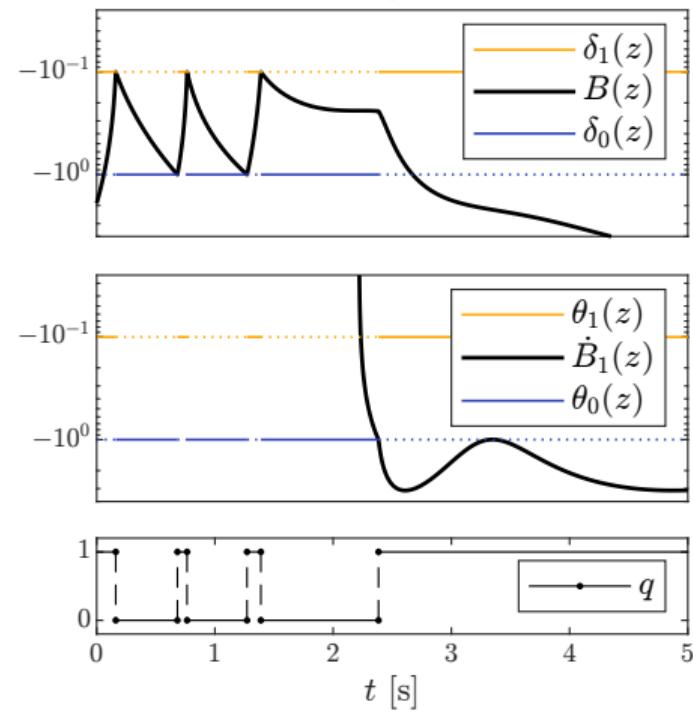


Example: Linear and Affine Feedbacks

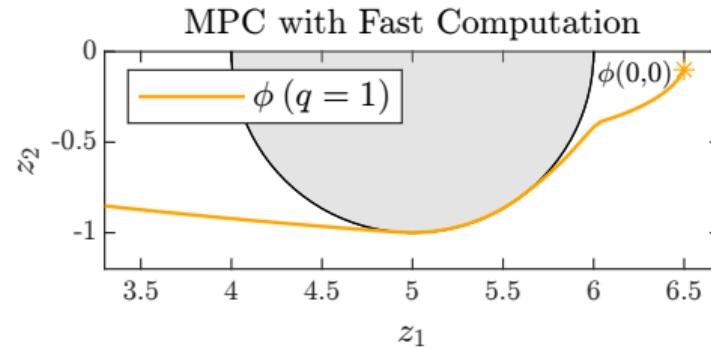
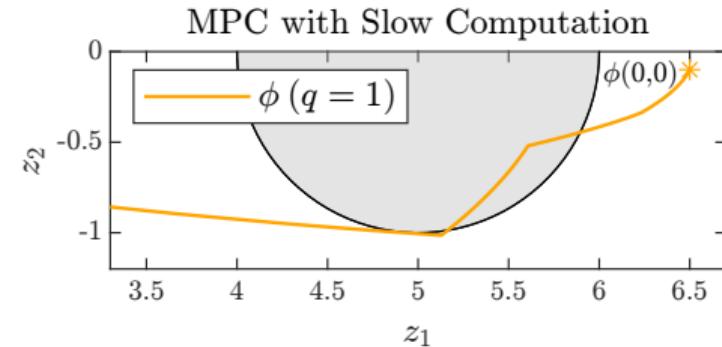
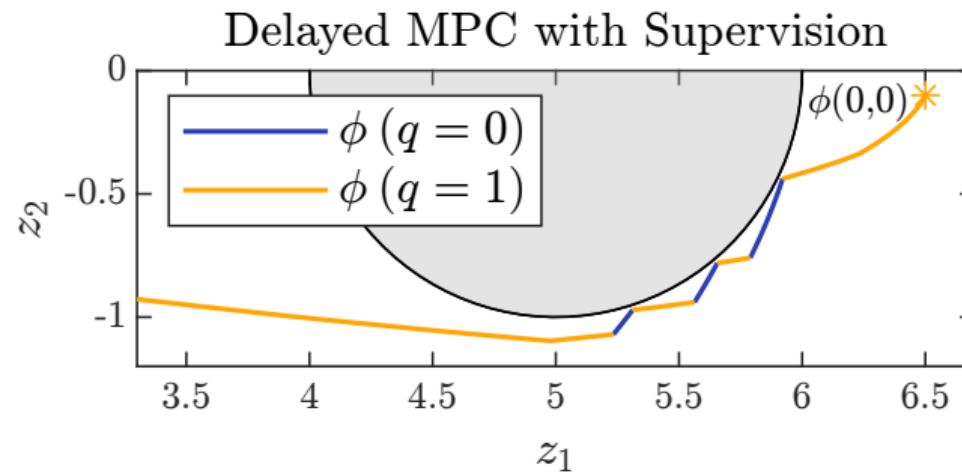
Phase Plot



Switching Criteria



Example: MPC with Computational Delays

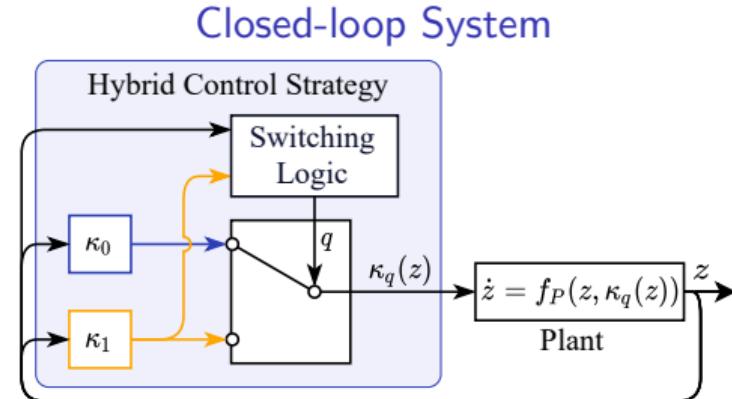


Theorem: Forward Invariance

Suppose that

- ▶ B is a continuously differentiable barrier function of K for $\dot{z} = f_0(z)$.
- ▶ f_0 and f_1 are continuous.

Then, K is forward invariant w.r.t. z for the closed-loop system.



Remark. We also give conditions to ensure that

- ▶ Solutions exist for all $t \geq 0$.
- ▶ The time between switches is not too short.

Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Example: MPC with Slow Computation

Hybrid Control Strategy

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion

Problem Setting

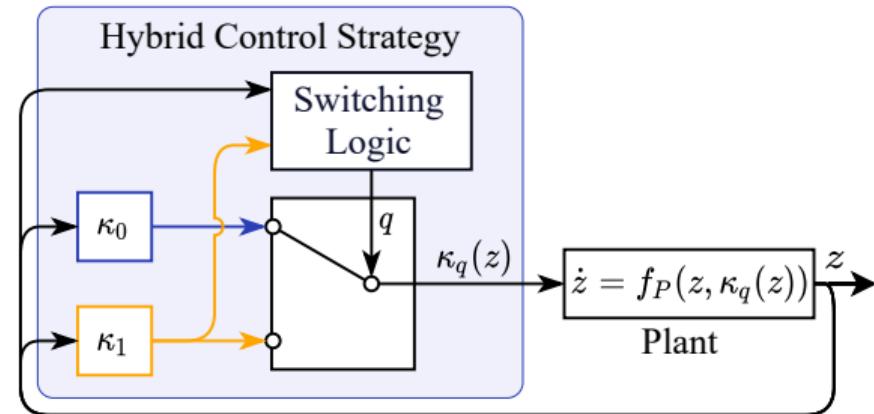
Given: A control system

$$\dot{z} = f_p(z, u), \quad z \in \mathbb{R}^{n_p}, u \in \mathbb{R}^{m_p}.$$

and controllers

κ_0 : Lyapunov-certified to render \mathcal{A} globally asymptotically stable

κ_1 : any controller



Goal: Design switching logic for $q \in \{0, 1\}$ such that

- ▶ \mathcal{A} is globally asymptotically stable
- ▶ κ_1 is preferred over κ_0
- ▶ switching does not chatter.

Problem Setting – Lyapunov-certified Controller

For the *Lyapunov-certified* controller κ_0 ,
there exists a Lyapunov function

$$V_P : \mathbb{R}^{n_P} \rightarrow [0, \infty)$$

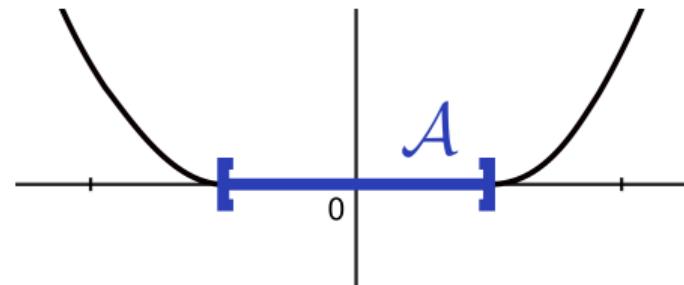
for

$$\dot{z} = f_0(z) := f_P(z, \kappa_0(z)),$$

that guarantees \mathcal{A} is globally
asymptotically stable.

Value of V_P decreases outside \mathcal{A} :

$$\dot{V}_0 := \langle \nabla V_P, f_0(z) \rangle \leq -\sigma_0(z).$$



For the *uncertified* controller κ_1 , no
assumptions on the rate of change
of V_P ,

$$\dot{V}_1 := \langle \nabla V_P, f_1(z) \rangle = ??$$

for

$$\dot{z} = f_1(z) := f_P(z, \kappa_1(z)).$$

Example: Model Predictive Controller with Slow Computation

Consider a nonlinear plant

$$\dot{z} = f_P(z, u)$$

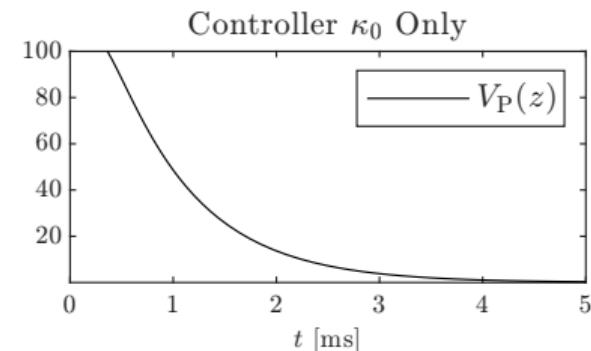
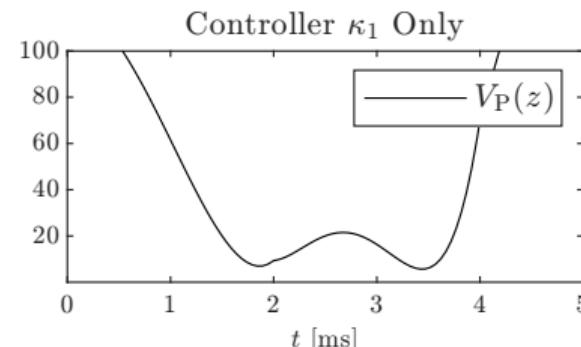
and two controllers:

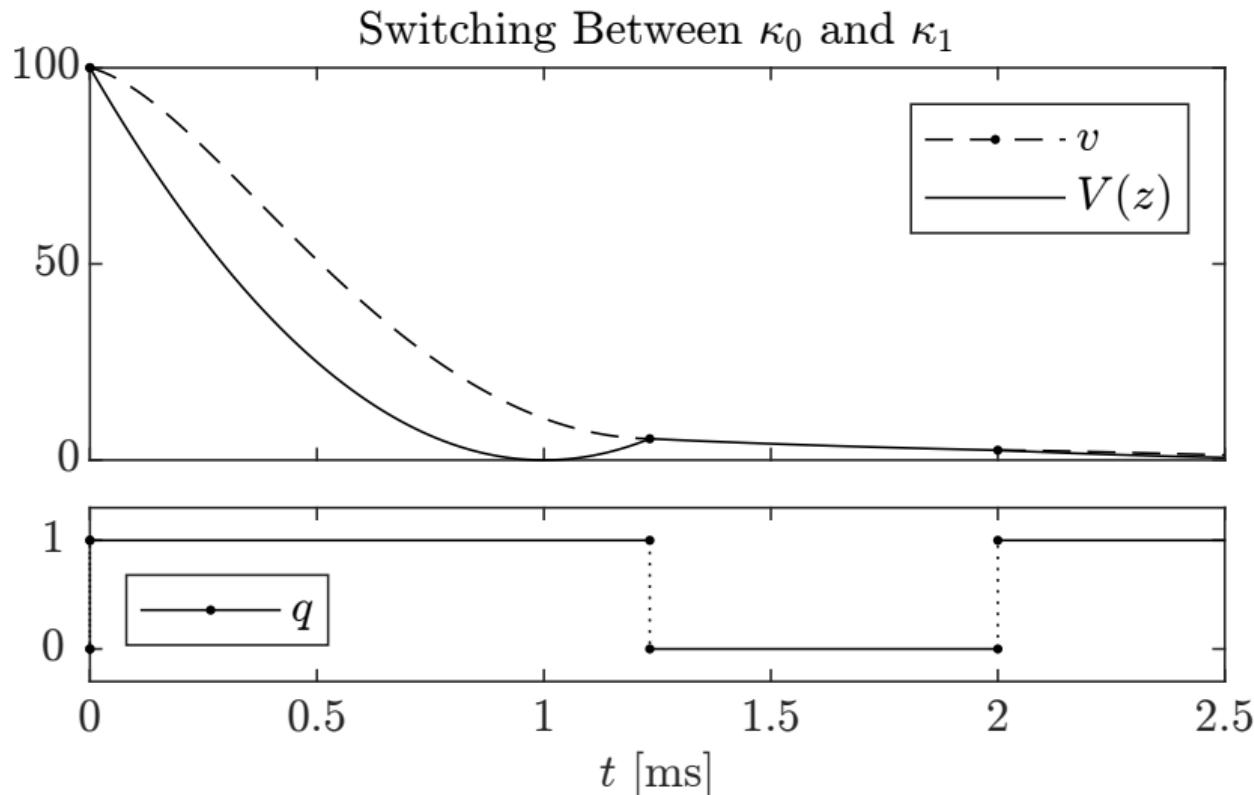
κ_0 : Lyapunov-certified controller

κ_1 : Model predictive controller (MPC)
with a sampling period of 1 ms

Suppose new MPC feedback value is not available at 1 ms.

When should we switch?





- ▶ The dynamics of v are described later.

Hybrid Control Strategy – Switching Logic

Buffer function: Pick a continuous, positive function $x \mapsto \delta(x) > 0$

For $q = 0$ (certified controller):

V_P is “small enough to switch to $q = 1$ ” if

$$V_P(z) + \delta(z) \leq v$$

V_P is “large enough to hold $q = 0$ ” if

$$V_P(z) + \delta(z) \geq v$$

For $q = 1$ (uncertified controller):

V_P is “small enough to hold $q = 1$ ” if

$$V_P(z) \leq v$$

V_P is “large enough to switch to $q = 0$ ” if

$$V_P(z) \geq v$$

Example: Switching Logic

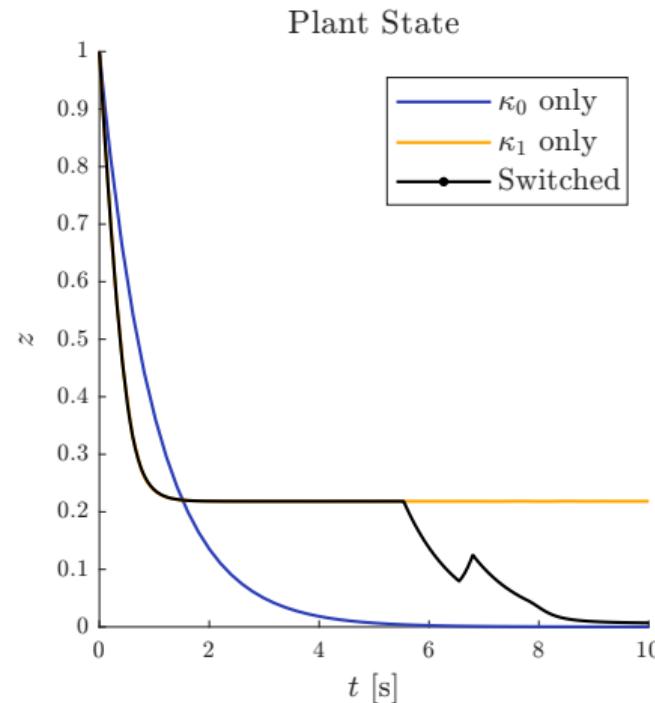
Consider the plant

$$\dot{z} = u$$

with $z > 0$ and $u \in \mathbb{R}$ and controllers

$$\kappa_0(z) := -z$$

$$\kappa_1(z) := -2 \sin\left(\frac{1}{z + 0.1}\right)$$



Switching Criteria



Dynamics of Auxiliary v Variable

At each switch:

- ▶ v is set to $\max\{V_P(z), v\}$

Between switches:

- ▶ v evolves according to

$$\dot{v} := -\gamma \tanh(v) \sigma_0(z) - \mu(v - V_P(z)),$$

where $\gamma > 0$, $\mu > 0$, and σ_0 is continuous and positive definite.

- ▶ v converges to 0.
- ▶ If $q = 0$ and $v < V_P(z)$, then v can increase gradually.

Example: Linear Quadratic Regulator of Linearized System

Consider the nonlinear plant

$$\dot{z} = Az + Bu + \underbrace{f(z, u)}_{\text{Nonlinear component}}.$$

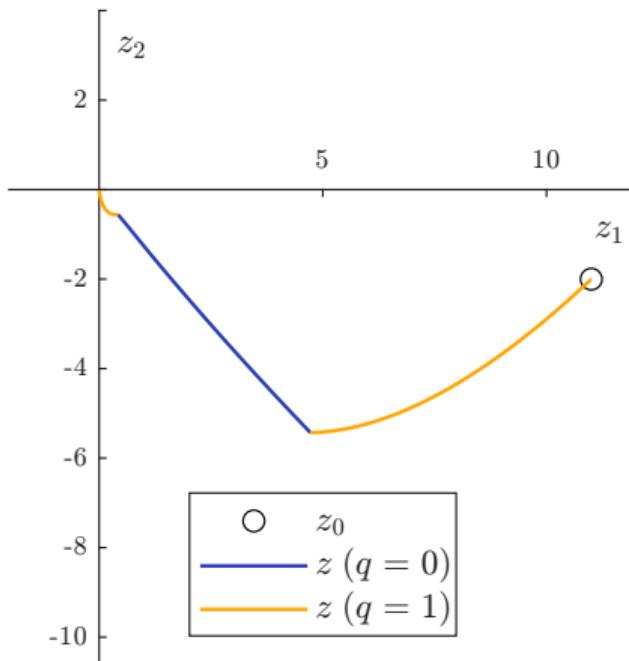
Let κ_0 be an (inefficient) Lyapunov-certified controller.

Let κ_1 be the LQR feedback that solves the following LQR problem:

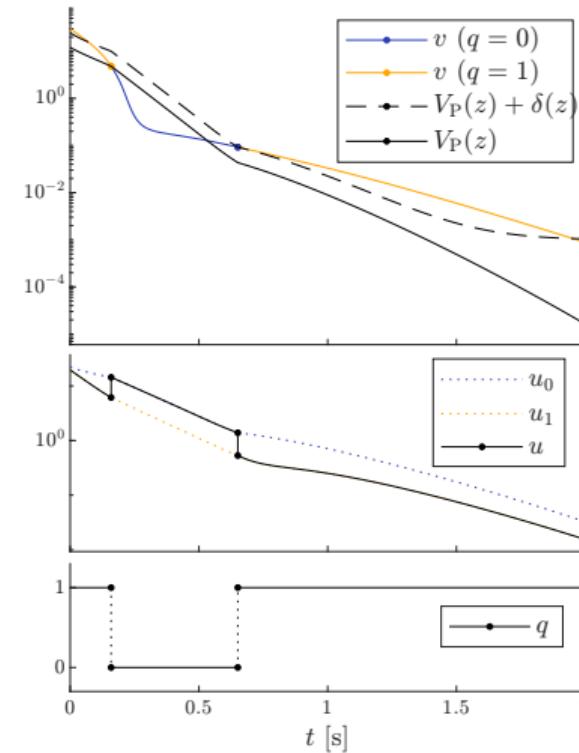
$$\begin{aligned} & \underset{u(\cdot)}{\text{minimize}} \quad \int_0^\infty |z(t)|^2 + |u(t)|^2 dt \\ & \text{subject to} \quad \dot{z} = Az + Bu. \end{aligned}$$

Example: LQR of Linearized System

Plant State



Supervisor Values



Theorem:⁶ Global Asymptotic Stability

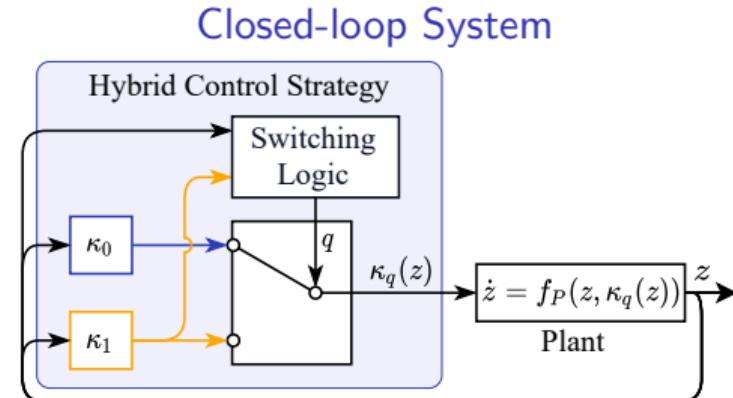
Suppose that

- ▶ \mathcal{A} is compact;
- ▶ f_0 and f_1 are continuous;
- ▶ V_P is a Lyapunov function for $\dot{z} = f_0(z)$.

Then,

$$\tilde{\mathcal{A}} := \{(z, v, q) \mid z \in \mathcal{A}, v = 0\}$$

is (uniformly) globally asymptotically stable for the closed-loop system.



Remark. The asymptotic stability of $\tilde{\mathcal{A}}$ is robust to small perturbations.

⁶Paul K. Wintz, Ricardo G. Sanfelice, and Hespanha (2022), “Global Asymptotic Stability of Nonlinear Systems While Exploiting Properties of Uncertified Feedback Controllers via Opportunistic Switching”.

Summary

- ▶ Lyapunov-certified controller acts as a backup to ensure convergence while using an uncertified controller.
- ▶ Exploit useful properties of **any** uncertified continuous controller without losing the convergence guarantee.

Next steps

- ▶ We consider more general systems later.

Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Lyapunov Theorems for Non-smooth Systems

Insertion Theorems

Relaxed Lyapunov Theorem

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion

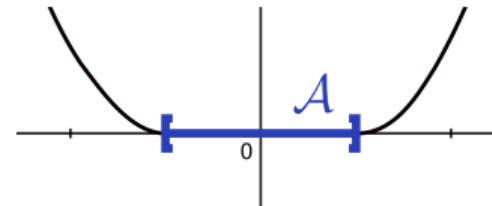
Lyapunov Theorems

Given: A dynamical system and a set $\mathcal{A} \in \mathbb{R}^n$.

Goal: Prove that \mathcal{A} is asymptotically stable.

Method: Construct $V : \mathbb{R}^n \rightarrow [0, \infty)$ such that

1. V is positive definite with respect to \mathcal{A} .
2. $t \mapsto V(x(t))$ is decreasing for each solution $t \mapsto x(t)$ while $x(t) \notin \mathcal{A}$.



If f is Lipschitz continuous, then the “decreasing” condition for $\dot{x} = f(x)$ is

$$\dot{V}(x) := \langle \nabla V(x), f(x) \rangle < 0.$$

Lyapunov-like Theorems (Non-smooth Systems)

We also consider *non-smooth* systems:

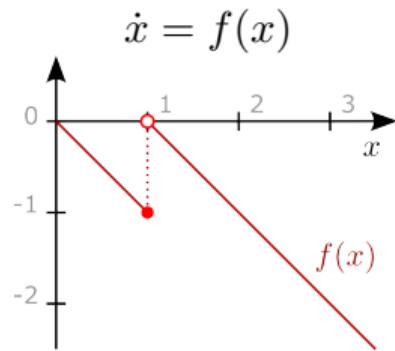
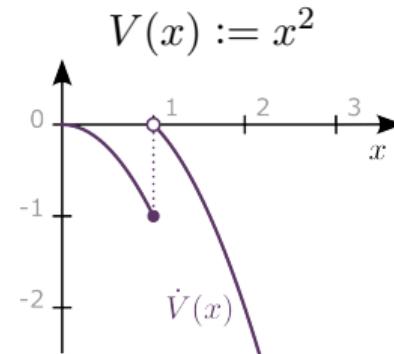
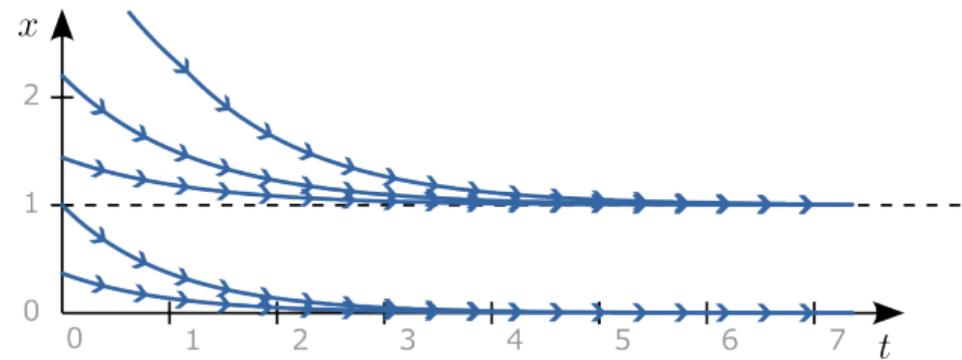
1. $\dot{x} = f(x)$ with f discontinuous (Non-smooth ODE)
2. $\dot{x} \in F(x)$ (differential inclusion)
3. $x^+ \in G(x)$ (difference inclusion)
4. $\mathcal{H} : \begin{cases} \dot{x} \in F(x) & \forall x \in C \\ x^+ \in G(x) & \forall x \in D. \end{cases}$ (hybrid system)

We can also have V non-differentiable.

For non-smooth systems,

$$\left(\dot{V}(x) < 0 \text{ for all } x \notin \mathcal{A} \right) \Rightarrow \left(\mathcal{A} \text{ is globally asymptotically stable} \right)$$

Example: $\dot{V} < 0$ without convergence to 0

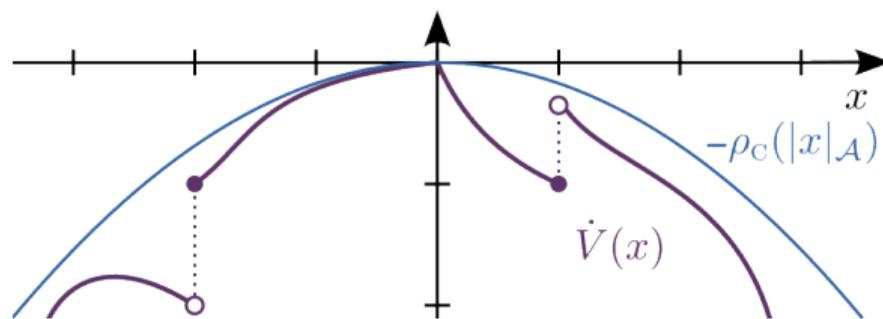


Lyapunov-like Theorems (Nonsmooth Systems)

For nonsmooth systems, prior results replace " $\dot{V}(x) < 0$ " with

$$\dot{V}(x) \leq -\rho_C(|x|_{\mathcal{A}}) \quad \forall x \in \mathbb{R}^n, \quad (1)$$

where $\rho_C : [0, \infty) \rightarrow [0, \infty)$ is continuous and positive definite.



Lyapunov-like theorems – Relaxed Lyapunov Condition

It is often difficult to construct ρ_C .

- ▶ Must be continuous.
- ▶ Must be a function of the *distance* from \mathcal{A} .

When \mathcal{A} is compact, we found a relaxation of the Lyapunov conditions.⁷

If there exists $\sigma_{\text{LSC}} : \mathbb{R}^n \rightarrow [0, \infty)$ such that

- ▶ σ_{LSC} is a function of x (instead of $|x|_{\mathcal{A}}$),
- ▶ σ_{LSC} is lower semicontinuous (instead of continuous),
- ▶ σ_{LSC} is positive definite with respect to \mathcal{A} , and
- ▶ $\dot{V}(x) \leq -\sigma_{\text{LSC}}(x) \dots$

...then there exists ρ_C (continuous and positive definite) such that

$$\dot{V}(x) \leq -\rho_C(|x|_{\mathcal{A}}).$$

⁷Paul K Wintz and Ricardo G Sanfelice (2025), “Relaxed Lyapunov Conditions”.

Problem Statement: Construction of ρ_C

Given: \mathcal{A} (compact) and σ_{LSC}

Goal: Construct ρ_C such that

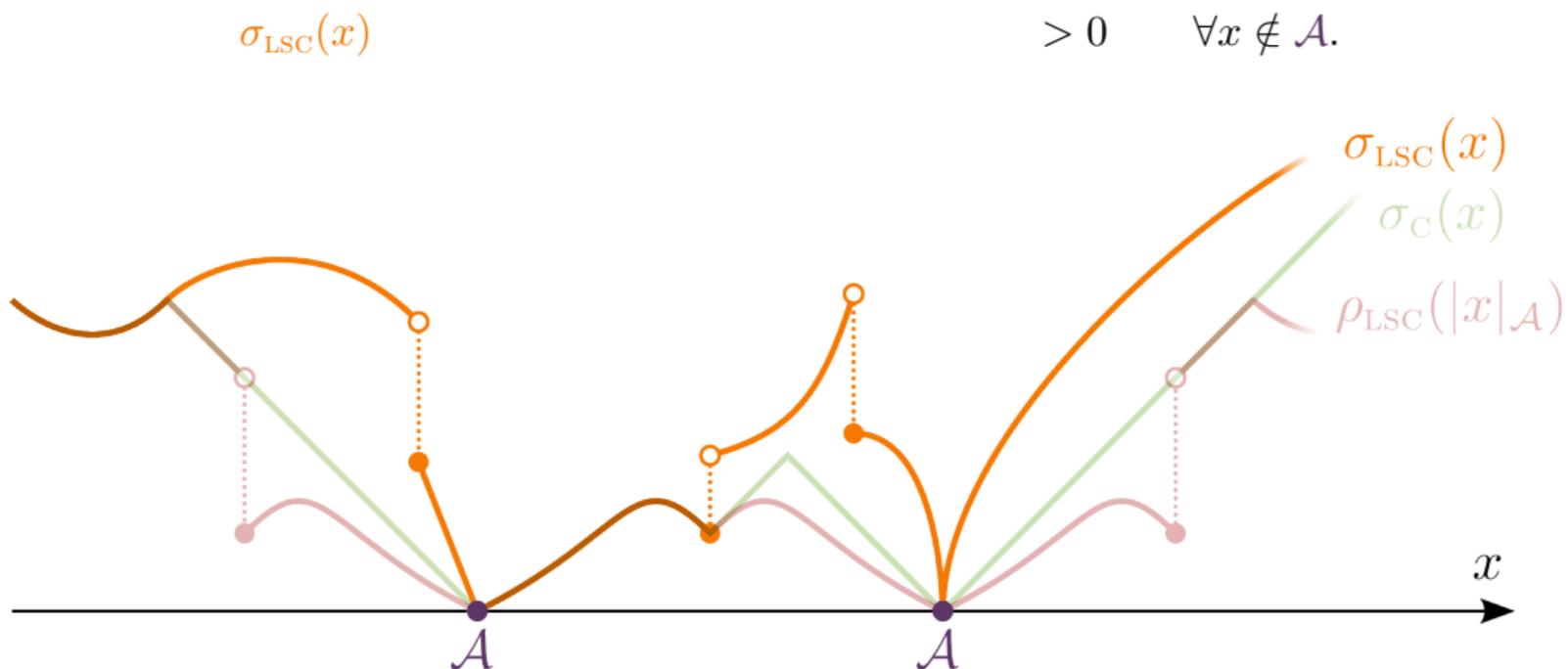
$$\sigma_{\text{LSC}}(x) \geq \rho_C(|x|_{\mathcal{A}}) \quad \forall x \in \mathbb{R}^n.$$

$$-\sigma_{\text{LSC}}(x) \leq -\rho_C(|x|_{\mathcal{A}}) \quad \forall x \in \mathbb{R}^n.$$

Then,

$$\left(\dot{V}(x) \leq -\sigma_{\text{LSC}}(x) \right) \implies \left(\dot{V}(x) \leq -\sigma_{\text{LSC}}(x) \leq -\rho_C(|x|_{\mathcal{A}}) \right).$$

Construction of ρ_C Outline

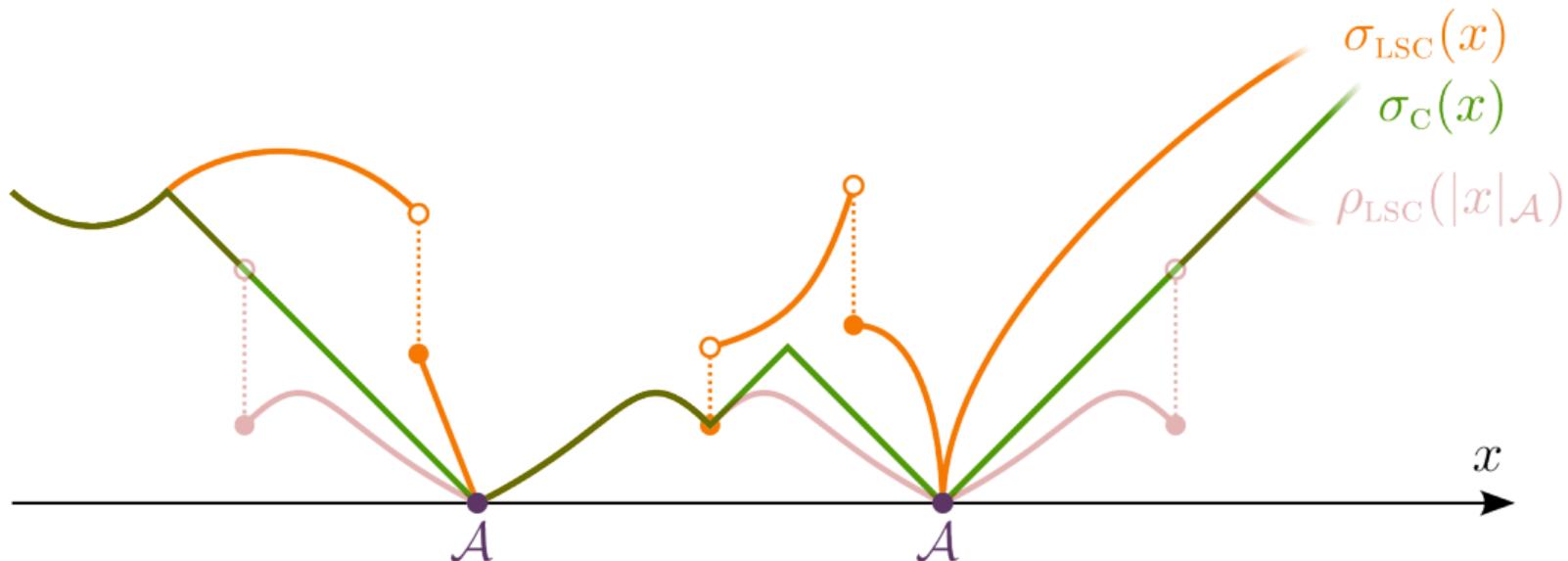


Construction of ρ_C Outline

$$\sigma_{LSC}(x) \geq \sigma_C(x)$$

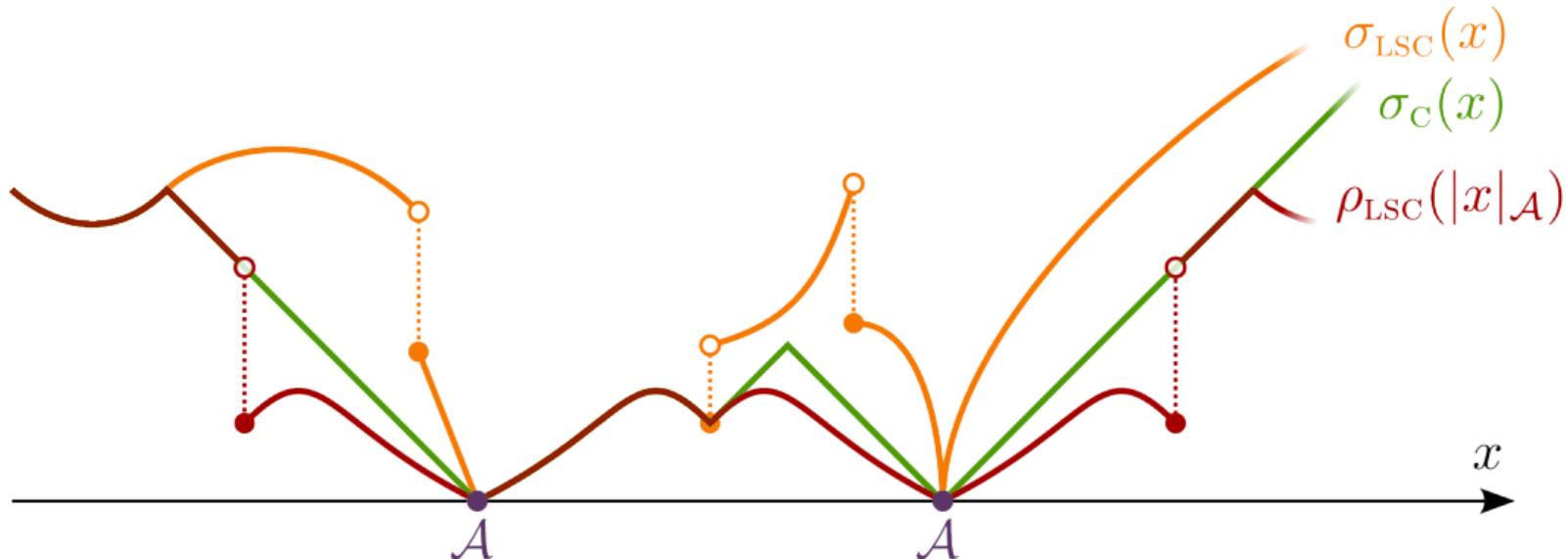
continuous

$$> 0 \quad \forall x \notin \mathcal{A}.$$



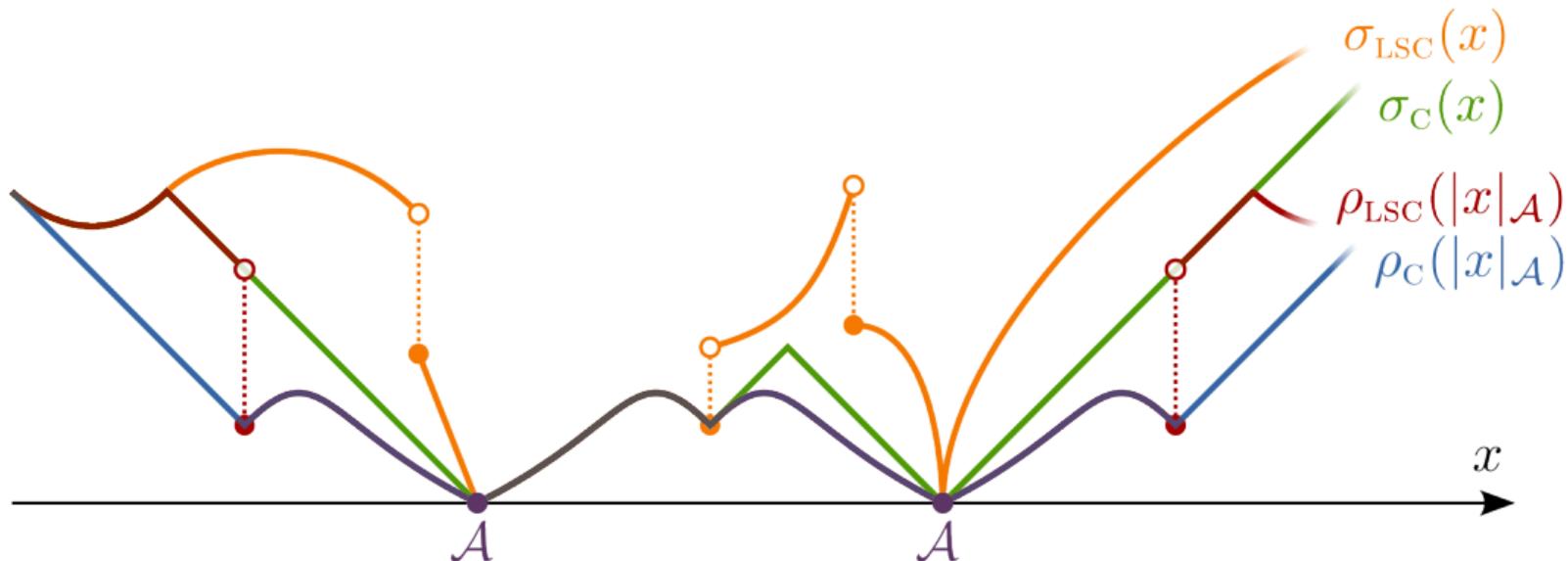
Construction of ρ_C Outline

$$\sigma_{\text{LSC}}(x) \geq \underset{\text{continuous}}{\sigma_C(x)} \geq \rho_{\text{LSC}}(|x|_{\mathcal{A}}) > 0 \quad \forall x \notin \mathcal{A}.$$



Construction of ρ_C Outline

$$\sigma_{LSC}(x) \geq \underset{\text{continuous}}{\sigma_C(x)} \geq \rho_{LSC}(|x|_{\mathcal{A}}) \geq \underset{\text{continuous}}{\rho_C(|x|_{\mathcal{A}})} > 0 \quad \forall x \notin \mathcal{A}.$$



Given $\sigma_{\text{LSC}}(x)$.

Make continuous

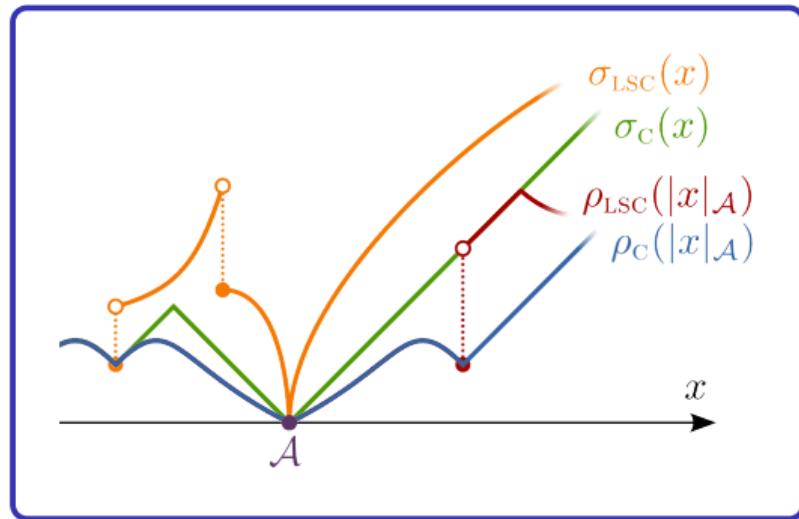
$$\sigma_{\text{C}}(x) := \min_{x' \in \mathbb{R}} (\sigma_{\text{LSC}}(x') + |x' - x|).$$

Make function of distance (but LSC)

$$\rho_{\text{LSC}}(r) := \min_{x \in \mathbb{R}^n} \{\sigma_{\text{C}}(x) : |x|_{\mathcal{A}} = r\}.$$

Make continuous, function of distance

$$\rho_{\text{C}}(r) := \min_{r' \geq 0} (\rho_{\text{LSC}}(r) + |r' - r|).$$



Relaxed Lyapunov Theorem for Continuous-time Systems

Consider a hybrid system $\dot{x} \in F(x)$ on \mathbb{R}^n , a nonempty compact set $\mathcal{A} \subset \mathbb{R}^n$, and a Lyapunov function candidate V with respect to \mathcal{A} for \mathcal{H} .

Suppose that

1. there exists $\alpha \in \mathcal{K}_\infty$ such that $\alpha(|x|_{\mathcal{A}}) \leq V(x)$ for all $x \in \mathbb{R}^n$, and
2. there exist LSC function σ_{LSC} that is positive definite w.r.t. \mathcal{A} such that

$$\dot{V}(x) \leq -\sigma_{\text{LSC}}(x) \quad \forall x \in \mathbb{R}^n.$$

Then, \mathcal{A} is (uniformly) globally asymptotically stable for $\dot{x} \in F(x)$.

How pick a good choice for σ_{LSC}

For any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, the function

$$x \mapsto \liminf_{x' \rightarrow x} f(x')$$

is lower semicontinuous and

$$\liminf_{x' \rightarrow x} f(x') \leq f(x) \quad \forall x \in \text{dom } f$$

Thus, if we pick

$$x_0 \mapsto \sigma_{\text{LSC}}(x_0) := \liminf_{x \rightarrow x_0} (-\dot{V}(x)),$$

then

$$\dot{V}(x) \leq -\sigma_{\text{LSC}}(x_0).$$

Example (Continuous-time with discontinuous f)

Consider the continuous-time system

$$\dot{x} = f(x) := -\lfloor x \rfloor \quad \forall x \in \mathbb{R},$$

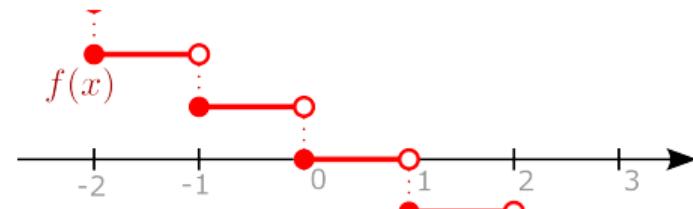
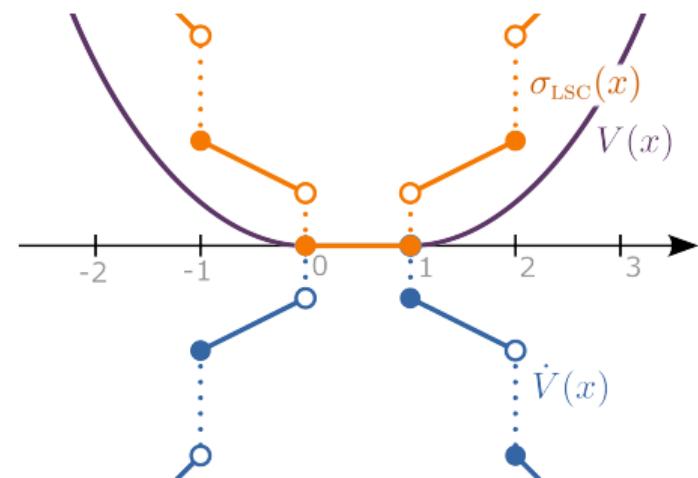
Let $\mathcal{A} := [0, 1]$ and $x \mapsto V(x) := |x|_{\mathcal{A}}^2$.

Let

$$\sigma_{\text{LSC}}(x) := \liminf_{x' \rightarrow x} -\dot{V}(x)$$

$$\implies \dot{V}(x) \leq -\sigma_{\text{LSC}}(x).$$

$\implies \mathcal{A}$ is globally asymptotically stable.



Summary

We presented

- ▶ relaxation of Lyapunov conditions
- ▶ several insertion theorems for positive definite functions.

Future Work

- ▶ Generalize relaxed Lyapunov conditions:
 - ▶ consider \mathcal{A} non-compact
 - ▶ Other types of Lyapunov functions, e.g., ISS Lyapunov functions.

Outline

Uniting Feedback for Safety

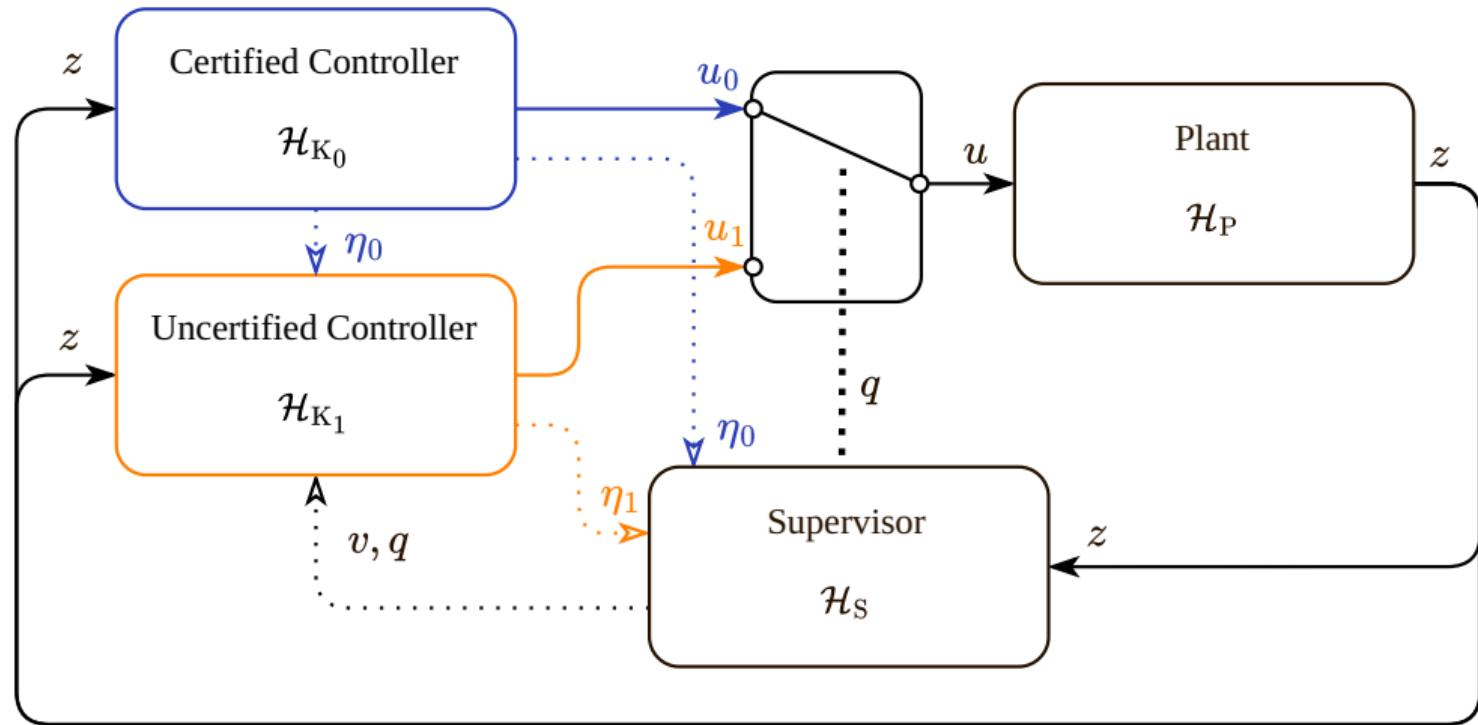
Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion



Hybrid Systems as Models of Cyber-Physical Systems

Hybrid dynamical systems are a type of mathematical model of dynamical systems that combine continuous **flows** and discrete **jumps**.

Hybrid dynamical systems are a natural choice for modeling cyber-physical systems.

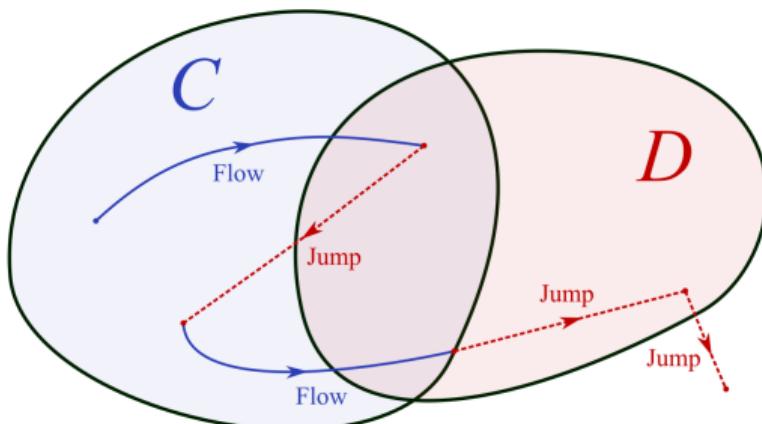
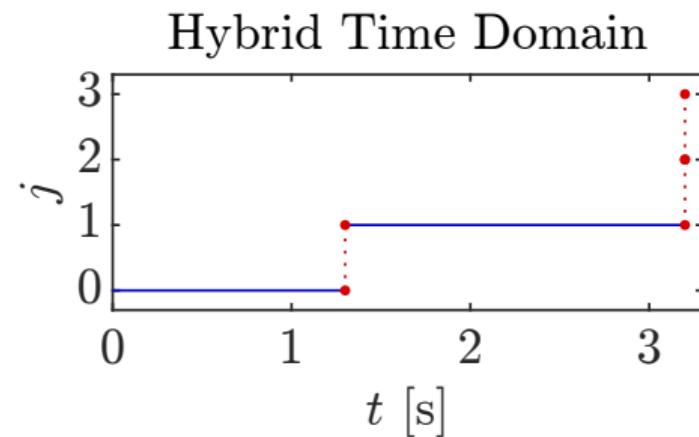
flows ► continuous evolution of physical state.

jumps ► evolution of digital components
► impacts in physical states

Hybrid Dynamical Systems

$$\mathcal{H} : \begin{cases} \dot{x} = f(x) & x \in C \\ x^+ = g(x) & x \in D \end{cases}$$

- ▶ flow set $C \subset \mathbb{R}^n$
- ▶ flow map $f : C \rightarrow \mathbb{R}^n$
- ▶ jump set $D \subset \mathbb{R}^n$
- ▶ jump map $g : D \rightarrow \mathbb{R}^n$



Hybrid Dynamical Systems with Set-valued Dynamics

$$\mathcal{H} : \begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D \end{cases}$$

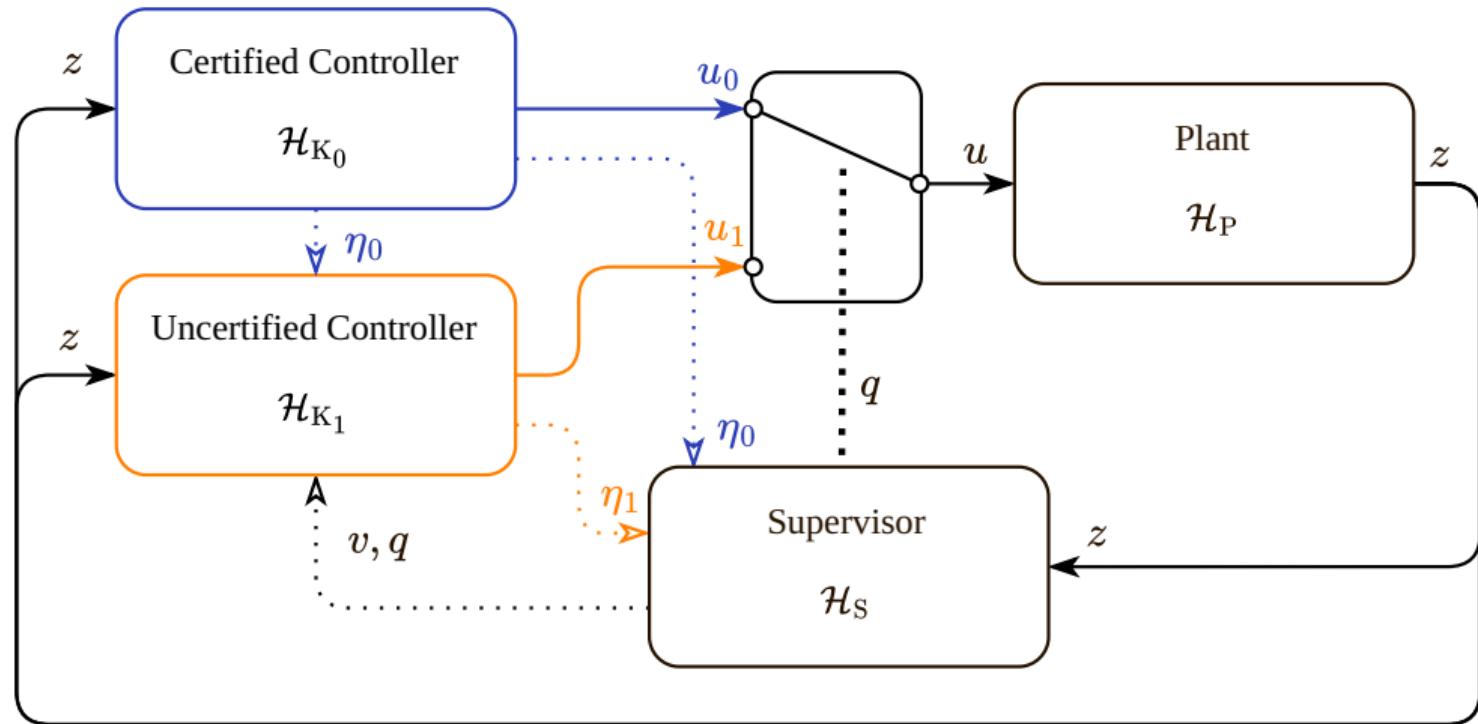
Hybrid Solutions

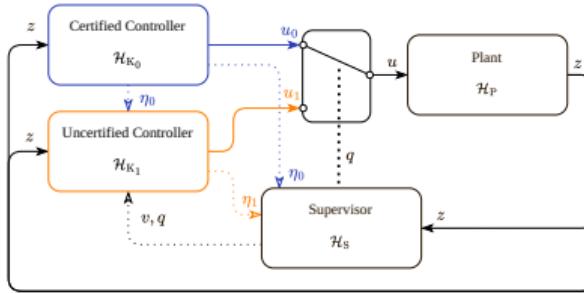
A *solution* ϕ to \mathcal{H} is defined on a hybrid time domain $\text{dom } \phi \subset [0, \infty) \times \mathbb{N}$:

$$\begin{aligned}\text{dom } \phi &= ([t_0, t_1] \times \{0\}) \cup ([t_1, t_2] \times \{1\}) \cup \dots \\ 0 &= t_0 \leq t_1 \leq t_2 \leq \dots.\end{aligned}$$

A hybrid arc $(t, j) \mapsto \phi(t, j)$ is a solution to \mathcal{H} if

- ▶ $\dot{\phi}(t, j) \in F(\phi(t, j))$ for almost all t in each **intervals of flow** $[t_j, t_{j+1}]$
- ▶ $\phi(t_j, j+1) \in G(\phi(t_j, j))$ for each **jump time** t_j in $\text{dom}(\phi)$.





Plant

$$\mathcal{H}_P : \begin{cases} \dot{z} \in F_P(z, u) & (z, u) \in C_P \\ z^+ \in G_P(z, u) & (z, u) \in D_P \end{cases}$$

Certified Controller

$$\mathcal{H}_{K_0} : \begin{cases} \dot{\eta}_0 \in F_{K_0}(z, \eta_0) & (z, \eta_0) \in C_{K_0} \\ \eta_0^+ \in G_{K_0}(z, \eta_0) & (z, \eta_0) \in D_{K_0} \\ u_0 = \kappa_0(z, \eta_0). \end{cases}$$

Uncertified Controller

$$\mathcal{H}_{K_1} : \begin{cases} \dot{\eta}_1 \in F_{K_1}(x) & x \in C_{K_1} \\ \eta_1^+ \in G_{K_1}(x) & x \in D_{K_1} \\ u_1 \in \kappa_1(x), \end{cases}$$

Supervisor Design for Global Asymptotic Stability

Given a Lyapunov function $(z, \eta_0) \mapsto V_P(z, \eta)$ for $\mathcal{H}_P \times \mathcal{H}_{K_0}$ that certifies that \mathcal{A}_P is asymptotically stable for (z, η_0) .

We extended the previous supervisor design as follows:

$$\mathcal{H}_S : \begin{cases} \begin{bmatrix} \dot{v} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} f_V(z, \eta_0, v) \\ 0 \end{bmatrix} & (z, \eta_0, \eta_1, v, q) \in C_S \\ \begin{bmatrix} v^+ \\ q^+ \end{bmatrix} = \begin{bmatrix} \max\{V(z, \eta_0), v\} \\ 1 - q \end{bmatrix} & (z, \eta_0, \eta_1, v, q) \in D_S \end{cases}$$

where

$$f_V(z, \eta_0, v) = -\gamma \tanh(v) \sigma_0(z, \eta_0) - \mu(v - V_P(z, \eta_0)).$$

Theorem: Global Asymptotic Stability

Suppose that

- ▶ \mathcal{A}_P is compact,
- ▶ Regularity conditions hold (outer semicontinuity, local boundedness of functions, closed sets)
- ▶ V_P is a Lyapunov function for $\mathcal{H}_P \times \mathcal{H}_{K_0}$ with strict decrease during flows.
- ▶ The state of \mathcal{H}_{K_1} is constrained to compact set

Then, the set $\mathcal{A}_P \times \{0\}$ is (uniformly) asymptotically stable for (z, η_0, z) .

Proof Sketch

We introduce a new Lyapunov function

$$V(x) := \max\{V_P(z, \eta_0), v\},$$

then show that it satisfies our relaxed Lyapunov conditions.

Let

$$\sigma_{\text{LSC}}(x) := \begin{cases} \sigma_0(z, \eta_0) & \text{if } V_P(z, \eta_0) > v \\ -f_v(z, \eta_0, v) & \text{if } V_P(z, \eta_0) \leq v \end{cases}$$

We show

- ▶ σ_{LSC} is LSC and positive definite with respect to \mathcal{A} on C
- ▶ $\dot{V}(x) \leq -\sigma_{\text{LSC}}(x)$.

Proof Sketch

At jumps

$$v^+ = \max\{V_P(z, \eta_0), v\}.$$

Thus,

$$V(x^+) = \max\{V_P(z, \eta_0), v^+\} \leq V(x),$$

so $V(x)$ does not increase at jumps.

We apply a hybrid version of our relaxed Lyapunov theorem to get existence of solutions.

Proof Sketch

We prove existence of solutions with unbounded domains:

1. At each point in $C \setminus D$, solutions can flow because

$$F(x) \cap T_C(x) \neq \emptyset.$$

2. The state cannot jump out of $C \cup D$ because

$$G(D) \subset C \cup D.$$

To show that $t \rightarrow \infty$ in the domain of each solution:

- ▶ For each subsystem, there is a minimum time between sequential jumps, so number of jumps is bounded in finite time.

Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

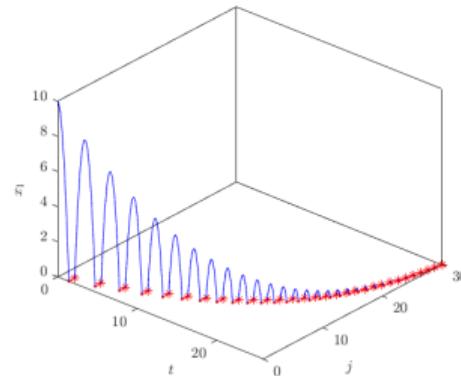
Conclusion

Software Tools for Hybrid Systems

SHARC

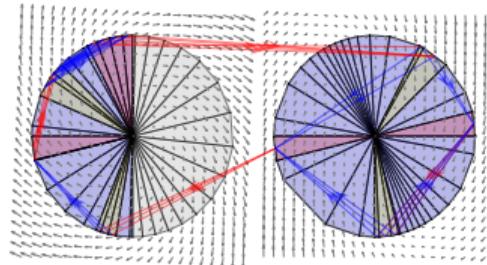
Simulate cyber-physical systems with accurate computational delays.

Hybrid Equations Toolbox



Simulation and plotting of composite hybrid systems

Conical Transition Graphs



Algorithmically check asymptotic stability in hybrid systems.

Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion

Acknowledgements

Thank you to everybody who helped me get here today!

My Family.

- ▶ Mom, Dad, Mary Alice. Love you!

My Teachers.

- ▶ Anna Parmely.
- ▶ Michael Sommermann.

My Friends

- ▶ Especially Ryan Johnson, Callie Chappell, Adam Grant – For helping with preparation.

BSOE IT support

- ▶ Ryan Meckel, David, and Sean (they saved my defense!)

My advisor,

- ▶ Ricardo Sanfelice

My committee

- ▶ Qi Gong
- ▶ Daniele Venturi
- ▶ Alessandro Pinto

Everybody in the Hybrid Systems Lab.

Funding

Publications

Wintz and Ricardo G Sanfelice. "Relaxed Lyapunov Conditions". American Control Conference (ACC). 2025.

Wintz, Yasin Sonmez, et al. SHARC: Simulator for Hardware Architecture and Real-time Control". ACM Conference on Hybrid Systems: Computation and Control (HSCC). 2025.

Wintz and Ricardo G. Sanfelice. "Conical Transition Graphs for Analysis of Asymptotic Stability in Hybrid Dynamical Systems". IFAC Conference on Analysis and Design of Hybrid Systems (ADHS). 2024.

Wintz and Ricardo G. Sanfelice. "Forward Invariance-Based Hybrid Control Using Uncertified Controllers". IEEE Conference on Decision and Control (CDC). 2023.

Wintz, Ricardo G. Sanfelice, and João P. Hespanha, "Global Asymptotic Stability of Nonlinear Systems while Exploiting Properties of Uncertified Feedback Controllers via Opportunistic Switching", American Control Conference (ACC). 2022.

Wintz "Optimal Control of a Noncircular Wheel". UC Santa Cruz, MS Thesis. 2020.

Under Review

Wintz and Ricardo G. Sanfelice. “Conical Transition Graphs for Analysis of Asymptotic Stability in Hybrid Dynamical Systems”.

In Preparation

Wintz and Ricardo G. Sanfelice. “Exploiting Uncertified Controllers via Uniting Feedback”.

Wintz and Ricardo G. Sanfelice. “Relaxed Lyapunov Conditions for Non-smooth Dynamical Systems”

Questions?

Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

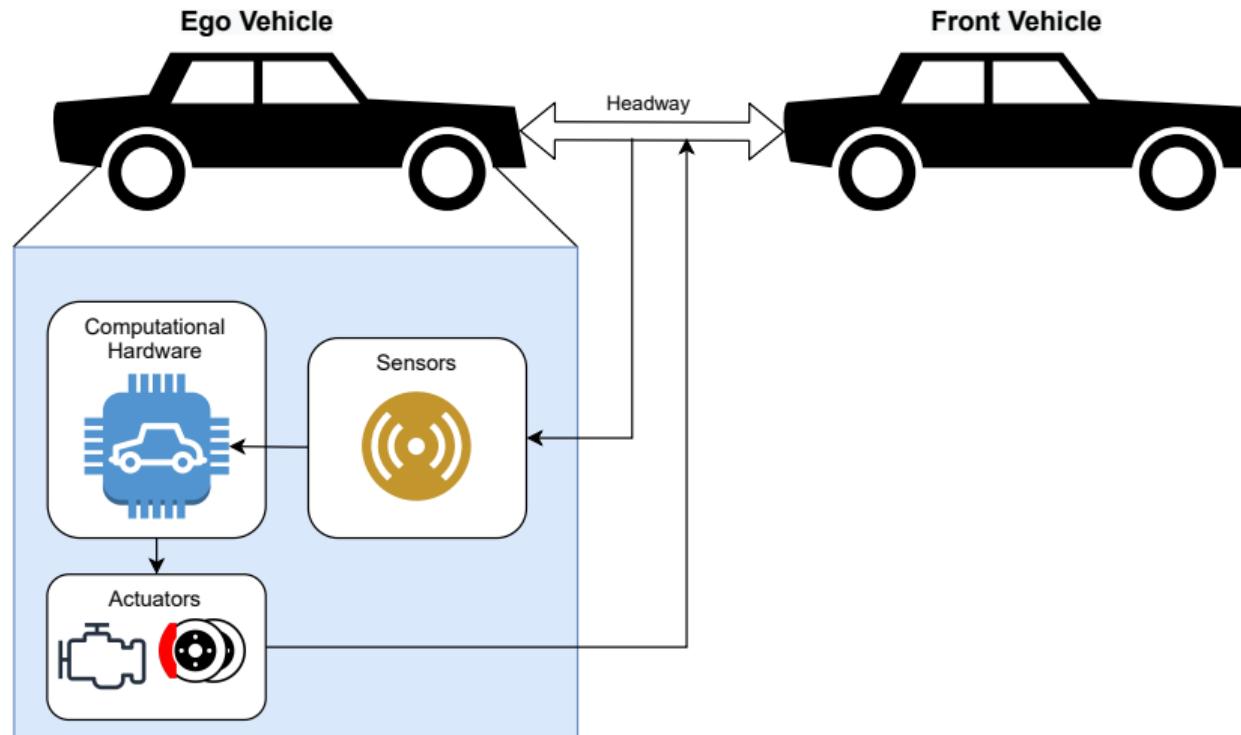
Conical Transition Graph

Technical Definitions

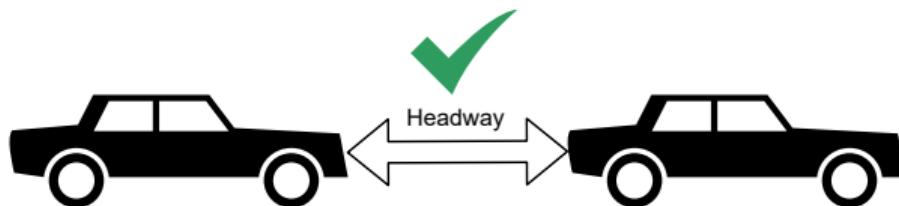
Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions

Motivating Example: Adaptive Cruise Control (ACC)



Motivating Example: Adaptive Cruise Control (ACC)



If no computational delays:

⇒ Guaranteed minimum headway

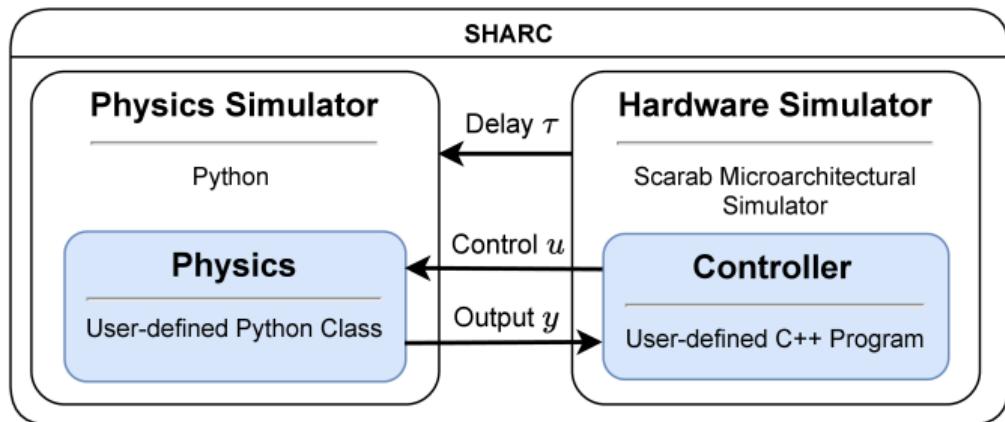
Computational delays depend on

- ▶ Control Algorithm, implementation, and parameters
- ▶ Computational hardware
- ▶ Current state and measurements
- ▶ Recent computations

If computational delays:

⇒ ???

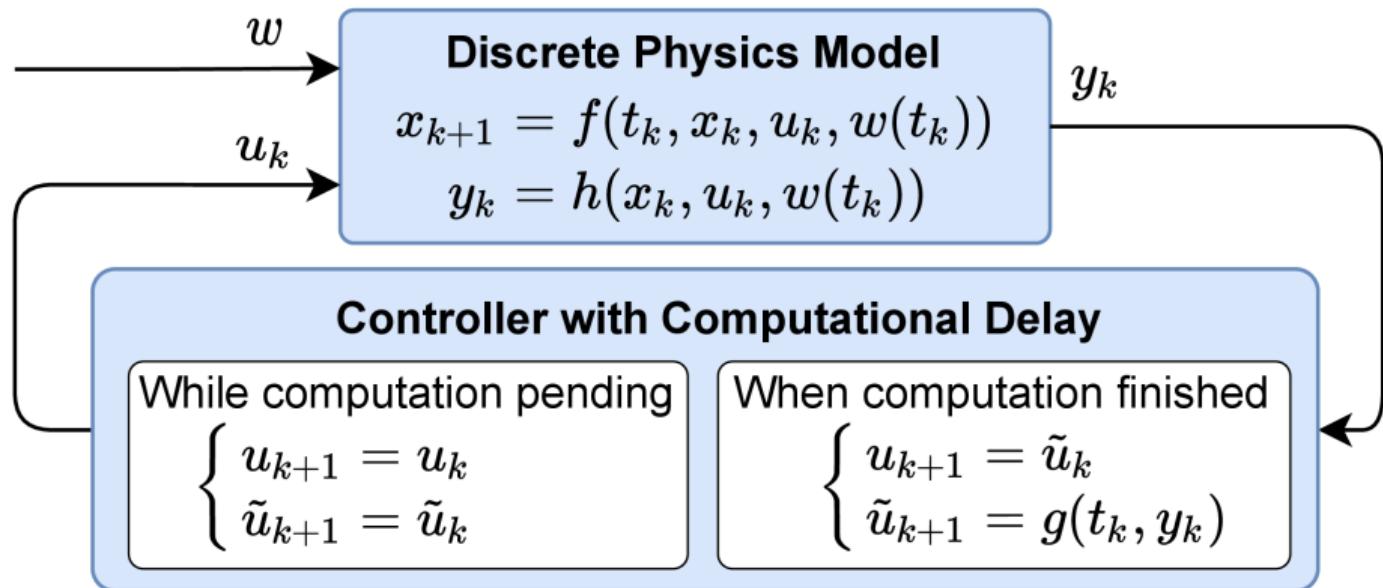
Sharc: Simulator for Hardware Architecture and Real-time Control



Features

- ▶ Uses same executable as would be deployed.
- ▶ Parallelized to shorten run times.
- ▶ Dockerized and easy configuration via JSON files.

Mathematical Model of Delayed Computations



Controller Execution Simulation

To estimate controller run time, we use the [Scarab Microarchitectural Simulator](#).

- ▶ Low level simulation of controller binary on CPU
- ▶ Simulates caching, branch prediction, pipelining, etc.
- ▶ Customizable processor parameters
 - ▶ Cache size
 - ▶ Clock speed
 - ▶ Architecture
- ▶ Provides detailed statistics.

ACC Example: Instruction Cache Size Comparison

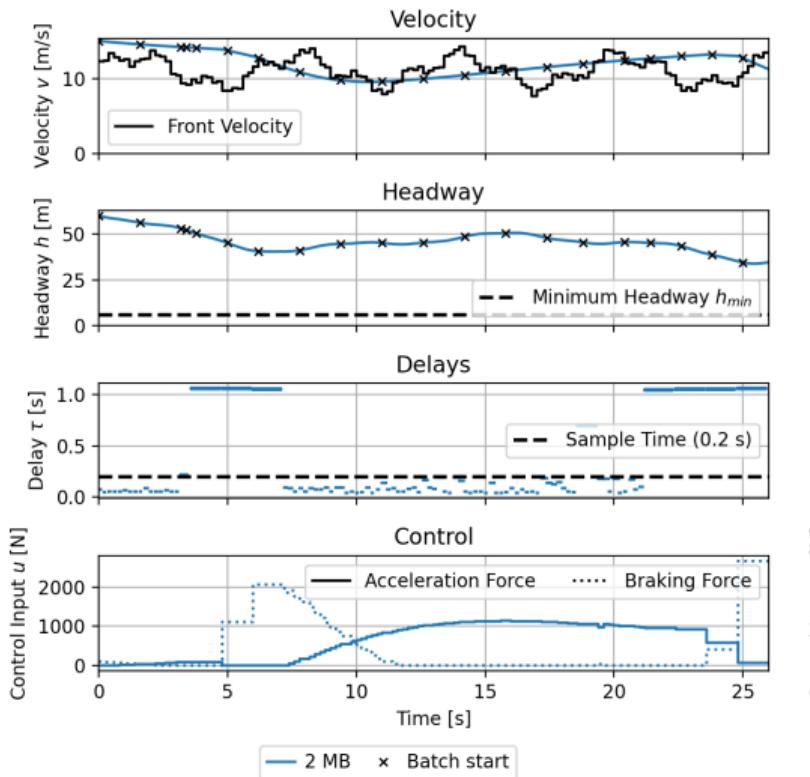
Problem 1 (Linear MPC)

$$\begin{aligned} \text{minimize} \quad & |\text{velocity error}|^2 \\ & + |\text{control effort}|^2 \end{aligned}$$

subject to

Linear System Dynamics
Linear Safety Constraints

→ Performance degrades if instruction cache is only 1 KB.



Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Methods for Constructing Conical Transition Graphs

Technical Definitions

Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions

Introduction — Problem Setting

Goal: Develop graph-based analysis of asymptotic stability for *conical hybrid systems*

- ▶ Allows determining local asymptotic stability of non-conical hybrid systems by using their *conical approximations*.

Introduction — Graph-based Analysis for Hybrid Systems

Previous work using discrete graphs to analyze hybrid systems:

- ▶ Asymptotic stability for
 - ▶ switched discrete-time linear systems (Philippe et al., 2016)
 - ▶ switched discrete-time nonlinear systems (Kundu and Chatterjee, 2016)
 - ▶ switched continuous-time linear systems (Langerak and Polderman, 2005)
- ▶ Infinite-horizon reachability for linear hybrid automata (Bogomolov et al., 2017).

The present work is (to the best of our knowledge) the first graph-theoretic approach to analyze *asymptotic stability* in *non-switched* hybrid systems.

Introduction — Hybrid Dynamical Systems Framework

$$\mathcal{H} : \begin{cases} \dot{x} = f(x) & x \in C \\ x^+ = g(x) & x \in D \end{cases}$$

- ▶ flow set $C \subset \mathbb{R}^n$
- ▶ flow map $f : C \rightarrow \mathbb{R}^n$
- ▶ jump set $D \subset \mathbb{R}^n$
- ▶ jump map $g : D \rightarrow \mathbb{R}^n$

The continuous-time component of $\mathcal{H} = (C, f, D, g)$ is written

$$(C, f).$$

Introduction — Conical Approximations

Definition 1

Given a hybrid system $\mathcal{H} = (C, f, D, g)$ and a point $x_* \in \overline{C} \cup \overline{D}$ such that $g(x_*) = x_*$, the *conical approximation* of \mathcal{H} at x_* is

$$\begin{cases} f(x) := \text{Constant or linear approximation of } f, & C := \text{Tangent cone of } C \text{ at } x_*, \\ g(x) := \text{Linear approximation of } g, & D := \text{Tangent cone of } D \text{ at } x_*, \end{cases}$$

with each approximation centered at x_* . ◇

Theorem 1 (Goebel and Teel, 2010)

Under sufficient regularity assumptions:

If 0_n is pAS for the conical approximation of \mathcal{H} at x_ , then x_* is pAS for \mathcal{H} .*

Conical Approximations with Constant Flows

Let $\mathcal{H} = (C, f, D, g)$ be a hybrid system with $x_* \in \overline{C} \cap \overline{D}$ such that

- ▶ $g(x_*) = x_*$
- ▶ g is continuously differentiable at x_* .
- ▶ $f(x_*) \neq 0_n$
- ▶ f is continuous at x_* .

Then, the conical approximation of \mathcal{H} at x_* is

$$\mathcal{H}: \begin{cases} \dot{x} = f(x) := f(x_*) \text{ [constant]}, & C := T_C(x_*), \\ x^+ = g(x) := A_D x \text{ [linear]}, & D := T_D(x_*) \end{cases}$$

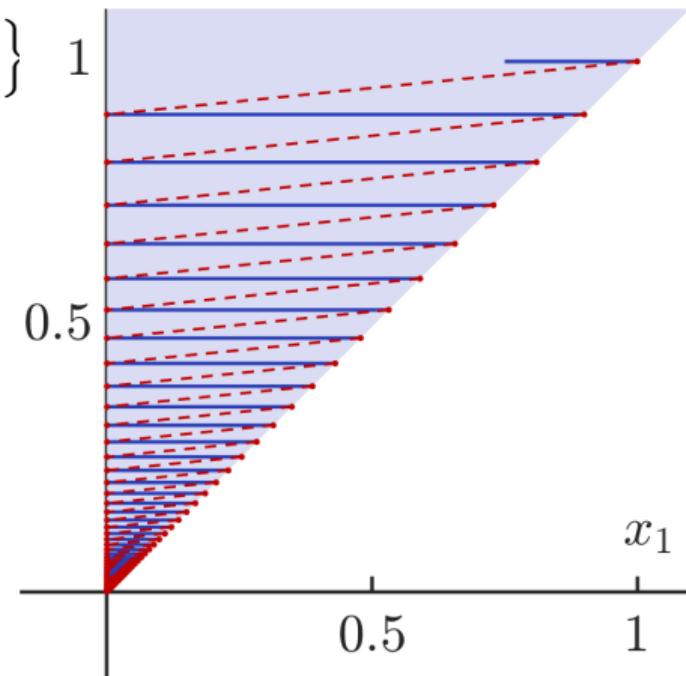
where A_D is the Jacobian matrix of g at x_* .

Example 1: Conical Hybrid System

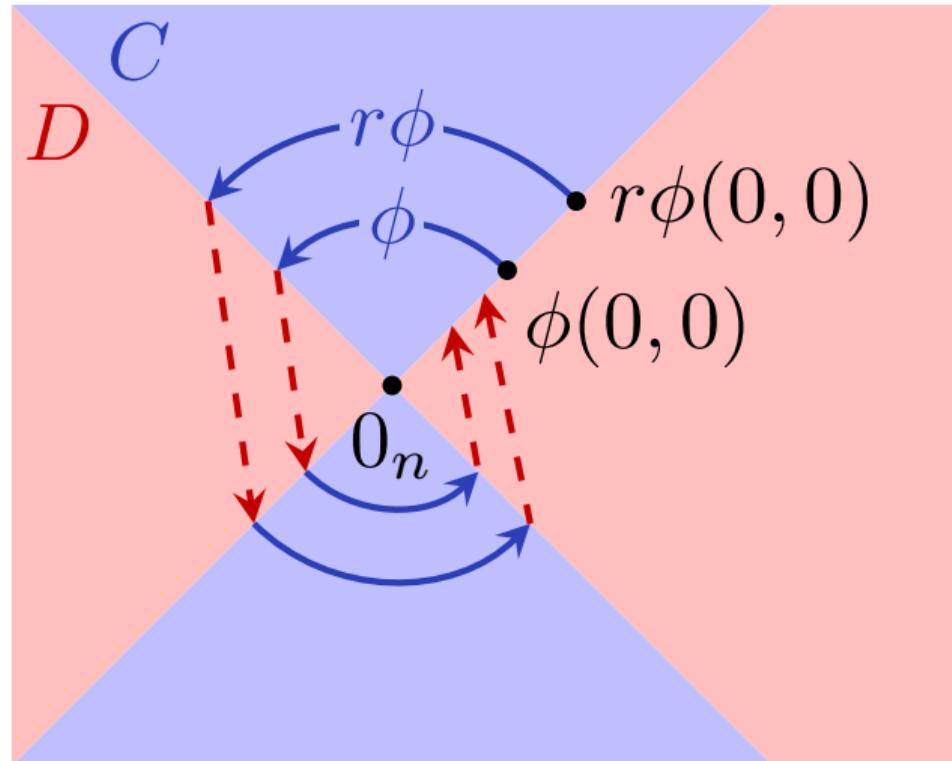
$$\begin{cases} f(x) := \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \forall x \in C := \left\{ x \in [0, \infty)^2 \mid x_2 \geq x_1 \right\} \\ g(x) := \begin{bmatrix} 0 \\ \gamma x_1 \end{bmatrix} & \forall x \in D := \overline{\text{ray}} \left[\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right], \end{cases}$$

with $\gamma > 0$.

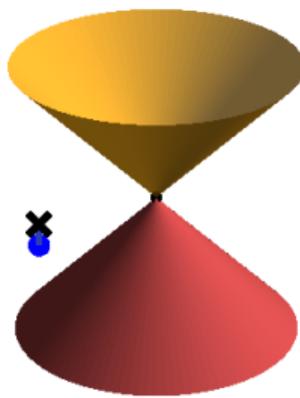
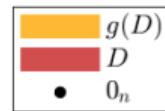
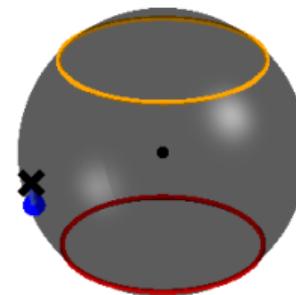
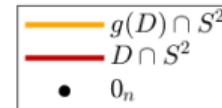
- ▶ How to prove the origin asymptotically stable (without a Lyapunov function)?



Introduction — Radial Homogeneity



Introduction — Mapping \mathbb{R}^n to Unit Sphere



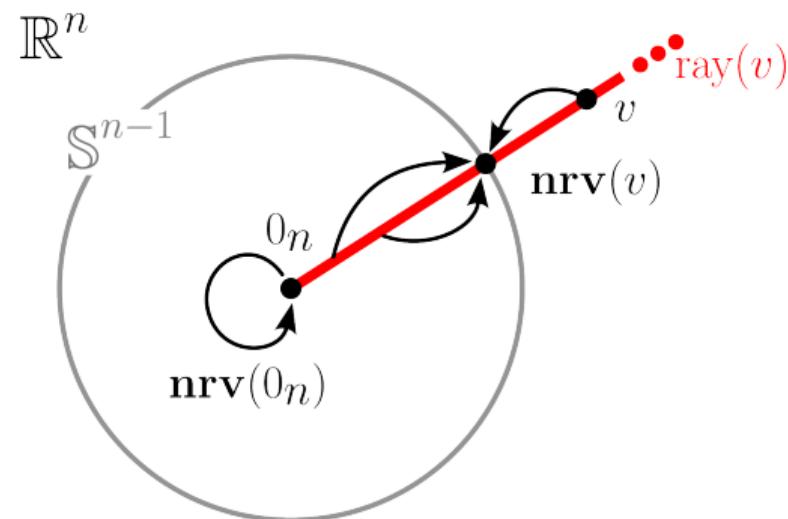
Introduction — Normalized Radial Vectors

The *normalized radial vector* function

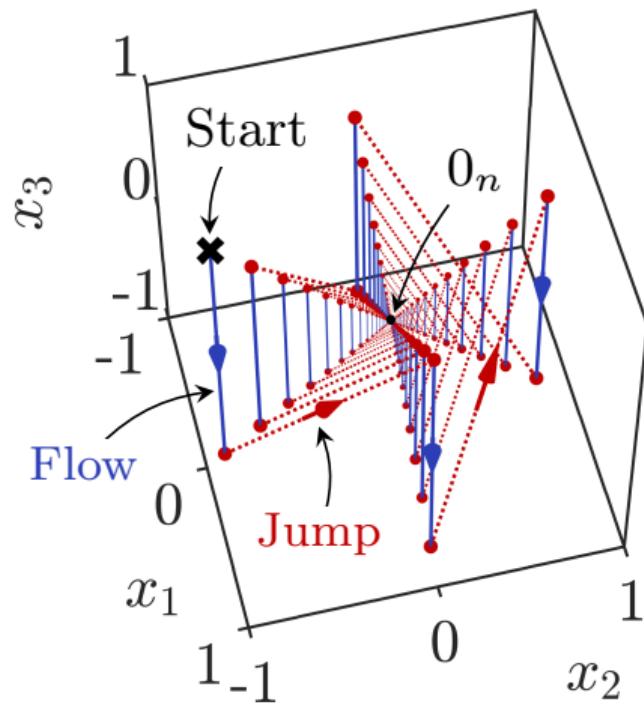
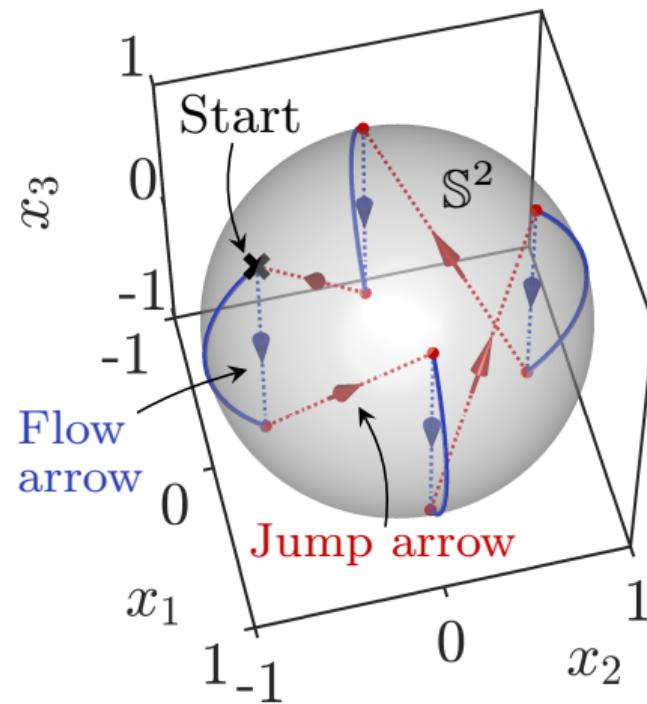
$$\text{nrv} : \mathbb{R}^n \rightarrow \mathbb{S}_0^{n-1} := \mathbb{S}^{n-1} \cup \{0_n\}$$

is defined for each $v \in \mathbb{R}^n$ as

$$\text{nrv}(v) := \begin{cases} 0_n & \text{if } v = 0_n \\ \frac{v}{|v|} & \text{if } v \neq 0_n. \end{cases}$$



Introduction — Conical Transition Graph (Sketch)



Introduction — Directed Graphs with Weights

A *directed graph* consists of a set of vertices

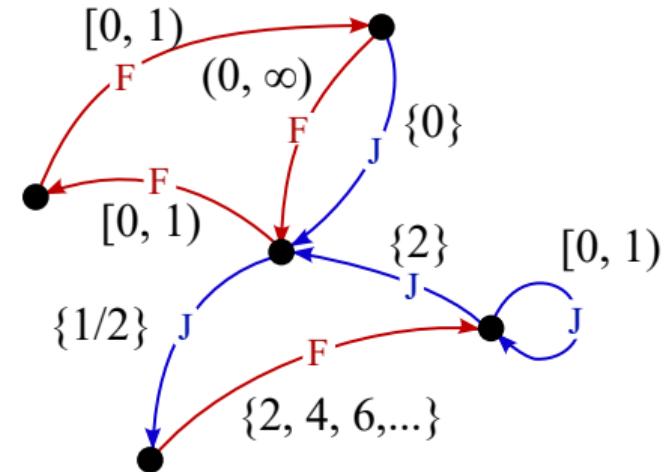
$$\mathcal{V} := \{v_1, v_2, v_3, v_4, v_5\}$$

connected by arrows:

$$\mathcal{A} := \{\alpha_1, \alpha_2, \alpha_3, \text{etc.}\}.$$

Each arrow connects two vertices, e.g.,

$$\alpha_1 := v_1 \xrightarrow{F} v_2, \quad \alpha_2 = v_3 \xrightarrow{J} v_1, \quad \text{etc.}$$



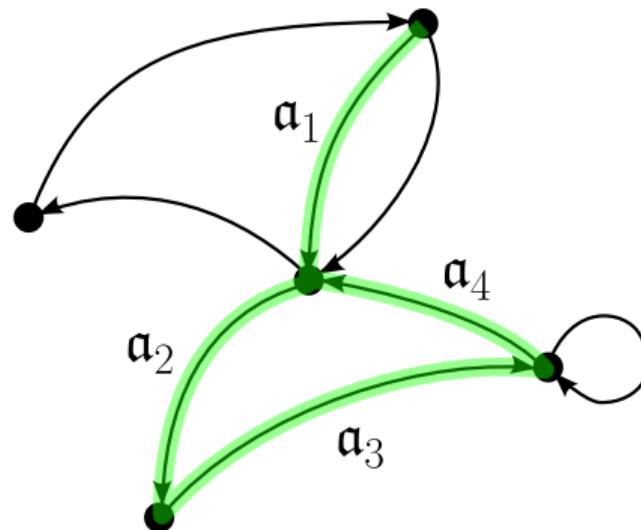
Each arrow is assigned a weight, defined by a *weight function* $\mathcal{W} : \mathcal{V} \rightrightarrows \mathbb{R}$. We write the weight of α as $\mathcal{W}(\alpha) \subset \mathbb{R}$.

Introduction — Walks Through Graphs

A *walk* w through a graph \mathcal{G} is a sequence of arrows in \mathcal{A} :

$$w = (\alpha_0, \alpha_1, \dots, \alpha_{N-1}) = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_N,$$

such that $\alpha_i = v_i \rightarrow v_{i+1}$ for each $i = 0, 1, \dots, N - 1$.



Introduction — Walk Weights

The *set-valued weight* of a finite-length walk $w = (\mathfrak{a}_0, \mathfrak{a}_1, \dots, \mathfrak{a}_{N-1})$ is defined as the Minkowski product of the weights

$$\mathcal{W}(w) := \left\{ r_0 \cdot r_1 \cdots r_{N-1} \mid r_0 \in \mathcal{W}(\mathfrak{a}_0), r_1 \in \mathcal{W}(\mathfrak{a}_1), \dots, r_{N-1} \in \mathcal{W}(\mathfrak{a}_{N-1}) \right\}$$

For an infinite-length walk $w := (\mathfrak{a}_0, \mathfrak{a}_1, \dots)$, we have that $\mathcal{W}(w) = \{0\}$ if and only if

$$\lim_{m \rightarrow \infty} \prod_{k=0}^m r_k = 0$$

for every sequence $\{r_k\}_{k=0}^{\infty}$ with $r_k \in \mathcal{W}(\mathfrak{a}_k)$ for all $k \in \mathbb{N}$.

Definition: Conical Transition Graph (CTG)

The *conical transition graph* (CTG) of a conical hybrid system $\mathcal{H} = (C, f, D, g)$ is a weighted, directed graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{A}, \mathcal{W}).$$

The set of vertices is defined as

$$\mathcal{V} := (D \cup g(D)) \cap \mathbb{S}_0^{n-1}$$

For each $v^\ominus \in \mathcal{V} \cap D$, there is a *jump arrow* from v^\ominus to

$$v^\oplus = \text{nrv}(g(v^\ominus))$$

Definition: Conical Transition Graph (CTG) — Flow Arrows

For each

$$v^{(0)} \in \mathcal{V} \cap g(D) \quad \text{and} \quad v^{(f)} \in \mathcal{V} \cap D,$$

there is a *flow arrow* from $v^{(0)}$ to $v^{(f)}$ if for some $T > 0$, there exists a function

$$[0, T] \ni t \mapsto \xi(t)$$

that satisfies

$$\begin{aligned} \xi(0) &= v^{(0)} \\ \dot{\xi}(t) &= f(\xi(t)) \quad \forall t \in (0, T) \\ \xi(t) &\in C \quad \forall t \in (0, T) \\ \text{nrv}(\xi(T)) &= v^{(f)}. \end{aligned} \tag{Flow Arrow ODE}$$

Definition: Conical Transition Graph (CTG) — Weights

The weight of each jump arrow $\alpha^J = v^\ominus \xrightarrow{J} v^\oplus$ is

$$\mathcal{W}(\alpha^J) := \{|g(v^\ominus)|\}.$$

The weight of each flow arrow $\alpha^F = v^{(0)} \xrightarrow{F} v^{(f)}$ is

$$\mathcal{W}(\alpha^F) := \{|\xi(T)| \mid \xi \text{ satisfies the Flow Arrow ODE for some } T > 0\}.$$

Example 1 (Continued): Construction of CTG

$$\mathcal{H}: \begin{cases} f(x) := \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \forall x \in C := \left\{ x \in [0, \infty)^2 \mid x_2 \geq x_1 \right\}, \\ g(x) := \begin{bmatrix} 0 \\ \gamma x_1 \end{bmatrix} & \forall x \in D := \overline{\text{ray}} \left[\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right], \end{cases}$$

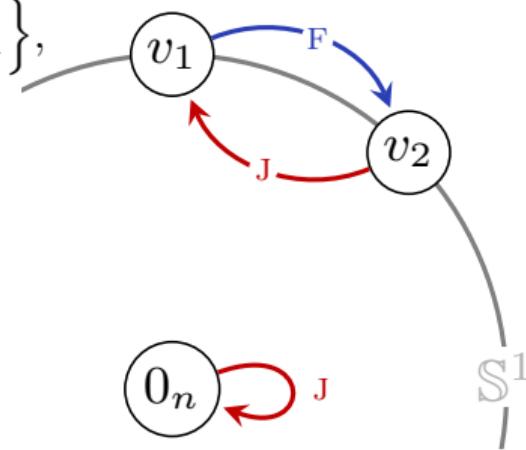
with $\gamma > 0$.

Vertices

$$\mathcal{V} = \{0_n, v_1, v_2\}$$

Arrows

$$\mathcal{A} = \underbrace{\{0_n \xrightarrow{J} 0_n, v_2 \xrightarrow{J} v_1\}}_{\text{Jump arrows}}, \underbrace{v_1 \xrightarrow{F} v_2}_{\text{Flow arrow}}.$$



The weights of the arrows are:

$$\mathcal{W}(0_n \xrightarrow{J} 0_n) = \{0\}$$

$$\mathcal{W}(v_2 \xrightarrow{J} v_1) = \{\gamma/\sqrt{2}\}$$

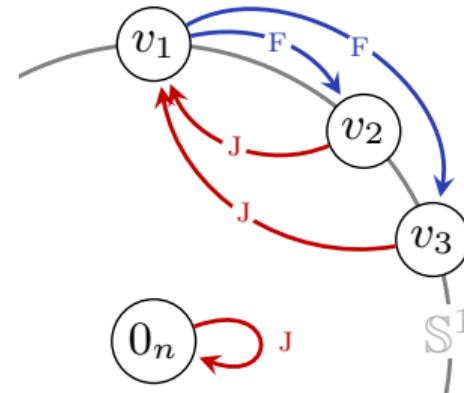
$$\mathcal{W}(v_1 \xrightarrow{F} v_2) = \{\sqrt{2}\}.$$

Example 2

Using f and g from Example 1, consider the flow and jump sets:

$$C' := \left\{ x \in [0, \infty)^2 \mid 2x_2 \geq x_1 \right\}$$

$$D' := \overline{\text{ray}}\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right] \cup \overline{\text{ray}}\left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix}\right].$$



The weights of the arrows are:

$$\mathcal{W}(0_n \xrightarrow{J} 0_n) = \{0\}$$

$$\mathcal{W}(v_2 \xrightarrow{J} v_1) = \{\gamma/\sqrt{2}\}$$

$$\mathcal{W}(v_3 \xrightarrow{J} v_1) = \{2\gamma/\sqrt{5}\}$$

$$\mathcal{W}(v_1 \xrightarrow{F} v_2) = \{\sqrt{2}\}$$

$$\mathcal{W}(v_1 \xrightarrow{F} v_3) = \{\sqrt{5}\}.$$

Example 3 — Non-singleton Set-valued Weights

Conical hybrid system:

$$\mathcal{H} : \begin{cases} \dot{x} = f(x) := -1, & C := [0, \infty), \\ x^+ = g(x) := x/2, & D := [0, \infty). \end{cases}$$

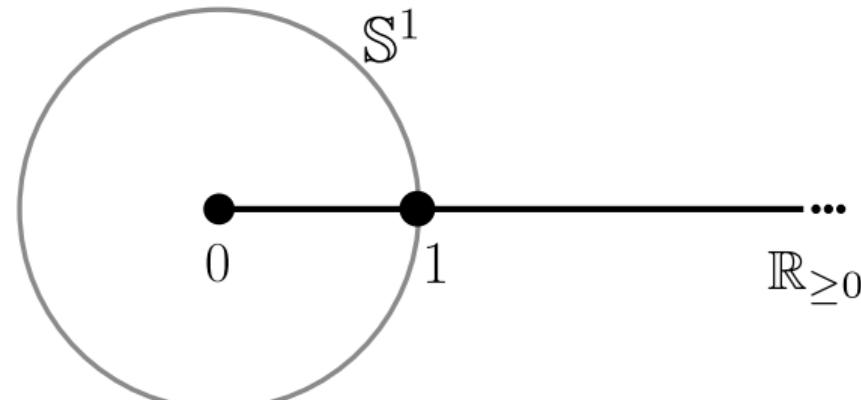
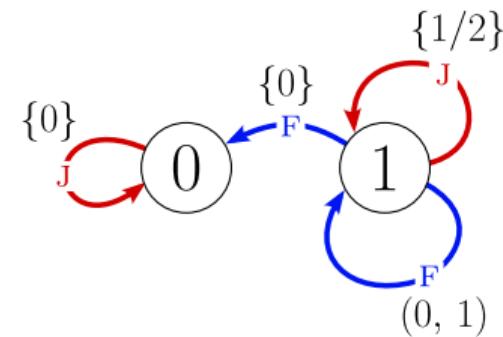
The origin is asymptotically stable
for \mathcal{H} .

Vertices

$$\mathcal{V} = \{0, 1\}$$

Arrows

$$\mathcal{A} = \{0 \xrightarrow{J} 0, 1 \xrightarrow{J} 1, 1 \xrightarrow{F} 0, 1 \xrightarrow{F} 1\}.$$



Main Result

Theorem 2

Let $\mathcal{H} = (C, f, D, g)$ be a conical hybrid system with conical transition graph $\mathcal{G} = (\mathcal{V}, \mathcal{A}, \mathcal{W})$. Suppose the following:

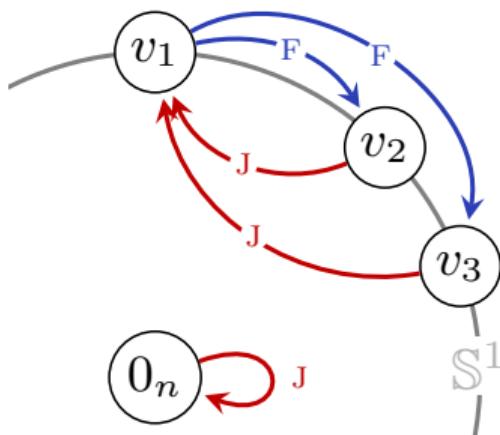
1. The origin is pre-asymptotically stable for (C, f) .
2. There exists $M > 0$ such that every walk w through \mathcal{G} satisfies $\sup \mathcal{W}(w) \leq M$.
3. Every well-formed infinite-length walk w through \mathcal{G} satisfies $\mathcal{W}(w) = \{0\}$.

Then, the origin of \mathcal{H} is pAS.

When \mathcal{V} is finite:

- ▶ Condition 2 is implied by 3 if each individual arrow weight is bounded.
- ▶ Condition 3 is satisfied if and only if $\sup \mathcal{W}(w) < 1$ for every well-formed elementary cycle w in \mathcal{G} .

Example 2 — Continued



Arrow Weights:

$$\mathcal{W}(0_n \xrightarrow{J} 0_n) = \{0\}$$

$$\mathcal{W}(v_2 \xrightarrow{J} v_1) = \{\gamma/\sqrt{2}\} \quad \mathcal{W}(v_1 \xrightarrow{F} v_2) = \{\sqrt{2}\}$$

$$\mathcal{W}(v_3 \xrightarrow{J} v_1) = \{2\gamma/\sqrt{5}\} \quad \mathcal{W}(v_1 \xrightarrow{F} v_3) = \{\sqrt{5}\}.$$

Weights of Elementary Cycles:

$$\mathcal{W}(0_n \xrightarrow{J} 0_n) = \{0\}$$

$$\mathcal{W}(v_1 \xrightarrow{F} v_2 \xrightarrow{J} v_1) = \mathcal{W}(v_2 \xrightarrow{J} v_1 \xrightarrow{F} v_2) = \{\gamma\}$$

$$\mathcal{W}(v_1 \xrightarrow{F} v_3 \xrightarrow{J} v_1) = \mathcal{W}(v_3 \xrightarrow{J} v_1 \xrightarrow{F} v_3) = \{2\gamma\}$$

⇒ For all $0 < \gamma < 1/2$, the origin is pAS.

Future Work

Directions for future work:

1. Expand the scope of systems for which our approach is tractable.
 - ▶ Construct CTG's for conical hybrid systems with linear flows.
 - ▶ Handle CTG's that have a large or infinite number of vertices.
2. Extend the CTG results to more general hybrid systems:
 - ▶ Hybrid systems with switching between logical modes.
 - ▶ Hybrid systems with set-valued flow and jump maps.

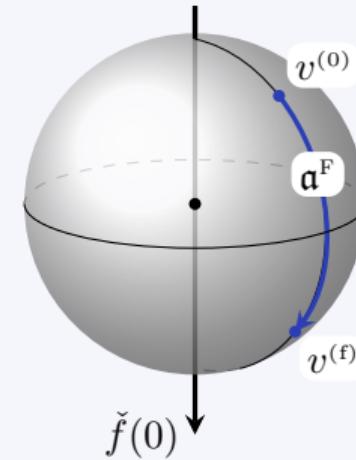
Proposition 1 (Flow Arrows — Constant Flows)

Let \mathcal{H} be a conical system with constant flows and let \mathcal{G} be the CTG of \mathcal{H} .

Then, $v^{(0)} \xrightarrow{F} v^{(f)}$ is a flow arrow in \mathcal{G} from

$v^{(0)} \in \mathcal{V} \cap g(D)$ to $v^{(f)} \in \mathcal{V} \cap D$ if and only if

- ▶ $\text{nrv}(v_{\perp}^{(0)}) = \text{nrv}(v_{\perp}^{(f)})$,
- ▶ $v^{(f)} \neq 0_n$ or $v^{(0)} \neq 0_n$,
- ▶ $\langle v^{(f)} - v^{(0)}, f(0_n) \rangle \geq 0$,
- ▶ $v_{\perp}^{(0)} \neq 0_n \implies \langle v^{(f)} - v^{(0)}, f(0_n) \rangle > 0$,
- ▶ $\theta v^{(0)} + (1 - \theta)v^{(f)} \in C \quad \forall \theta \in [0, 1]$.



A formula for the weight of $a^F := v^{(0)} \xrightarrow{F} v^{(f)}$ is given in the paper.

Computational Considerations for Finite Conical Transition Graphs

A walk through a graph is called an *elementary cycle* if it starts and ends at the same vertex and does not visit any other vertex more than once.

We can enumerate over all of the elementary cycles using Johnson's enumeration algorithm (Johnson, 1975). The worst-case time complexity of Johnson's algorithm is

$$O((\text{no. of vertices} + \text{no. of edges})(\text{no. of elementary cycles} + 1)).$$

Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Technical Definitions

Non-smooth Analysis

Set-valued Lie derivative

Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions

Definition of UGAS

Definition 2

A nonempty set $\mathcal{A} \subset \mathbb{R}^n$ is said to be

- ▶ *uniformly globally stable* if there exists a continuous, strictly increasing function α such that every solution x to \mathcal{H} satisfies $|x(t, j)|_{\mathcal{A}} \leq \alpha(|x(0, 0)|_{\mathcal{A}})$ for each $(t, j) \in \text{dom } x$; and
- ▶ *uniformly globally attractive* for \mathcal{H} if every maximal solution is complete and for all $\varepsilon > 0$ and $r > 0$, there exists $T > 0$ such that every solution x to \mathcal{H} with $|x(0, 0)|_{\mathcal{A}} \leq r$ satisfies $|x(t, j)|_{\mathcal{A}} \leq \varepsilon$ for all $(t, j) \in \text{dom } x$ such that $t + j \geq T$.
- ▶ If \mathcal{A} is both uniformly globally stable and uniformly globally attractive for \mathcal{H} , then it is said to be *uniformly globally asymptotically stable* (UGAS) for \mathcal{H} .

Because κ_0 is Lyapunov-certified there exists a Lyapunov function

$$V : \mathbb{R}^{n_p} \rightarrow [0, \infty)$$

that guarantees \mathcal{A} is UGAS for

$$\dot{z} = f_p(z, \kappa_0(z)).$$

Namely, there exist $\alpha_1, \alpha_2 \in \mathcal{K}_\infty$ and a continuous positive definite function ρ such that

$$\begin{aligned} \alpha_1(|z|_{\mathcal{A}}) &\leq V(z) \leq \alpha_2(|z|_{\mathcal{A}}) & \forall z \in \mathbb{R}^n, \\ \dot{V}_0(z) &\leq -\rho(|z|_{\mathcal{A}}) & \forall z \in \mathbb{R}^n. \end{aligned}$$

Hybrid Systems

We consider hybrid systems modeled as

$$\mathcal{H} : \begin{cases} \dot{x} = f(x) & x \in C \\ x^+ = g(x) & x \in D \end{cases}$$

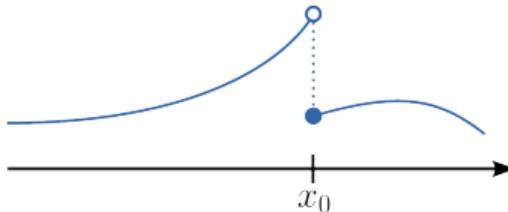
with

- ▶ flow set $C \subset \mathbb{R}^n$
- ▶ flow map $f : C \rightarrow \mathbb{R}^n$
- ▶ jump set $D \subset \mathbb{R}^n$
- ▶ jump map $g : D \rightarrow \mathbb{R}^n$

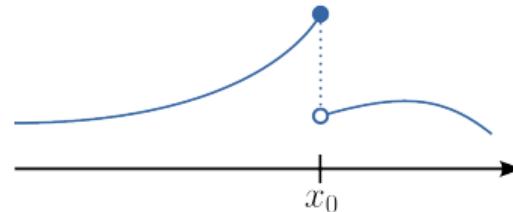
Definition (Lower Semicontinuous)

A function f is *lower semicontinuous* (LSC) at x_0 if

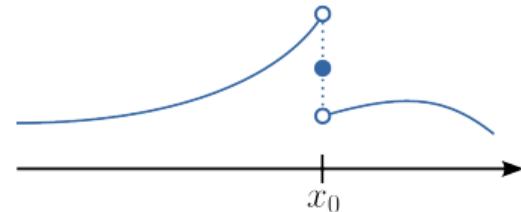
$$f(x_0) \leq \liminf_{x \rightarrow x_0} f(x).$$



Lower Semicontinuous (LSC).



Upper Semicontinuous (USC).



Not LSC, not USC.

Contingent Cone

Let $S \subset \mathbb{R}^n$ be nonempty and let $x \in \overline{S}$. The contingent cone⁸ to S at x is denoted $T_S(x)$, and is given by The *contingent cone* $T_S(x)$ is the set of all vectors $v \in \mathbb{R}^n$ such that there exist a sequence of positive real numbers $h_i \rightarrow 0^+$ and a sequence of vectors $v_i \rightarrow v$ such that

$$x + h_i v_i \in S$$

for all $i \in \mathbb{N}$.

Clark Generalized Gradient and Directional Derivative

For a locally Lipschitz function $V : \mathbb{R}^n \rightarrow \mathbb{R}$, the *Clarke generalized gradient* of V at $x \in \mathbb{R}^n$ is

$$\partial^\circ V(x) := \text{conv} \left\{ \lim_{i \rightarrow \infty} \nabla V(x_i) \mid \exists (x_i \rightarrow x) \text{ s.t. } V \text{ is differentiable at each } x_i \right\}. \quad (2)$$

The *Clarke generalized directional derivative* of V at x in the direction $w \in \mathbb{R}^n$ is given by $V^\circ(x, w) = \max_{\zeta \in \partial^\circ V(x)} \langle \zeta, w \rangle$. The *Clarke generalized directional derivative* of V at $x \in \mathbb{R}^n$ in the direction $w \in \mathbb{R}^n$ is given by

$$V^\circ(x, w) = \max_{\zeta \in \partial^\circ V(x)} \langle \zeta, w \rangle. \quad (3)$$

Lie Derivative

For a differential inclusion $\dot{x} \in F(x)$ with a set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ and a Lipschitz continuous function $V : \mathbb{R}^n \rightarrow \mathbb{R}$, we define the *set-value Lie derivative* of V along F as

$$\mathcal{L}_F V(x) := \sup \{ \langle \zeta, f \rangle \mid \zeta \in \underbrace{\partial^\circ V(x)}_{\text{Generalized Gradient}}, f \in F(x) \cap \underbrace{T_C(x)}_{\text{Tangent Cone}} \}.$$

Furthermore, since $\mathcal{L}_F V(x)$ is a set in \mathbb{R} , we can write the least upper bound as $\sup \mathcal{L}_F V(x)$.

Rate of change of V for $\dot{x} \in F(x)$

Consider

$$\dot{x} \in F(x) \quad x \in C \subset \mathbb{R}^n. \quad (\star)$$

and a locally Lipschitz function $V : \mathbb{R}^n \rightarrow \mathbb{R}$.

For each $x \in C$,

$$\dot{V}(x) := \mathcal{L}_F V(x) = \sup \{ \langle \zeta, f \rangle \mid \zeta \in \underbrace{\partial^\circ V(x)}_{\text{Generalized Gradient}}, f \in F(x) \cap \underbrace{T_C(x)}_{\text{Tangent Cone}} \}.$$

For any solution ϕ to (\star) and all $t_1, t_2 \in \text{dom } \phi$,

$$V(\phi(t_2)) - V(\phi(t_1)) \leq \int_{t_1}^{t_2} \dot{V}(\phi(t)) dt.$$

Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Technical Definitions

Additional Results for Uniting Feedback

Positive Lower Bound on Time Between Switches

Results for Uniting Feedback for UGAS

Further Results for Relaxed Lyapunov Conditions

Theorem (Forward Invariance Without Chattering)

Suppose that

- ▶ B is a \mathcal{C}^1 barrier function of K for $\dot{z} = f_0(z)$.
- ▶ f_0 and f_1 are globally Lipschitz continuous with Lipschitz constants L_0 and L_1 .
- ▶ δ_0 , δ_1 , θ_0 , and θ_1 are continuous and satisfy the threshold function inequalities.
- ▶ There exists $\tau > 0$ such that for all $z^0 \in \mathcal{Z}_{0 \mapsto 1}$ and $z^1 \in \mathcal{Z}_{1 \mapsto 0}$,

$$|z^0 - z^1| \geq \tau \max\{|f_0(z^0)| \exp(L_0\tau), |f_1(z^1)| \exp(L_1\tau)\}.$$

Then,

- ▶ τ is a lower bound on the time between jumps for all solutions to \mathcal{H} .
- ▶ Every maximal solution ϕ to \mathcal{H} is complete and $\sup_t \text{dom } \phi = \infty$.

Proof Sketch of Section 1

- ▶ Forward pre-invariance is proven using the same barrier function as in Theorem 1.
- ▶ Solutions to $\dot{z} = f_0(z)$ and $\dot{z} = f_1(z)$ cannot escape to infinity in finite time because f_0 and f_1 are globally Lipschitz.
- ▶ Let $z^0 \in \mathcal{Z}_{0 \mapsto 1}$ and $z^1 \in \mathcal{Z}_{1 \mapsto 0}$. To prove τ is a lower bound on the time between jumps, we show
 - ▶ The (unique) solution to $\dot{z} = f_0(z)$ starting at z^0 satisfies

$$|z^0 - z^1| \geq \tau |f_0(z^0)| \exp(L_0 \tau) \geq |z(t) - z^0| \quad \forall t \in [0, \tau].$$

Thus, in time τ , a solution to \mathcal{H} cannot move from $(z^0, 1) \in g(D_{0 \mapsto 1})$ to $(z^1, 1) \in D_{1 \mapsto 0}$.

Proof Sketch of Section 1

- ▶ The (unique) solution to $\dot{z} = f_1(z)$ starting at z^1 satisfies

$$|z^0 - z^1| \geq \tau |f_1(z^1)| \exp(L_1 \tau) \geq |z(t) - z^1| \quad \forall t \in [0, \tau].$$

Thus, in time τ , a solution to \mathcal{H} cannot move from $(z^1, 0) \in g(D_{1 \mapsto 0})$ to $(z^0, 0) \in D_{0 \mapsto 1}$.

- ▶ The time to move from $g(D)$ to D is at least τ .

Example: Lower Bound on Switching Times

Consider the plant

$$\dot{z} = f_P(z, u) := \begin{bmatrix} z_1 \\ u \end{bmatrix}$$

with $z = (z_1, z_2) \in \mathbb{R}^2$ and $u \in \mathbb{R}$.

Admissible Set: Lower Half Plane of \mathbb{R}^2

Controllers: $\kappa_0(z) := -|z_1|$

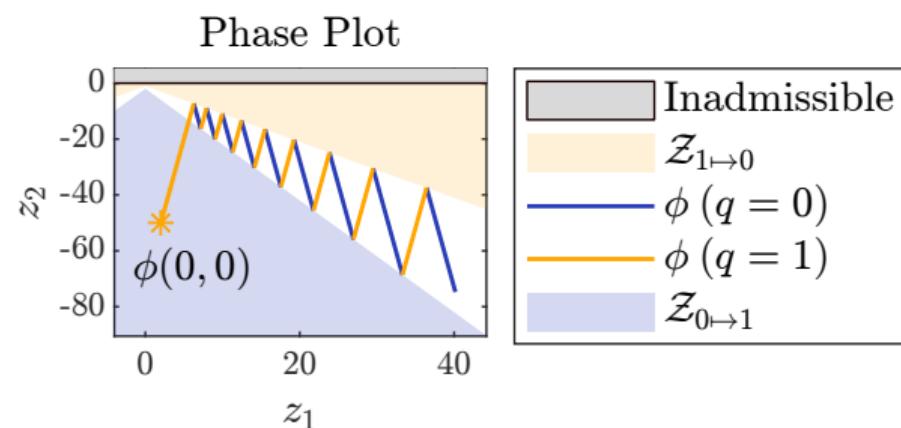
$\kappa_1(z) := +|z_1|$

Barrier Function: $B(z) := z_2$.

Thresholds: $\delta_0(z) := -2 - 2|z_1|$

$\delta_1(z) := -1 - |z_1|$.

Satisfies Theorem 1 $\implies K$ is forward invariant.



Solutions are unbounded \implies Theorem 1 does not guarantee solutions existence for all $t > 0$.

Example: Lower Bound on Switching Times

We find that for $\tau := 0.25$,

$$|z^0 - z^1| \geq \frac{|z_1^0| + 1}{\sqrt{5}} > \tau |f_0(z^0)| \exp(L_0 \tau),$$

$$|z^0 - z^1| \geq \frac{|z_1^1| + 1}{\sqrt{2}} > \tau |f_1(z^1)| \exp(L_1 \tau).$$

Satisfies Section 1 \implies $\begin{cases} \text{The time between jumps is at least } \tau = 0.25. \\ \text{Every maximal solution exists for all } t \geq 0. \end{cases}$

Clarke Generalized Gradient of $\tilde{V}(x)$

For the function

$$\tilde{V}(x) := \max\{V(z), v\},$$

the Clarke generalized gradient at $x = (z, v, q)$ in the direction $w = (w_z, w_v, 0)$ is

$$\tilde{V}^\circ(x, w) = \begin{cases} \langle \nabla_z V(z), w_z \rangle & \text{if } V(z) > v, \\ \max\{\langle \nabla_z V(z), w_z \rangle, w_v\} & \text{if } V(z) = v, \\ w_v & \text{if } V(z) < v. \end{cases} \quad (4)$$

Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Technical Definitions

Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions

Insertion Theorems

Simplified Conditions on Hybrid Time Domains

$$\sigma_{\text{LSC}}(x) \geq \sigma_{\text{C}}(x).$$

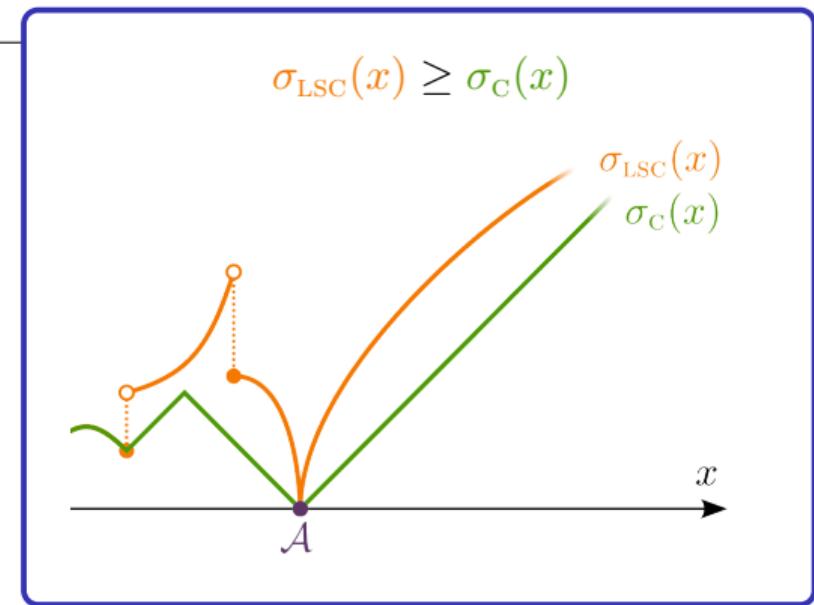
Given σ_{LSC} .

For all $x \in \mathbb{R}^n$, let

$$\sigma_{\text{C}}(x) := \inf_{x' \in \mathbb{R}^n} (\sigma_{\text{LSC}}(x') + \ell|x' - x|).$$

Then,

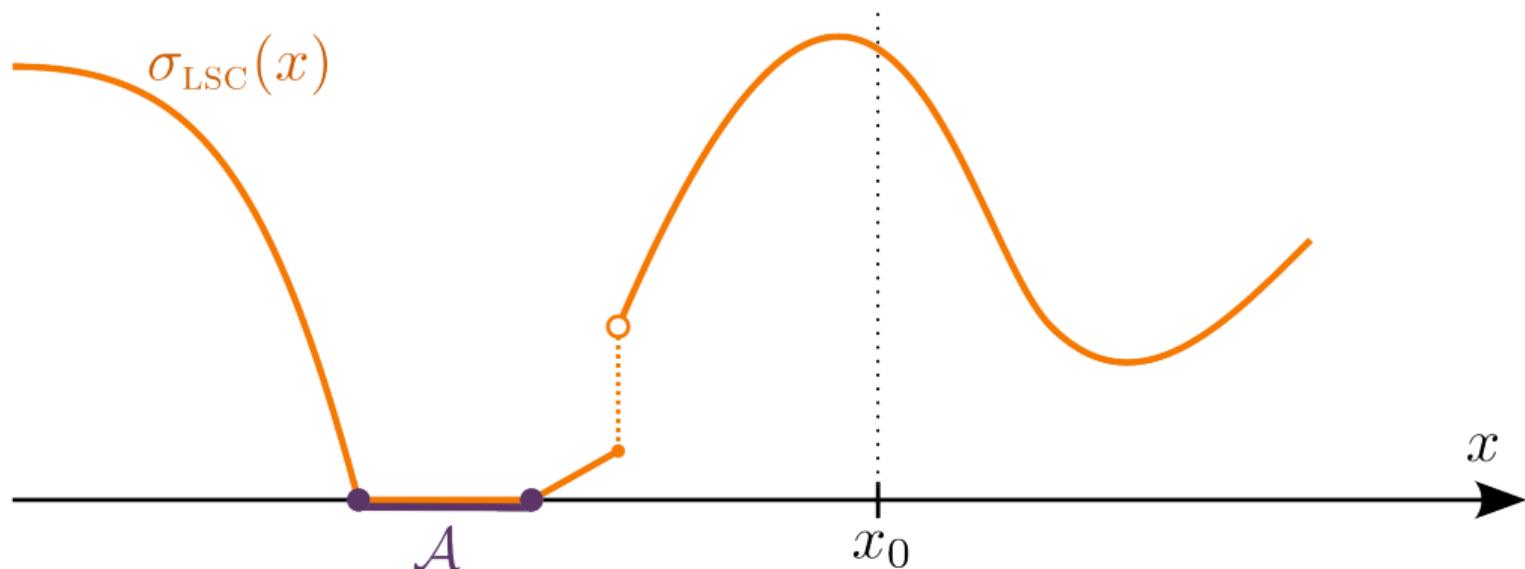
- ▶ σ_{C} is Lipschitz continuous with Lipschitz constant ℓ
- ▶ σ_{C} is positive definite w.r.t. \mathcal{A}
- ▶ $\sigma_{\text{LSC}}(x) \geq \sigma_{\text{C}}(x)$ for all $x \in \mathbb{R}^n$.



Construction of σ_C

Given $x_0 \in \text{dom}(\sigma_{\text{LSC}})$,

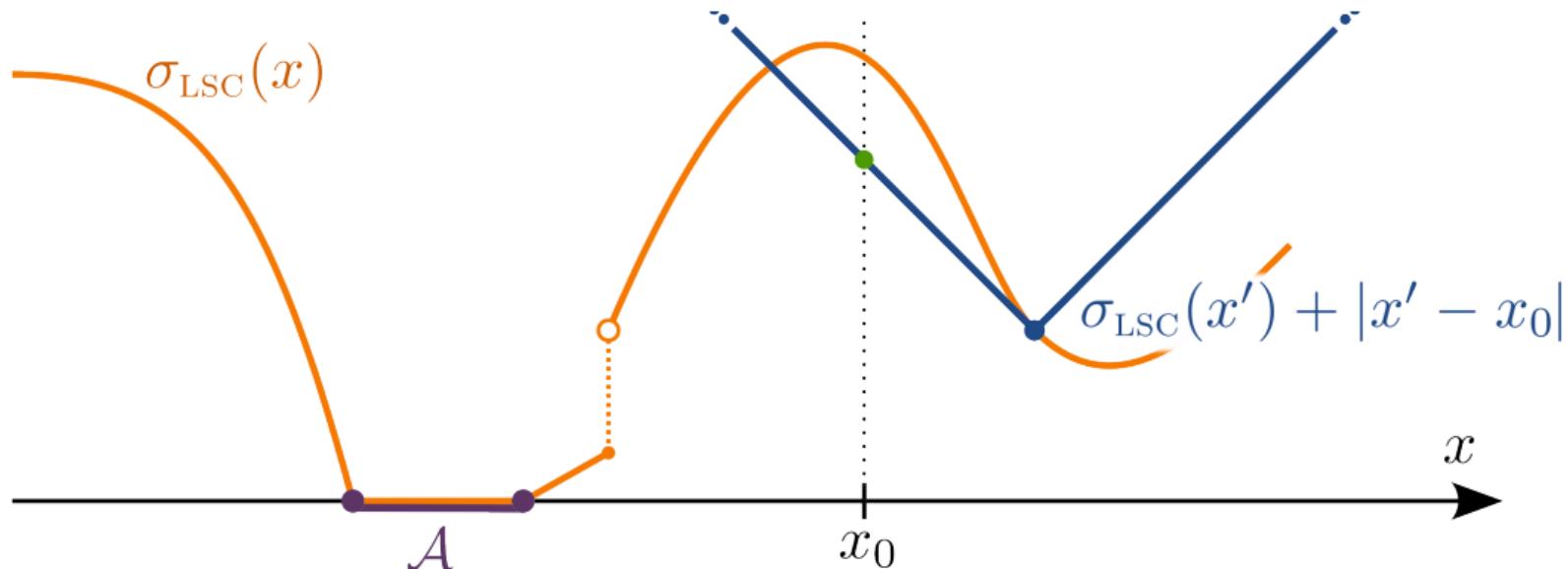
$$\sigma_C(x_0) := \inf_{x'} (\sigma_{\text{LSC}}(x') + |x' - x_0|).$$



Construction of σ_C

Given $x_0 \in \text{dom}(\sigma_{\text{LSC}})$,

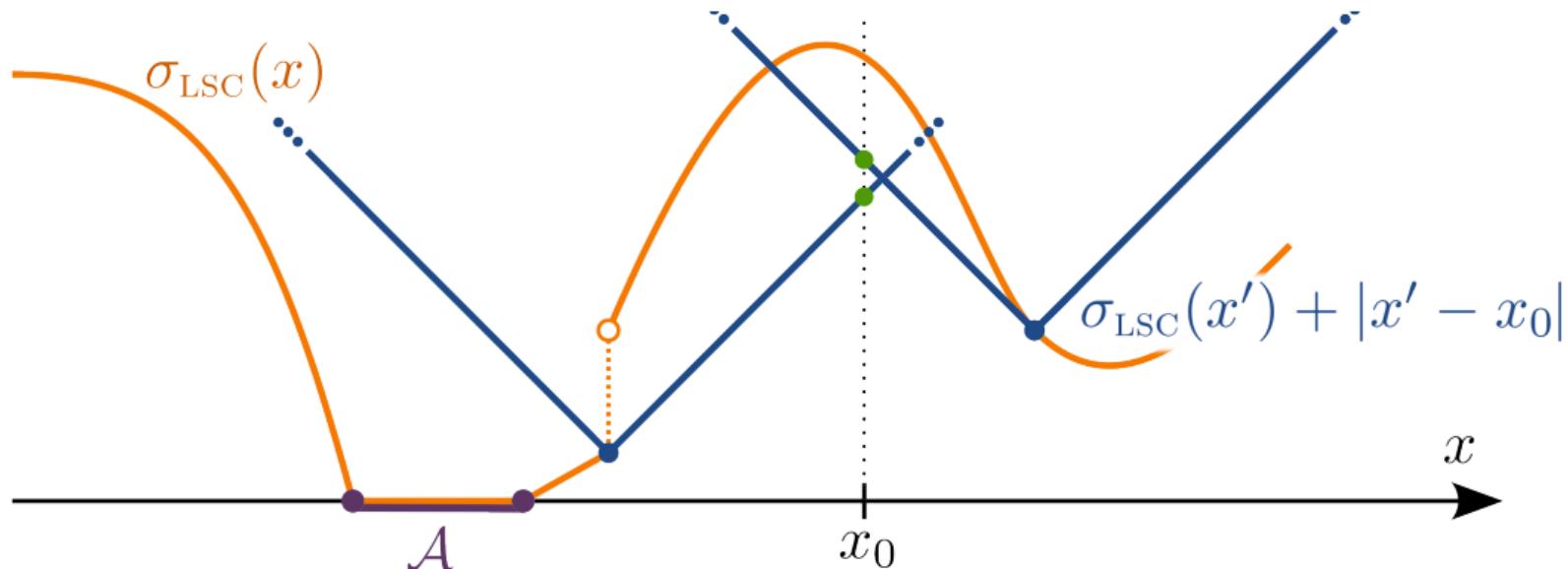
$$\sigma_C(x_0) := \inf_{x'} (\sigma_{\text{LSC}}(x') + |x' - x_0|).$$



Construction of σ_C

Given $x_0 \in \text{dom}(\sigma_{\text{LSC}})$,

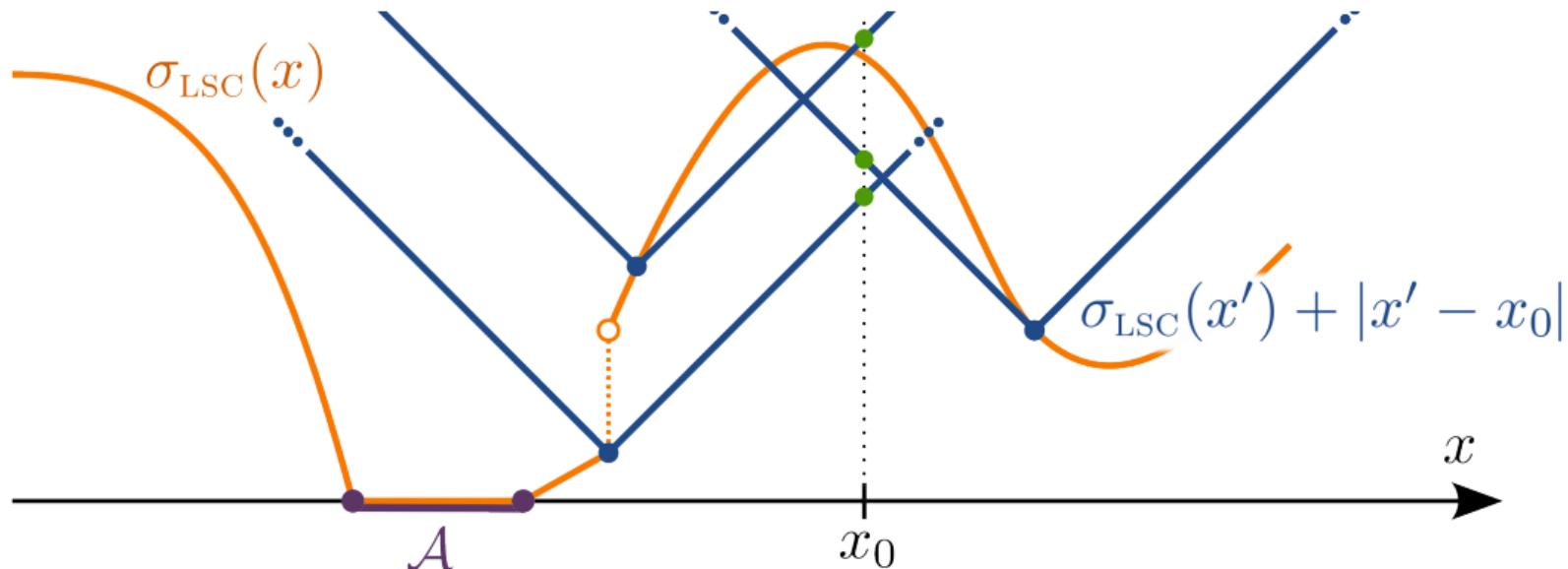
$$\sigma_C(x_0) := \inf_{x'} (\sigma_{\text{LSC}}(x') + |x' - x_0|).$$



Construction of σ_C

Given $x_0 \in \text{dom}(\sigma_{\text{LSC}})$,

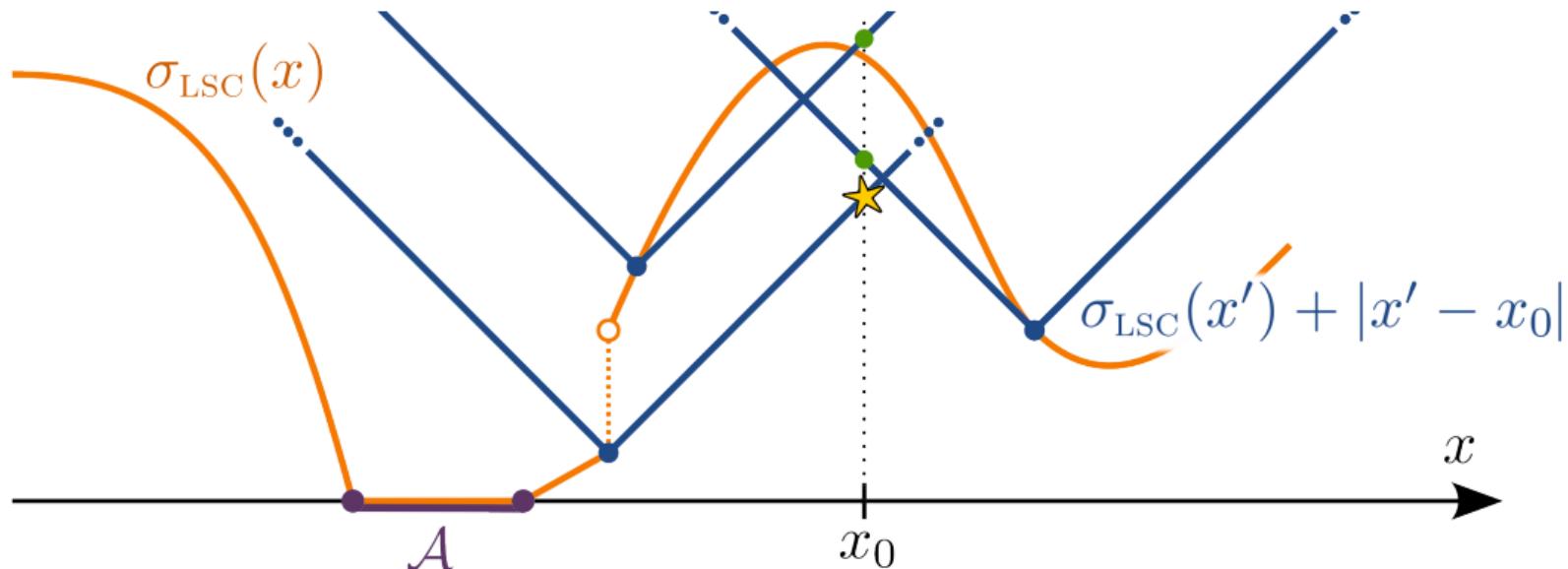
$$\sigma_C(x_0) := \inf_{x'} (\sigma_{\text{LSC}}(x') + |x' - x_0|).$$



Construction of σ_C

Given $x_0 \in \text{dom}(\sigma_{\text{LSC}})$,

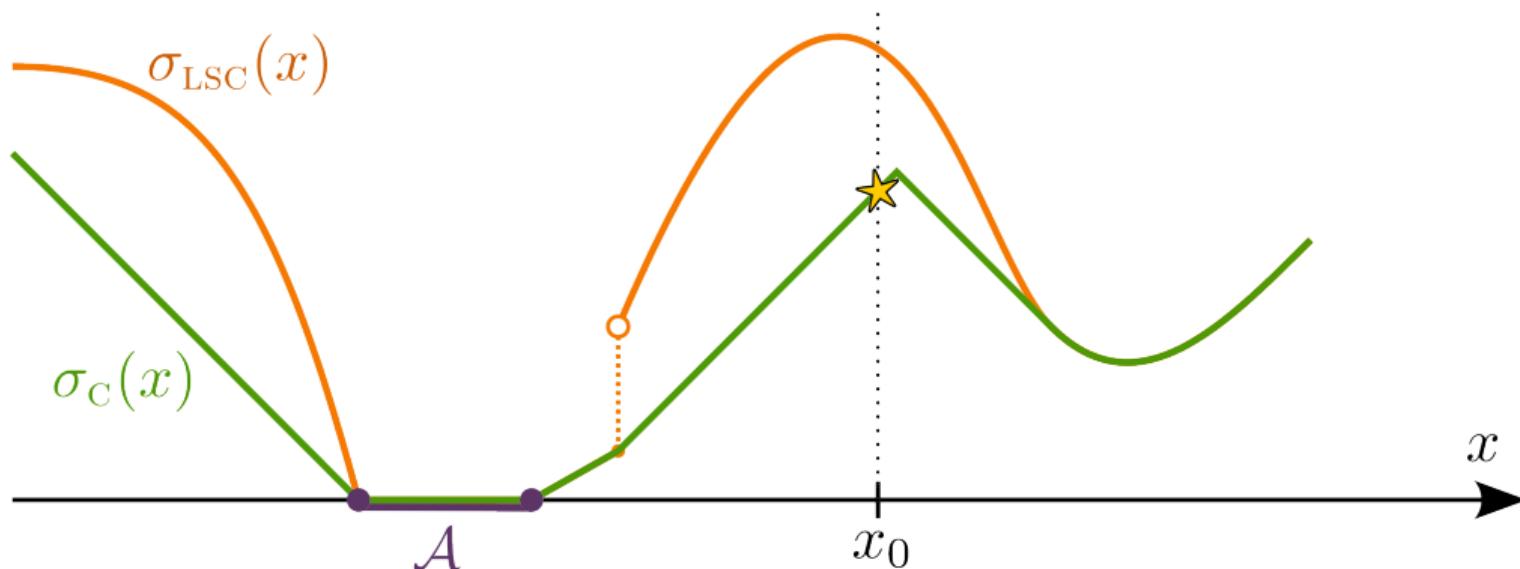
$$\sigma_C(x_0) := \inf_{x'} (\sigma_{\text{LSC}}(x') + |x' - x_0|).$$



Construction of σ_C

Given $x_0 \in \text{dom}(\sigma_{\text{LSC}})$,

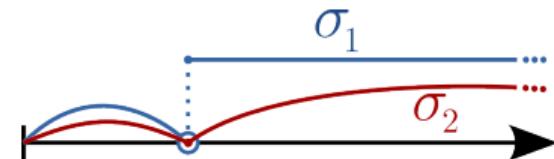
$$\sigma_C(x_0) := \inf_{x'} (\sigma_{\text{LSC}}(x') + |x' - x_0|).$$



Non-Example

Consider

$$\sigma_1(x) := \begin{cases} x(1-x) & \text{if } x \in [0, 1) \\ 1 & \text{if } x \geq 1 \end{cases}$$



- ✓ Positive definite (w.r.t. 0).
- ✗ Not lower semicontinuous at $x = 1$.

Any continuous function σ_2 between 0 and σ_1 is 0 at $x = 1$ because

$$\liminf_{x \rightarrow 1} \sigma_1(x) = 0,$$

- ✓ Continuous
- ✗ Not Positive definite (w.r.t. 0)

$$\sigma_C(x) \geq \rho_{LSC}(|x|_{\mathcal{A}}).$$

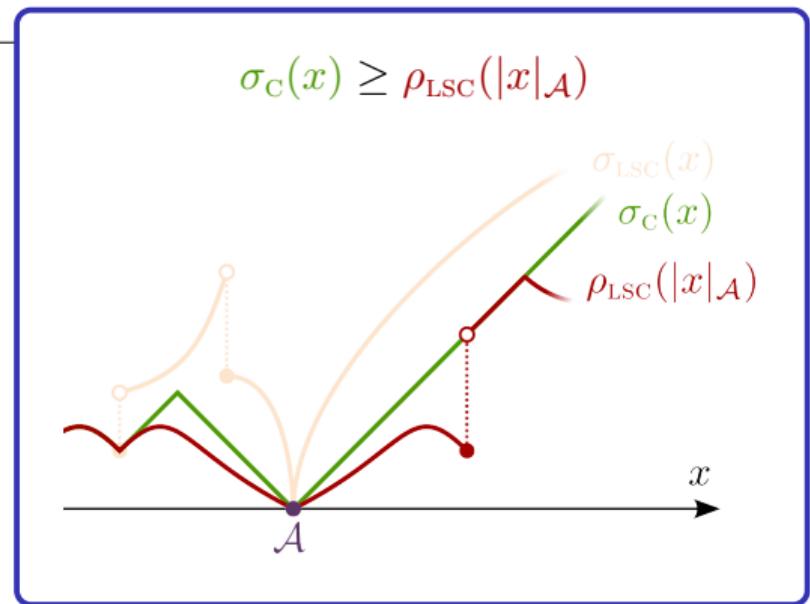
Given σ_C .

Let

$$\rho_{LSC}(r) := \inf \{ \sigma_C(x) : |x|_{\mathcal{A}} = r \} \quad \forall r \geq 0.$$

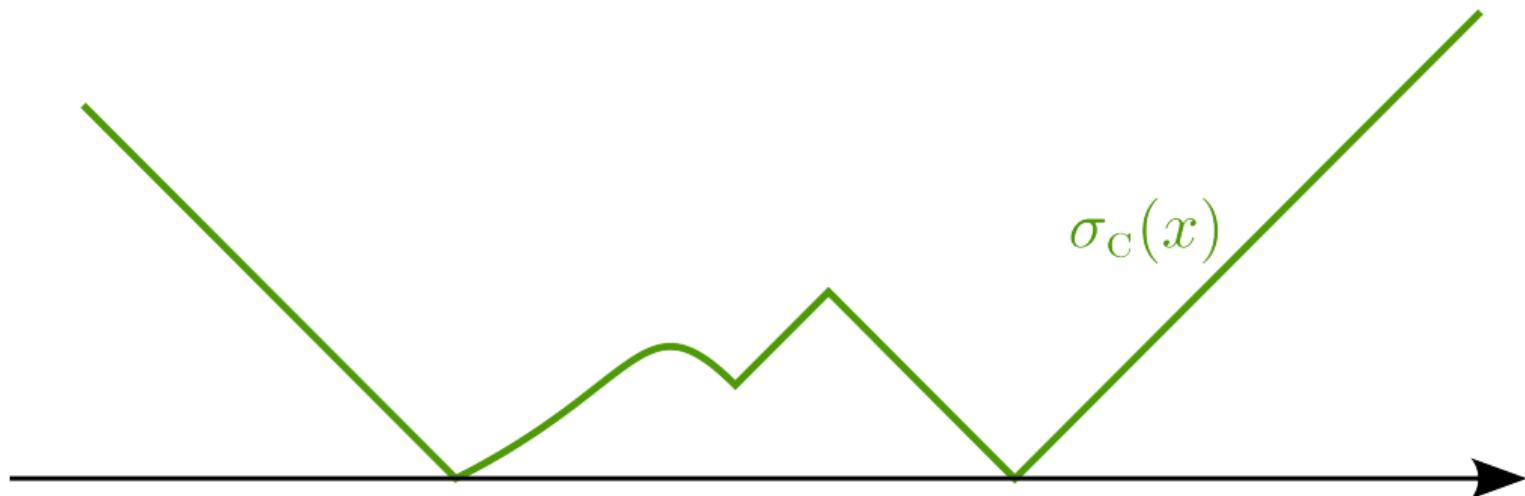
Then,

- ▶ ρ_{LSC} is lower semicontinuous
- ▶ ρ_{LSC} is positive definite (w.r.t. 0)
- ▶ $\sigma_C(x) \geq \rho_{LSC}(|x|_{\mathcal{A}})$ for all $x \in \mathbb{R}^n$.



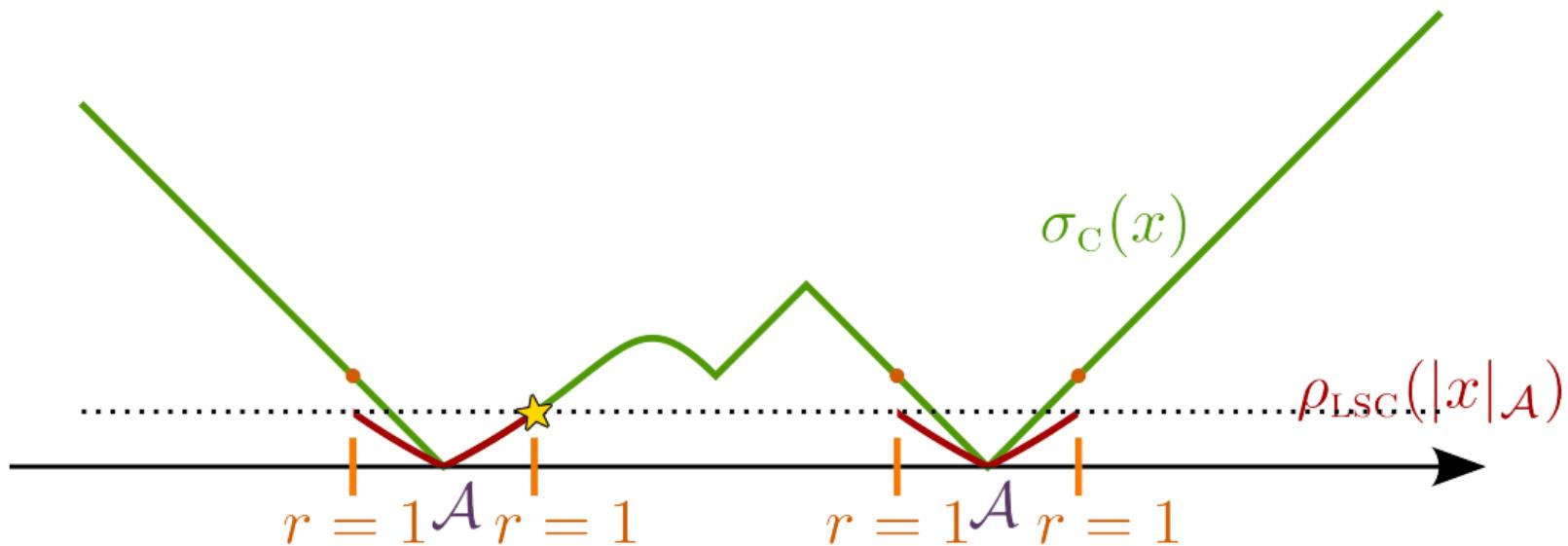
Construction of σ_C

$$\rho_{\text{LSC}}(r) := \inf \{ \sigma_C(x) : |x|_{\mathcal{A}} = r \} \quad \forall r \geq 0.$$



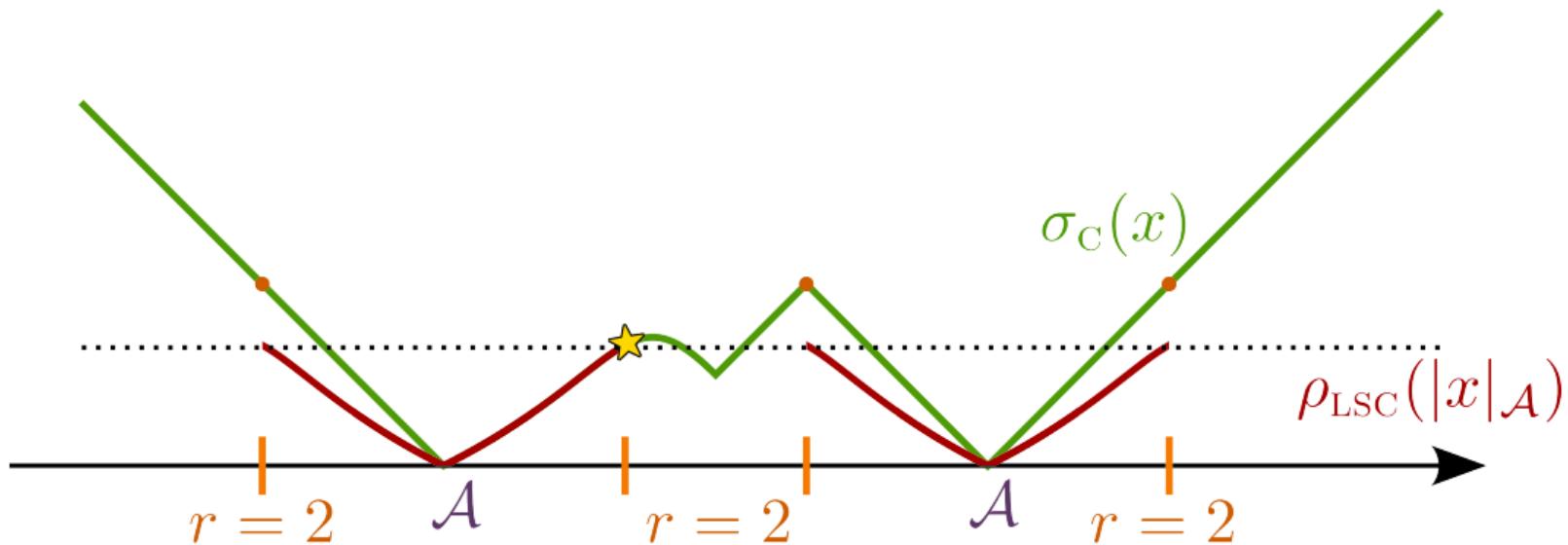
Construction of σ_C

$$\rho_{\text{LSC}}(r) := \inf \{ \sigma_C(x) : |x|_{\mathcal{A}} = r \} \quad \forall r \geq 0.$$



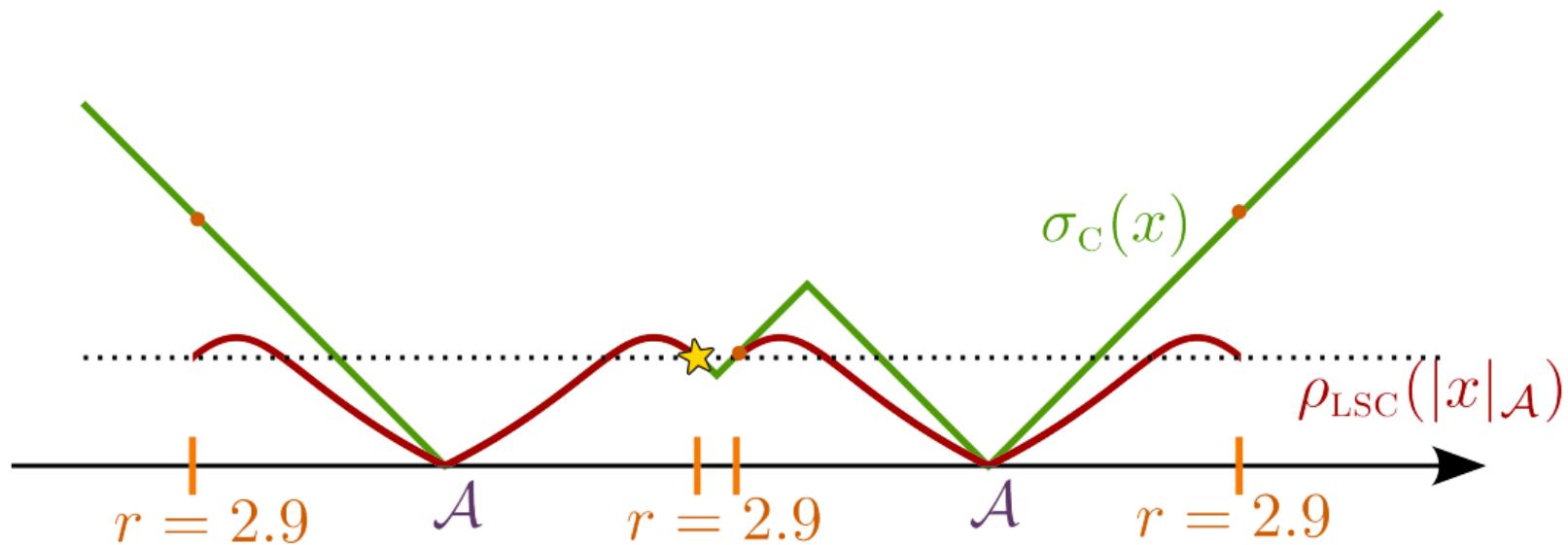
Construction of σ_C

$$\rho_{\text{LSC}}(r) := \inf \{ \sigma_C(x) : |x|_{\mathcal{A}} = r \} \quad \forall r \geq 0.$$



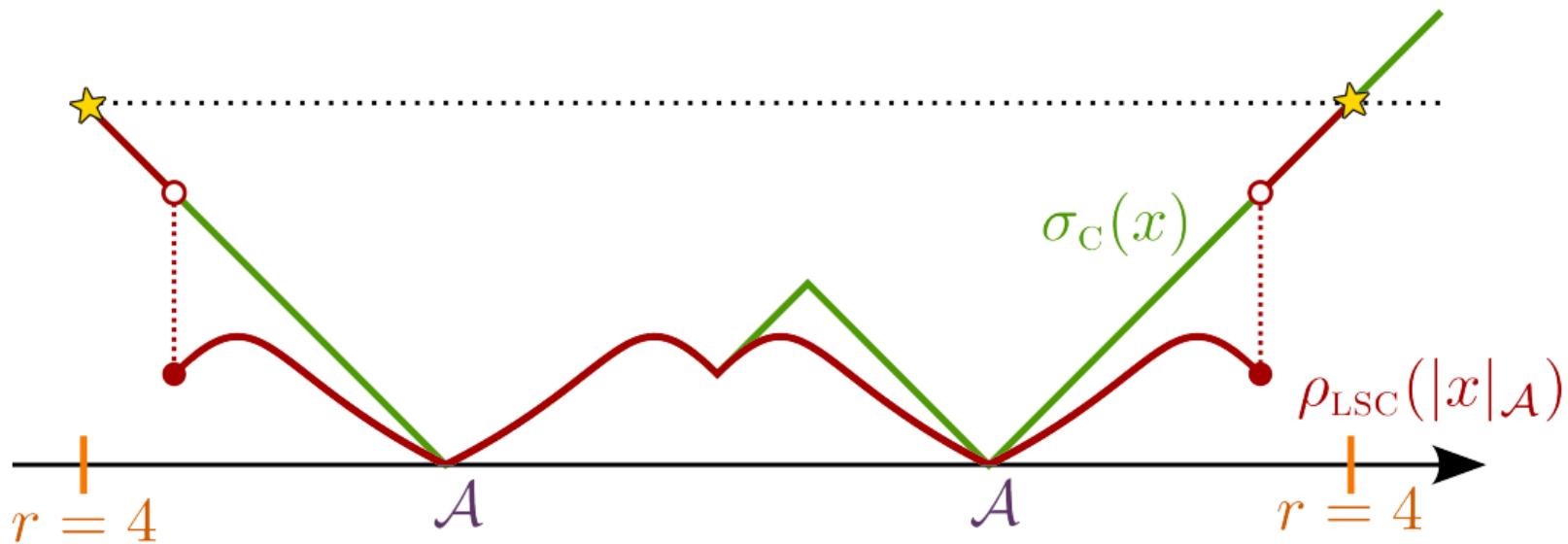
Construction of σ_C

$$\rho_{\text{LSC}}(r) := \inf \{ \sigma_C(x) : |x|_{\mathcal{A}} = r \} \quad \forall r \geq 0.$$



Construction of σ_C

$$\rho_{\text{LSC}}(r) := \inf \{ \sigma_C(x) : |x|_{\mathcal{A}} = r \} \quad \forall r \geq 0.$$



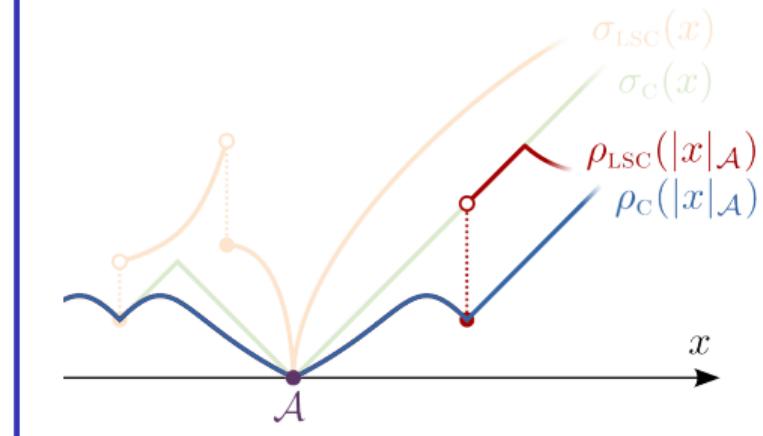
$$\rho_{\text{LSC}}(|x|_{\mathcal{A}}) \geq \rho_{\text{C}}(|x|_{\mathcal{A}})$$

$$\rho_{\text{LSC}}(|x|_{\mathcal{A}}) \geq \rho_{\text{C}}(|x|_{\mathcal{A}})$$

Given ρ_{LSC} .

There exists ρ_{C} such that

- ▶ ρ_{C} is Lipschitz continuous
- ▶ ρ_{C} is positive definite w.r.t. 0
- ▶ $\rho_{\text{LSC}}(s) \geq \rho_{\text{C}}(s)$ for all $s \geq 0$.



$$\sigma_{\text{LSC}}(x) \geq \rho_{\text{C}}(|x|_{\mathcal{A}})$$

Proposition 2

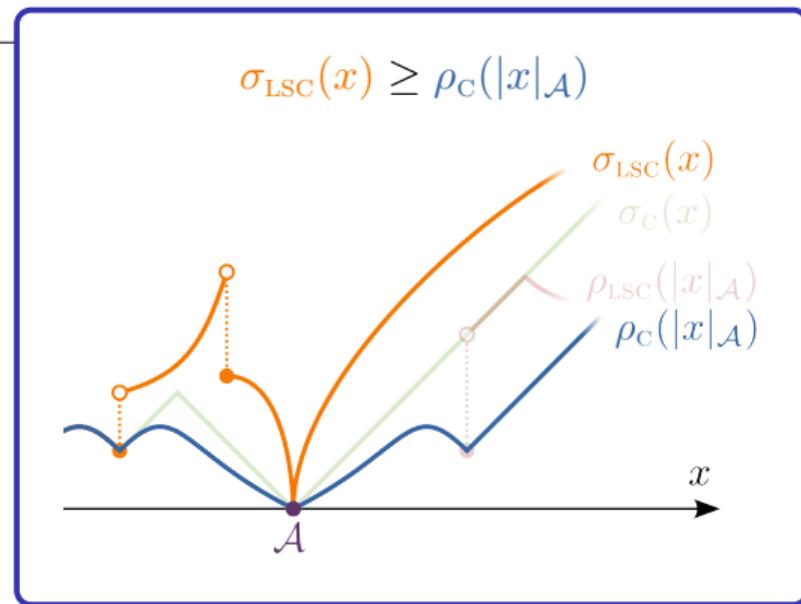
Suppose \mathcal{A} is compact and

$\sigma_{\text{LSC}} : \mathbb{R}^n \rightarrow [0, \infty)$ is

- ▶ lower semicontinuous, and
- ▶ positive definite w.r.t. \mathcal{A} .

Then, there exists ρ_{C} such that

- ▶ ρ_{C} is Lipschitz continuous,
- ▶ ρ_{C} is positive definite w.r.t. 0, and
- ▶ $\sigma_{\text{LSC}}(x) \geq \rho_{\text{C}}(|x|_{\mathcal{A}})$ for all $x \in \mathbb{R}^n$.



Proof Sketch

Suppose $\sigma_{\text{LSC}} \in \mathcal{PD}(\mathcal{A})$ is LSC. By ??, there exists a continuous function $\sigma_{\text{C}} \in \mathcal{PD}(\mathcal{A})$ such that

$$\sigma_{\text{C}}(x) \leq \sigma_{\text{LSC}}(x) \quad \forall x \in \mathbb{R}^n.$$

By ??, there exists an LSC and positive definite function $\rho_{\text{LSC}} \in \mathcal{PD}(0)$ such that

$$\rho_{\text{LSC}}(|x|_{\mathcal{A}}) \leq \sigma_{\text{C}}(x) \quad \forall x \in \mathbb{R}^n.$$

Again, by ??, for any $\ell > 0$ there exists an ℓ -Lipschitz continuous function $\rho_{\text{C}} \in \mathcal{PD}(0)$ such that

$$\rho_{\text{C}}(r) \leq \rho_{\text{LSC}}(r) \quad \forall r \geq 0.$$

Thus, for all $x \in \mathbb{R}^n$,

$$\rho_{\text{C}}(|x|_{\mathcal{A}}) \leq \rho_{\text{LSC}}(|x|_{\mathcal{A}}) \leq \sigma_{\text{C}}(x) \leq \sigma_{\text{LSC}}(x).$$

Proposition (Simplified Conditions for Persistent Flows).

Consider a hybrid system \mathcal{H} and a nonempty closed set \mathcal{A} . Suppose that for each $r \geq 0$, there exist $\Delta_T > 0$ and $\Delta_J > 0$ such that for every solution ϕ with $|\phi(0, 0)|_{\mathcal{A}} \in (0, r]$ and for every $(t_0, j_0), (t_1, j_1) \in \text{dom } \phi$,

$$|t_1 - t_0| \leq \Delta_T \implies |j_1 - j_0| \leq \Delta_J. \quad (5)$$

Then, for each $r \geq 0$, there exist $N_r \geq 0$ and $\gamma_r \in \mathcal{K}_{\infty}$ such that for each solution ϕ to \mathcal{H} with $|\phi(0, 0)|_{\mathcal{A}} \in (0, r]$,

$$t \geq \gamma_r(t + j) - N_r \quad \forall (t, j) \in \text{dom } \phi. \quad (6)$$

Proposition (Simplified Conditions for Persistent Jumps).

Consider a hybrid system \mathcal{H} and a nonempty closed set \mathcal{A} . Suppose that for each $r \geq 0$, there exists $\Delta_T > 0$ and $\Delta_J > 0$ such that for every solution ϕ to \mathcal{H} with $|\phi(0, 0)|_{\mathcal{A}} \in (0, r]$ and for all $(t_0, j_0), (t_1, j_1) \in \text{dom } \phi$,

$$|j_1 - j_0| \leq \Delta_J \implies |t_1 - t_0| \leq \Delta_T. \quad (7)$$

Then, for each $r > 0$, there exist $\gamma_r \in \mathcal{K}_{\infty}$ and $N_r \geq 0$ such that for each solution ϕ to \mathcal{H} with $|\phi(0, 0)|_{\mathcal{A}} \in (0, r]$,

$$j \geq \gamma_r(t + j) - N_r \quad \forall (t, j) \in \text{dom } \phi. \quad (8)$$

Proof that $\rho_{\text{LSC}}(|x|_{\mathcal{A}}) \leq \sigma_{\text{C}}(x)$.

For any $x \in \mathbb{R}^n$,

$$\rho_{\text{LSC}}(|x|_{\mathcal{A}}) = \inf \{ \sigma_{\text{C}}(x') : |x|_{\mathcal{A}} = |x'|_{\mathcal{A}} \} \leq \sigma_{\text{C}}(x).$$

□

Proof that ρ_{LSC} is positive definite.

For each $r \geq 0$, σ_C attains a minimum on the compact set $\{x : |x|_{\mathcal{A}} = r\}$.

The minimum is positive if and only if $r > 0$ since σ_C is positive definite w.r.t. \mathcal{A} .

Therefore, ρ_{LSC} is positive definite (w.r.t. 0). □

Proof sketch that ρ_{LSC} is lower semicontinuous.

To establish that ρ_{LSC} is LSC, we exploit the fact that \mathcal{A} is compact and σ_C is continuous. For each $r \geq 0$, we pick a compact set K_r containing an open neighborhood of $\mathcal{A} + r\mathbb{B}$. Since σ_C is continuous, its restriction to the compact set K_r is uniformly continuous. This allows us to do a δ - ϵ proof of lower semicontinuity. □