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Introduction – Cyber-Physical Systems

Cyber-physical systems are electromechanical systems that include digital electronics
(e.g., sensors and computers) that interact with physical components or processes.

Heating and Air Conditioning

Chemical Plants

Spacecraft

Quadcopters

Walking Robots

Autonomous Cars
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Introduction – Cyber-Physical Systems Control Problems

Fundamental Problems of Control Theory

▶ Don’t Crash

▶ Get Where You’re Going

▶ Minimize cost/Maximize rewards

Complicating Factors

▶ Complex dynamics

▶ Uncertainty

▶ Dynamic environments

▶ Computational limitations

▶ ...
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Introduction – Spectrum of Control Methods

Experiments Statistical Verification Barrier Functions

Reinforcement Learning Conformal prediction Lyapunov Functions

Simulations Model Predictive Control Reachability Analysis

Easier to apply to complex systems←−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−→
Stronger verification guarantees

=⇒ How can we combine these approaches?
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Control Objectives

Forward Invariance
(“Don’t Crash”)

Every trajectory remains in 𝒜.

Global Asymptotic Stability
(“Get Where You’re Going”)

Every trajectory moves toward 𝒜.
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Certificate Functions

To prove forward invariance and asymptotic stability, we use certificate functions.

Forward Invariance

Certificate: Barrier Function

Asymptotic Stability

Certificate: Lyapunov Function
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Uniting Feedback Control

 Switching 

Logic

Plant

Hybrid Control Strategy

𝜅0 : certified controller, guaranteed to achieve
control objective

𝜅1 : any controller
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Why Use an Uncertified Controller?

Certificates are hard to construct.

We may have an “advanced” controller that is difficult/impossible to certify but is

▶ Uses less energy

▶ Produces faster convergence

▶ Requires less computation

▶ Explores a region, collecting measurements.

Examples:

▶ Linear quadratic regulator (LQR) for the linearization of a system.

▶ Model predictive control (MPC) with computational delays.

▶ Black box controllers (e.g., neural network controllers).
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Introduction – Previous Uses of Switched Controllers

Sometimes, a single continuous controller cannot satisfy design requirements.

Switching has been used to. . .

▶ Achieve robust global asymptotic stability around obstructions.1

▶ Unite multiple Lyapunov-certified controllers (such as local and global controllers)
to achieve global asymptotic stability.2

1Mayhew, Ricardo G. Sanfelice, and Teel (2011), “Quaternion-Based Hybrid Control for Robust Global
Attitude Tracking”.
Ricardo G. Sanfelice et al. (2006), “Robust Hybrid Controllers for Continuous-Time Systems with
Applications to Obstacle Avoidance and Regulation to Disconnected Set of Points”.

2Prieur (2001), “Uniting Local and Global Controllers with Robustness to Vanishing Noise”.
Teel and Kapoor (1997), “Uniting Local and Global Controllers”.
El-Farra, Mhaskar, and Christofides (2005), “Output Feedback Control of Switched Nonlinear Systems
Using Multiple Lyapunov Functions”.
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Simplex architecture

The Simplex architecture is an approach for switching between an “advanced,”
unverified controller and a “simple,” easy-to-verify controller.3

Barrier functions have been used with the Simplex architecture to guarantee safety for
hybrid systems while using an unverified controller.

Prior approaches have drawbacks:

▶ Requires costly reachability analysis and only defines “one way” switching.4

▶ Only rectangular constraints are considered, and the switching criteria depends on
the extremal values of the vector field over the entire admissible set.5

3Rivera et al. (1996), An Architectural Description of the Simplex Architecture.
Seto et al. (1998), “The Simplex Architecture for Safe Online Control System Upgrades”.

4Yang et al. (2017), “A Simplex Architecture for Hybrid Systems Using Barrier Certificates”.
5Damare et al. (2022), “A Barrier Certificate-Based Simplex Architecture with Application to Microgrids”.
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Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion
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Uniting Feedback for Forward Invariance

Given: A nonlinear plant

𝑧̇ = 𝑓p(𝑧, 𝑢), 𝑧 ∈ R𝑛p , 𝑢 ∈ R𝑚p .

and controllers
𝜅0 : barrier-certified to render 𝐾 forward
invariant
𝜅1 : any controller

 Switching 

Logic

Plant

Hybrid Control Strategy

Goal: Design switching logic for 𝑞 ∈ {0, 1} such that

▶ 𝐾 is forward invariant.

▶ 𝜅1 is preferred over 𝜅0 .

▶ Switching does not chatter.
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Barrier Function Certificate

𝑧̇ = 𝑓0 (𝑧) := 𝑓p(𝑧, 𝜅0 (𝑧)).

Plant

Has a barrier function 𝐵 that certifies

𝐾 = {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≤ 0}

is forward invariant.
On some neighborhood 𝑈 of 𝐾,

𝐵̇0 (𝑧) := ⟨∇𝐵(𝑧), 𝑓0 (𝑧)⟩ ≤ 0

for all 𝑧 ∈ 𝑈 ∖𝐾.

𝑧̇ = 𝑓1 (𝑧) := 𝑓p(𝑧, 𝜅1 (𝑧)).

Plant

Rate of change of 𝐵 when using 𝜅1 :

𝐵̇1 (𝑧) := ⟨∇𝐵(𝑧), 𝑓1 (𝑧)⟩ =??.
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Switching Criteria and Hold Criteria

Pick four thresholds 𝛿0 , 𝛿1 , 𝜃0 , 𝜃1 , such that

𝛿0 < 𝛿1 ≤ 0 and 𝜃0 < 𝜃1 ≤ 0.

Z0 7→1

Z17→0

δ0 δ1

θ0

θ1

Ḃ1(z)

B(z)

For 𝑞 = 0 (certified controller):

▶ Hold 𝑞 = 0 if 𝑧 ∈ 𝒵0 .

▶ Switch to 𝑞 = 1 if 𝑧 ∈ 𝒵0↦→1 .

For 𝑞 = 1 (uncertified controller):

▶ Hold 𝑞 = 1 if 𝑧 ∈ 𝒵1 .

▶ Switch to 𝑞 = 0 if 𝑧 ∈ 𝒵1↦→0 .
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Switching Criteria and Hold Criteria

Z0 7→1

Z17→0

δ0 δ1

θ0

θ1

Ḃ1(z)

B(z)

𝒵1↦→0 := {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≥ 𝛿1 , 𝐵̇1 (𝑧) ≥ 𝜃1 }
𝒵0↦→1 := {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≤ 𝛿0 or 𝐵̇1 (𝑧) ≤ 𝜃0 }.
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Dynamics of Closed-Loop System

Between switches:

▶ 𝑧 evolves according to 𝑧̇ = 𝑓p(𝑧, 𝜅𝑞 (𝑧))

▶ 𝑞 is constant

At each switch:

▶ 𝑧 is unchanged

▶ 𝑞 is toggled to the opposite value in {0, 1}
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Example: Linear and Affine Feedbacks

Consider the double integrator

𝑧̇ = 𝑓p(𝑧, 𝑢) :=

[︂
0 1
0 0

]︂
𝑧 +

[︂
0
1

]︂
𝑢.

Admissible set:

𝐾 :=
{︀
𝑧 ∈ R2 : |𝑧 − (5, 0)| ≥ 1

}︀
.

Controllers:

𝜅0(𝑧) =
[︀
−1 1

]︀
(𝑧 − 𝑐) (certified)

𝜅1(𝑧) =
[︀
−1 −2

]︀
𝑧 (uncertified)

z1

-2

-1

1

2
z2

Phase Plot

?(0; 0)

-1 1 3 5

z2

Inadmissible

? (q = 0)

? (q = 1)
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Example: Linear and Affine Feedbacks

z1

-2

-1

1

2
z2

Phase Plot

?(0; 0)

-1 1 3 5

z2

Inadmissible

? (q = 0)

? (q = 1)
!100

!10!1

Switching Criteria

/1(z)
B(z)
/0(z)

!100

!10!1
31(z)
_B1(z)
30(z)

0 1 2 3 4 5

t [s]

0

1

q
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Example: MPC with Computational Delays

3.5 4 4.5 5 5.5 6 6.5

z1

-1

-0.5

0
z 2

MPC with Fast Computation

?(0;0)
? (q = 1)

3.5 4 4.5 5 5.5 6 6.5

z1

-1

-0.5

0

z 2

MPC with Slow Computation

?(0;0)
? (q = 1)

3.5 4 4.5 5 5.5 6 6.5

z1

-1

-0.5

0

z 2

Delayed MPC with Supervision

?(0;0)
? (q = 0)
? (q = 1)
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Theorem: Forward Invariance

Suppose that

▶ 𝐵 is a continuously differentiable
barrier function of 𝐾 for 𝑧̇ = 𝑓0 (𝑧).

▶ 𝑓0 and 𝑓1 are continuous.

Then, 𝐾 is forward invariant w.r.t. 𝑧 for
the closed-loop system.

Closed-loop System

 Switching 

Logic

Plant

Hybrid Control Strategy

Remark. We also give conditions to ensure that

▶ Solutions exist for all 𝑡 ≥ 0.

▶ The time between switches is not too short.
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Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability
Example: MPC with Slow Computation
Hybrid Control Strategy

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion
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Problem Setting

Given: A control system

𝑧̇ = 𝑓p(𝑧, 𝑢), 𝑧 ∈ R𝑛p , 𝑢 ∈ R𝑚p .

and controllers
𝜅0 : Lyapunov-certified to render 𝒜
globally asymptotically stable
𝜅1 : any controller

 Switching 

Logic

Plant

Hybrid Control Strategy

Goal: Design switching logic for 𝑞 ∈ {0, 1} such that

▶ 𝒜 is globally asymptotically stable

▶ 𝜅1 is preferred over 𝜅0

▶ switching does not chatter.
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Problem Setting – Lyapunov-certified Controller

For the Lyapunov-certified controller 𝜅0 ,
there exists a Lyapunov function

𝑉p : R𝑛p → [0,∞)

for

𝑧̇ = 𝑓0 (𝑧) := 𝑓p(𝑧, 𝜅0(𝑧) ),

that guarantees 𝒜 is globally
asymptotically stable.

Value of 𝑉p decreases outside 𝒜:

𝑉̇0 := ⟨∇𝑉p, 𝑓0 (𝑧)⟩ ≤ −𝜎0(𝑧).

For the uncertified controller 𝜅1 , no
assumptions on the rate of change
of 𝑉p,

𝑉̇1 := ⟨∇𝑉p, 𝑓1 (𝑧)⟩ = ??

for

𝑧̇ = 𝑓1 (𝑧) := 𝑓p(𝑧, 𝜅1(𝑧) ).
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Example: Model Predictive Controller with Slow
Computation

Consider a nonlinear plant

𝑧̇ = 𝑓p(𝑧, 𝑢)

and two controllers:

𝜅0: Lyapunov-certified controller

𝜅1: Model predictive controller (MPC)
with a sampling period of 1ms

Suppose new MPC feedback value is not
available at 1ms.

When should we switch?

t [ms]

0 1 2 3 4 5

20

40

60

80

100
Controller 50 Only

VP(z)

t [ms]

0 1 2 3 4 5

20

40

60

80

100
Controller 51 Only

VP(z)
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0

50

100
Switching Between 50 and 51

v
V (z)

0 0.5 1 1.5 2 2.5
t [ms]

0

1

q

▶ The dynamics of 𝑣 are described later.
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Hybrid Control Strategy – Switching Logic

Buffer function: Pick a continuous, positive function 𝑥 ↦→ 𝛿(𝑥) > 0

For 𝑞 = 0 (certified controller):

𝑉p is “small enough to switch to 𝑞 = 1 ” if

𝑉p(𝑧) + 𝛿(𝑧) ≤ 𝑣

𝑉p is “large enough to hold 𝑞 = 0 ” if

𝑉p(𝑧) + 𝛿(𝑧) ≥ 𝑣

For 𝑞 = 1 (uncertified controller):

𝑉p is “small enough to hold 𝑞 = 1 ” if

𝑉p(𝑧) ≤ 𝑣

𝑉p is “large enough to switch to 𝑞 = 0 ” if

𝑉p(𝑧) ≥ 𝑣
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Example: Switching Logic

Consider the plant

𝑧̇ = 𝑢

with 𝑧 > 0 and 𝑢 ∈ R and
controllers

𝜅0(𝑧) := −𝑧

𝜅1(𝑧) := −2 sin
(︂

1

𝑧 + 0.1

)︂

t [s]

0 2 4 6 8 10

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Plant State

50 only

51 only

Switched
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10!4

10!2

100

Switching Criteria

v (q = 0)
v (q = 1)

VP(z) + /(z)

VP(z)

t [s]
0 2 4 6 8 10

0

1

q
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Dynamics of Auxiliary 𝑣 Variable

At each switch:

▶ 𝑣 is set to max{𝑉p(𝑧), 𝑣}

Between switches:

▶ 𝑣 evolves according to

𝑣̇ := −𝛾 tanh(𝑣)𝜎0(𝑧)− 𝜇
(︀
𝑣 − 𝑉p(𝑧)

)︀
,

where 𝛾 > 0, 𝜇 > 0, and 𝜎0 is continuous and positive definite.

▶ 𝑣 converges to 0.

▶ If 𝑞 = 0 and 𝑣 < 𝑉p(𝑧), then 𝑣 can increase gradually.
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Example: Linear Quadratic Regulator of Linearized System

Consider the nonlinear plant

𝑧̇ = 𝐴𝑧 +𝐵𝑢+ 𝑓(𝑧, 𝑢)⏟  ⏞  
Nonlinear
component

.

Let 𝜅0 be an (inefficient) Lyapunov-certified controller.

Let 𝜅1 be the LQR feedback that solves the following LQR problem:

minimize
𝑢(·)

∫︁ ∞

0
|𝑧(𝑡)|2 + |𝑢(𝑡)|2 𝑑𝑡

subject to 𝑧̇ = 𝐴𝑧 +𝐵𝑢.
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Example: LQR of Linearized System

z1

5 10

z2

-10

-8

-6

-4

-2

2

Plant State

z0

z (q = 0)
z (q = 1)

10!4

10!2

100

Supervisor Values

v (q = 0)
v (q = 1)

VP(z) + /(z)

VP(z)

100

u0

u1

u

t [s]
0 0.5 1 1.5 2

0

1

q
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Theorem:6 Global Asymptotic Stability

Suppose that

▶ 𝒜 is compact;

▶ 𝑓0 and 𝑓1 are continuous;

▶ 𝑉p is a Lyapunov function for
𝑧̇ = 𝑓0(𝑧) .

Then,

̃︀𝒜 := {(𝑧, 𝑣, 𝑞) | 𝑧 ∈ 𝒜, 𝑣 = 0}

is (uniformly) globally asymptotically
stable for the closed-loop system.

Closed-loop System

 Switching 

Logic

Plant

Hybrid Control Strategy

Remark. The asymptotic stability of ̃︀𝒜 is robust to small perturbations.
6Paul K. Wintz, Ricardo G. Sanfelice, and Hespanha (2022), “Global Asymptotic Stability of Nonlinear
Systems While Exploiting Properties of Uncertified Feedback Controllers via Opportunistic Switching”.
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Summary

▶ Lyapunov-certified controller acts as a backup to ensure convergence while using
an uncertified controller.

▶ Exploit useful properties of any uncertified continuous controller without losing the
convergence guarantee.

Next steps

▶ We consider more general systems later.
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Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions
Lyapunov Theorems for Non-smooth Systems
Insertion Theorems
Relaxed Lyapunov Theorem

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion
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Lyapunov Theorems

Given: A dynamical system and a set 𝒜 ∈ R𝑛.

Goal: Prove that 𝒜 is asymptotically stable.

Method: Construct 𝑉 : R𝑛 → [0,∞) such that

1. 𝑉 is positive definite with respect to 𝒜.
2. 𝑡 ↦→ 𝑉 (𝑥(𝑡)) is decreasing for each

solution 𝑡 ↦→ 𝑥(𝑡) while 𝑥(𝑡) ̸∈ 𝒜.
If 𝑓 is Lipschitz continuous, then the “decreasing” condition for 𝑥̇ = 𝑓(𝑥) is

𝑉̇ (𝑥) := ⟨∇𝑉 (𝑥), 𝑓(𝑥)⟩ < 0.
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Lyapunov-like Theorems (Non-smooth Systems)

We also consider non-smooth systems:

1. 𝑥̇ = 𝑓(𝑥) with 𝑓 discontinuous (Non-smooth ODE)

2. 𝑥̇ ∈ 𝐹 (𝑥) (differential inclusion)

3. 𝑥+ ∈ 𝐺(𝑥) (difference inclusion)

4. ℋ :

{︃
𝑥̇ ∈ 𝐹 (𝑥) ∀𝑥 ∈ 𝐶

𝑥+ ∈ 𝐺(𝑥) ∀𝑥 ∈ 𝐷.
(hybrid system)

We can also have 𝑉 non-differentiable.

For non-smooth systems,(︁
𝑉̇ (𝑥) < 0 for all 𝑥 ̸∈ 𝒜

)︁
≠⇒

(︁
𝒜 is globally asymptotically stable

)︁
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Example: 𝑉̇ < 0 without convergence to 0

𝑥̇ = 𝑓(𝑥) 𝑉 (𝑥) := 𝑥2

Wintz — Exploiting Uncertified Controllers via Uniting Feedback 38



Lyapunov-like Theorems (Nonsmooth Systems)

For nonsmooth systems, prior results replace “𝑉̇ (𝑥) < 0” with

𝑉̇ (𝑥) ≤ −𝜌c(|𝑥|𝒜) ∀𝑥 ∈ R𝑛, (1)

where 𝜌c : [0,∞)→ [0,∞) is continuous and positive definite.
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Lyapunov-like theorems – Relaxed Lyapunov Condition

It is often difficult to construct 𝜌c.

▶ Must be continuous.
▶ Must be a function of the distance from 𝒜.

When 𝒜 is compact, we found a relaxation of the Lyapunov conditions.7

If there exists 𝜎lsc : R𝑛 → [0,∞) such that

▶ 𝜎lsc is a function of 𝑥 (instead of |𝑥|𝒜),
▶ 𝜎lsc is lower semicontinuous (instead of continuous),
▶ 𝜎lsc is positive definite with respect to 𝒜, and
▶ 𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥)...

...then there exists 𝜌c (continuous and positive definite) such that

𝑉̇ (𝑥) ≤ −𝜌c(|𝑥|𝒜).
7Paul K Wintz and Ricardo G Sanfelice (2025), “Relaxed Lyapunov Conditions”.
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Problem Statement: Construction of 𝜌c

Given: 𝒜 (compact) and 𝜎lsc

Goal: Construct 𝜌c such that

𝜎lsc(𝑥) ≥ 𝜌c(|𝑥|𝒜) ∀𝑥 ∈ R𝑛.

−𝜎lsc(𝑥) ≤ −𝜌c(|𝑥|𝒜) ∀𝑥 ∈ R𝑛.

Then, (︁
𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥)

)︁
=⇒

(︁
𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥) ≤ −𝜌c(|𝑥|𝒜)

)︁
.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback 41



Construction of 𝜌c Outline

𝜎lsc(𝑥)

≥ 𝜎c(𝑥)
continuous

≥ 𝜌lsc(|𝑥|𝒜) ≥ 𝜌c(|𝑥|𝒜)
continuous

> 0 ∀𝑥 /∈ 𝒜.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback 42



Construction of 𝜌c Outline

𝜎lsc(𝑥) ≥ 𝜎c(𝑥)
continuous

≥ 𝜌lsc(|𝑥|𝒜) ≥ 𝜌c(|𝑥|𝒜)
continuous

> 0 ∀𝑥 /∈ 𝒜.
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Construction of 𝜌c Outline

𝜎lsc(𝑥) ≥ 𝜎c(𝑥)
continuous

≥ 𝜌lsc(|𝑥|𝒜)

≥ 𝜌c(|𝑥|𝒜)
continuous

> 0 ∀𝑥 /∈ 𝒜.
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Construction of 𝜌c Outline

𝜎lsc(𝑥) ≥ 𝜎c(𝑥)
continuous

≥ 𝜌lsc(|𝑥|𝒜) ≥ 𝜌c(|𝑥|𝒜)
continuous

> 0 ∀𝑥 /∈ 𝒜.
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Given 𝜎lsc(𝑥).

Make continuous

𝜎c(𝑥) := min
𝑥′∈R

(︀
𝜎lsc(𝑥

′) + |𝑥′ − 𝑥|
)︀
.

Make function of distance (but LSC)

𝜌lsc(𝑟) := min
𝑥∈R𝑛

{︀
𝜎c(𝑥) : |𝑥|𝒜 = 𝑟

}︀
.

Make continuous, function of distance

𝜌c(𝑟) := min
𝑟′≥0

(︀
𝜌lsc(𝑟) + |𝑟′ − 𝑟|

)︀
.
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Relaxed Lyapunov Theorem for Continuous-time Systems

Consider a hybrid system 𝑥̇ ∈ 𝐹 (𝑥) on R𝑛, a nonempty compact set 𝒜 ⊂ R𝑛, and a
Lyapunov function candidate 𝑉 with respect to 𝒜 for ℋ.
Suppose that

1. there exists 𝛼 ∈ 𝒦∞ such that 𝛼(|𝑥|𝒜) ≤ 𝑉 (𝑥) for all 𝑥 ∈ R𝑛, and

2. there exist LSC function 𝜎lsc that is positive definite w.r.t. 𝒜 such that

𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥) ∀𝑥 ∈ R𝑛.

Then, 𝒜 is (uniformly) globally asymptotically stable for 𝑥̇ ∈ 𝐹 (𝑥).
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How pick a good choice for 𝜎lsc

For any function 𝑓 : R𝑛 → R, the function

𝑥 ↦→ lim inf
𝑥′→𝑥

𝑓(𝑥′)

is lower semicontinuous and

lim inf
𝑥′→𝑥

𝑓(𝑥′) ≤ 𝑓(𝑥) ∀𝑥 ∈ dom 𝑓

Thus, if we pick

𝑥0 ↦→ 𝜎lsc(𝑥0) := lim inf
𝑥→𝑥0

(︁
−𝑉̇ (𝑥)

)︁
,

then
𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥0).
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Example (Continuous-time with discontinuous 𝑓)

Consider the continuous-time system

𝑥̇ = 𝑓(𝑥) := −⌊𝑥⌋ ∀𝑥 ∈ R,

Let 𝒜 := [0, 1] and 𝑥 ↦→ 𝑉 (𝑥) := |𝑥|2𝒜.
Let

𝜎lsc(𝑥) := lim inf
𝑥′→𝑥

−𝑉̇ (𝑥)

=⇒ 𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥).
=⇒ 𝒜 is globally asymptotically stable.
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Summary

We presented

▶ relaxation of Lyapunov conditions

▶ several insertion theorems for positive definite functions.

Future Work

▶ Generalize relaxed Lyapunov conditions:
▶ consider 𝒜 non-compact
▶ Other types of Lyapunov functions, e.g., ISS Lyapunov functions.
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Outline

Uniting Feedback for Safety

Uniting Feedback for Global Asymptotic Stability

Relaxed Lyapunov Conditions

Uniting Feedback with Hybrid Controllers and Hybrid Plants

Software Tools

Conclusion
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Certified Controller

Uncertified Controller

Supervisor

Plant
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Hybrid Systems as Models of Cyber-Physical Systems

Hybrid dynamical systems are a type of mathematical model of dynamical systems that
combine continuous flows and discrete jumps.

Hybrid dynamical systems are a natural choice for modeling cyber-physical systems.

flows ▶ continuous evolution of physical state.

jumps ▶ evolution of digital components
▶ impacts in physical states
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Hybrid Dynamical Systems

ℋ :

{︃
𝑥̇ = 𝑓(𝑥) 𝑥 ∈ 𝐶

𝑥+ = 𝑔(𝑥) 𝑥 ∈ 𝐷

▶ flow set 𝐶 ⊂ R𝑛

▶ flow map 𝑓 : 𝐶 → R𝑛

▶ jump set 𝐷 ⊂ R𝑛

▶ jump map 𝑔 : 𝐷 → R𝑛

0 1 2 3
t [s]

0

1

2

3

j

Hybrid Time Domain
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Hybrid Dynamical Systems with Set-valued Dynamics

ℋ :

{︃
𝑥̇ ∈ 𝐹 (𝑥) 𝑥 ∈ 𝐶

𝑥+ ∈ 𝐺(𝑥) 𝑥 ∈ 𝐷
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Hybrid Solutions

A solution 𝜑 to ℋ is defined on a hybrid time domain dom𝜑 ⊂ [0,∞)× N:

dom𝜑 = ([𝑡0, 𝑡1]× {0}) ∪ ([𝑡1, 𝑡2]× {1}) ∪ · · · .
0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · .

A hybrid arc (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) is a solution to ℋ if

▶ 𝜑̇(𝑡, 𝑗) ∈ 𝐹 (𝜑(𝑡, 𝑗)) for almost all 𝑡 in each intervals of flow [𝑡𝑗 , 𝑡𝑗+1]

▶ 𝜑(𝑡𝑗 , 𝑗 + 1) ∈ 𝐺(𝜑(𝑡𝑗 , 𝑗)) for each jump time 𝑡𝑗 in dom(𝜑).
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Certified Controller

Uncertified Controller

Supervisor

Plant
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Certified Controller

Uncertified Controller

Supervisor

Plant

Plant

ℋp :

{︃
𝑧̇ ∈ 𝐹p(𝑧, 𝑢) (𝑧, 𝑢) ∈ 𝐶p

𝑧+ ∈ 𝐺p(𝑧, 𝑢) (𝑧, 𝑢) ∈ 𝐷p

Certified Controller

ℋk0
:

⎧⎪⎪⎨⎪⎪⎩
𝜂̇0 ∈ 𝐹k0 (𝑧, 𝜂0) (𝑧, 𝜂0) ∈ 𝐶k0

𝜂+0 ∈ 𝐺k0 (𝑧, 𝜂0) (𝑧, 𝜂0) ∈ 𝐷k0

𝑢0 = 𝜅0 (𝑧, 𝜂0).

Uncertified Controller

ℋk1
:

⎧⎪⎪⎨⎪⎪⎩
𝜂̇1 ∈ 𝐹k1 (𝑥) 𝑥 ∈ 𝐶k1

𝜂+1 ∈ 𝐺k1 (𝑥) 𝑥 ∈ 𝐷k1

𝑢1 ∈ 𝜅1 (𝑥),
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Supervisor Design for Global Asymptotic Stability

Given a Lyapunov function (𝑧, 𝜂0) ↦→ 𝑉p(𝑧, 𝜂) for ℋp × ℋk0 that certifies that 𝒜p is
asymptotically stable for (𝑧, 𝜂0).

We extended the previous supervisor design as follows:

ℋs :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︂
𝑣̇
𝑞

]︂
=

[︂
𝑓v(𝑧, 𝜂0, 𝑣)

0

]︂
(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶s[︂

𝑣+

𝑞+

]︂
=

[︂
max{𝑉 (𝑧, 𝜂0), 𝑣}

1− 𝑞

]︂
(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐷s

where
𝑓v(𝑧, 𝜂0, 𝑣) = −𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0)− 𝜇

(︀
𝑣 − 𝑉p(𝑧, 𝜂0)

)︀
.
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Theorem: Global Asymptotic Stability

Suppose that

▶ 𝒜p is compact,

▶ Regularity conditions hold (outer semicontinuity, local boundedness of functions,
closed sets)

▶ 𝑉p is a Lyapunov function for ℋp × ℋk0 with strict decrease during flows.

▶ The state of ℋk1 is constrained to compact set

Then, the set 𝒜p × {0} is (uniformly) asymptotically stable for (𝑧, 𝜂0, 𝑧).
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Proof Sketch

We introduce a new Lyapunov function

𝑉 (𝑥) := max{𝑉p(𝑧, 𝜂0), 𝑣},

then show that it satisfies our relaxed Lyapunov conditions.

Let

𝜎lsc(𝑥) :=

{︃
𝜎0(𝑧, 𝜂0) if 𝑉p(𝑧, 𝜂0) > 𝑣

−𝑓v(𝑧, 𝜂0, 𝑣) if 𝑉p(𝑧, 𝜂0) ≤ 𝑣

We show

▶ 𝜎lsc is LSC and positive definite with respect to 𝒜 on 𝐶

▶ 𝑉̇ (𝑥) ≤ −𝜎lsc(𝑥).
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Proof Sketch

At jumps
𝑣+ = max{𝑉p(𝑧, 𝜂0), 𝑣}.

Thus,
𝑉 (𝑥+) = max{𝑉p(𝑧, 𝜂0), 𝑣

+} ≤ 𝑉 (𝑥),

so 𝑉 (𝑥) does not increase at jumps.

We apply a hybrid version of our relaxed Lyapunov theorem to get existence of solutions.
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Proof Sketch

We prove existence of solutions with unbounded domains:

1. At each point in 𝐶 ∖𝐷, solutions can flow because

𝐹 (𝑥) ∩ 𝑇𝐶(𝑥) ̸= ∅.

2. The state cannot jump out of 𝐶 ∪𝐷 because

𝐺(𝐷) ⊂ 𝐶 ∪𝐷.

To show that 𝑡→∞ in the domain of each solution:

▶ For each subsystem, there is a minimum time between sequential jumps, so
number of jumps is bounded in finite time.
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Software Tools for Hybrid Systems

SHARC

Simulate cyber-physical
systems with accurate
computational delays.

Hybrid Equations
Toolbox

Simulation and plotting of
composite hybrid systems

Conical Transition
Graphs

Algorithmically check
asymptotic stability in
hybrid systems.
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Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Technical Definitions

Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions
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Motivating Example: Adaptive Cruise Control (ACC)

Actuators

Headway

Computational
Hardware Sensors

Ego Vehicle Front Vehicle
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Motivating Example: Adaptive Cruise Control (ACC)

Headway

If no computational delays:

=⇒ Guaranteed minimum headway

If computational delays:

=⇒ ???

Computational delays depend on

▶ Control Algorithm, implementation, and parameters

▶ Computational hardware

▶ Current state and measurements

▶ Recent computations
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Sharc: Simulator for Hardware Architecture and
Real-time Control

Features

▶ Uses same executable as would be deployed.

▶ Parallelized to shorten run times.

▶ Dockerized and easy configuration via JSON files.
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Mathematical Model of Delayed Computations
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Controller Execution Simulation

To estimate controller run time, we use the Scarab Microarchitectural Simulator.

▶ Low level simulation of controller binary on CPU

▶ Simulates caching, branch prediction, pipelining, etc.
▶ Customizable processor parameters

▶ Cache size
▶ Clock speed
▶ Architecture

▶ Provides detailed statistics.
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ACC Example: Instruction Cache Size Comparison

Problem 1 (Linear MPC)

minimize |velocity error|2

+ |control effort|2
subject to

Linear System Dynamics

Linear Safety Constraints

=⇒ Performance degrades if instruction
cache is only 1 KB.
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Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph
Methods for Constructing Conical Transition Graphs

Technical Definitions

Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions
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Introduction — Problem Setting

Goal: Develop graph-based analysis of asymptotic stability for conical hybrid systems

▶ Allows determining local asymptotic stability of non-conical hybrid systems by
using their conical approximations.
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Introduction — Graph-based Analysis for Hybrid Systems

Previous work using discrete graphs to analyze hybrid systems:

▶ Asymptotic stability for
▶ switched discrete-time linear systems (Philippe et al., 2016)
▶ switched discrete-time nonlinear systems (Kundu and Chatterjee, 2016)
▶ switched continuous-time linear systems (Langerak and Polderman, 2005)

▶ Infinite-horizon reachability for linear hybrid automata (Bogomolov et al., 2017).

The present work is (to the best of our knowledge) the first graph-theoretic approach to
analyze asymptotic stability in non-switched hybrid systems.
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Introduction — Hybrid Dynamical Systems Framework

ℋ :

{︃
𝑥̇ = 𝑓(𝑥) 𝑥 ∈ 𝐶

𝑥+ = 𝑔(𝑥) 𝑥 ∈ 𝐷

▶ flow set 𝐶 ⊂ R𝑛

▶ flow map 𝑓 : 𝐶 → R𝑛

▶ jump set 𝐷 ⊂ R𝑛

▶ jump map 𝑔 : 𝐷 → R𝑛

The continuous-time component of ℋ = (𝐶, 𝑓,𝐷, 𝑔) is written

(𝐶, 𝑓).
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Introduction — Conical Approximations

Definition 1

Given a hybrid system ℋ = (𝐶, 𝑓,𝐷, 𝑔) and a point 𝑥* ∈ 𝐶 ∪𝐷 such that 𝑔(𝑥*) = 𝑥*,
the conical approximation of ℋ at 𝑥* is{︃

𝑓(𝑥) := Constant or linear approximation of 𝑓, 𝐶 := Tangent cone of 𝐶 at 𝑥*,

𝑔(𝑥) := Linear approximation of 𝑔, 𝐷 := Tangent cone of 𝐷 at 𝑥*,

with each approximation centered at 𝑥*. ◇

Theorem 1 (Goebel and Teel, 2010)

Under sufficient regularity assumptions:

If 0𝑛 is pAS for the conical approximation of ℋ at 𝑥*, then 𝑥* is pAS for ℋ.
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Conical Approximations with Constant Flows

Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a hybrid system with 𝑥* ∈ 𝐶 ∩𝐷 such that

▶ 𝑔(𝑥*) = 𝑥*
▶ 𝑔 is continuously differentiable at 𝑥*.
▶ 𝑓(𝑥*) ̸= 0𝑛

▶ 𝑓 is continuous at 𝑥*.

Then, the conical approximation of ℋ at 𝑥* is

ℋ:
{︃
𝑥̇ =𝑓(𝑥) :=𝑓(𝑥*) [constant], 𝐶 :=𝑇𝐶(𝑥*),

𝑥+=𝑔(𝑥) :=𝐴d𝑥 [linear], 𝐷 :=𝑇𝐷(𝑥*),

where 𝐴d is the Jacobian matrix of 𝑔 at 𝑥*.
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Example 1: Conical Hybrid System

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(𝑥) :=

[︂
1
0

]︂
∀𝑥 ∈ 𝐶 :=

{︁
𝑥 ∈ [0,∞)2

⃒⃒⃒
𝑥2 ≥ 𝑥1

}︁
,

𝑔(𝑥) :=

[︂
0

𝛾𝑥1

]︂
∀𝑥 ∈ 𝐷 := ray

[︀
1
1

]︀
,

with 𝛾 > 0.

▶ How to prove the origin asymptotically
stable (without a Lyapunov function)?
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Introduction — Radial Homogeneity

C
D

ϕ
rϕ

0n

ϕ(0, 0)

rϕ(0, 0)

Wintz — Exploiting Uncertified Controllers via Uniting Feedback 82



Introduction — Mapping R𝑛 to Unit Sphere
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Introduction — Normalized Radial Vectors

The normalized radial vector function

nrv : R𝑛 → S𝑛−1
0 := S𝑛−1 ∪ {0𝑛}

is defined for each 𝑣 ∈ R𝑛 as

nrv(𝑣) :=

⎧⎨⎩ 0𝑛 if 𝑣 = 0𝑛
𝑣

|𝑣| if 𝑣 ̸= 0𝑛.
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Introduction — Conical Transition Graph (Sketch)

Start
0n

Flow

Jump

Start

S2

Flow
arrow

Jump arrow
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Introduction — Directed Graphs with Weights

A directed graph consists of a set of vertices

𝒱 := {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}

connected by arrows:

𝒜 := {a1, a2, a3, etc.}.

Each arrow connects two vertices, e.g.,

a1 := 𝑣1 f−→ 𝑣2, a2 = 𝑣3 j−→ 𝑣1, etc.

J

F

F

F

J
JJ

F

[0, 1)

{0}
(0, ∞)

[0, 1)

{2, 4, 6,...}

[0, 1)

{1/2}

{2}

Each arrow is assigned a weight, defined by a weight function 𝒲 : 𝒱 ⇒ R. We write
the weight of a as 𝒲(a) ⊂ R.
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Introduction — Walks Through Graphs

A walk 𝑤 through a graph 𝒢 is a sequence of arrows in 𝒜:
𝑤 = (a0, a1, . . . , a𝑁−1) = 𝑣0 → 𝑣1 → 𝑣2 → · · · → 𝑣𝑁 ,

such that a𝑖 = 𝑣𝑖 → 𝑣𝑖+1 for each 𝑖 = 0, 1, . . . , 𝑁 − 1.
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Introduction — Walk Weights

The set-valued weight of a finite-length walk 𝑤 = (a0, a2, . . . , a𝑁−1) is defined as the
Minkowski product of the weights

𝒲(𝑤) :=
{︁
𝑟0 · 𝑟1 · · · 𝑟𝑁−1

⃒⃒⃒
𝑟0 ∈ 𝒲(a0), 𝑟1 ∈ 𝒲(a1), . . . , 𝑟𝑁−1 ∈ 𝒲(a𝑁−1)

}︁
For an infinite-length walk 𝑤 := (a0, a1, . . . ), we have that 𝒲(𝑤) = {0} if and only if

lim
𝑚→∞

𝑚∏︁
𝑘=0

𝑟𝑘 = 0

for every sequence {𝑟𝑘}∞𝑘=0 with 𝑟𝑘 ∈ 𝒲(a𝑘) for all 𝑘 ∈ N.
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Definition: Conical Transition Graph (CTG)

The conical transition graph (CTG) of a conical hybrid system ℋ = (𝐶, 𝑓,𝐷, 𝑔) is a
weighted, directed graph

𝒢 = (𝒱,𝒜,𝒲).

The set of vertices is defined as

𝒱 := (𝐷 ∪ 𝑔(𝐷)) ∩ S𝑛−1
0

For each 𝑣⊖ ∈ 𝒱 ∩𝐷, there is a jump arrow from 𝑣⊖ to

𝑣⊕ = nrv(𝑔(𝑣⊖))
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Definition: Conical Transition Graph (CTG) — Flow Arrows

For each
𝑣(0) ∈ 𝒱 ∩ 𝑔(𝐷) and 𝑣(f) ∈ 𝒱 ∩𝐷,

there is a flow arrow from 𝑣(0) to 𝑣(f) if for some 𝑇 > 0, there exists a function

[0, 𝑇 ] ∋ 𝑡 ↦→ 𝜉(𝑡)

that satisfies
𝜉(0) = 𝑣(0)

𝜉(𝑡) = 𝑓(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝑇 )

𝜉(𝑡) ∈ 𝐶 ∀𝑡 ∈ (0, 𝑇 )

nrv(𝜉(𝑇 )) = 𝑣(f).

(Flow Arrow ODE)
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Definition: Conical Transition Graph (CTG) — Weights

The weight of each jump arrow aj = 𝑣⊖ j−→ 𝑣⊕ is

𝒲(aj) :=
{︀
|𝑔(𝑣⊖)|

}︀
.

The weight of each flow arrow af = 𝑣(0) f−→ 𝑣(f) is

𝒲(af) :=
{︀
|𝜉(𝑇 )|

⃒⃒
𝜉 satisfies the Flow Arrow ODE for some 𝑇 > 0

}︀
.
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Example 1 (Continued): Construction of CTG

ℋ:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(𝑥) :=

[︂
1
0

]︂
∀𝑥∈𝐶 :=

{︁
𝑥∈ [0,∞)2

⃒⃒⃒
𝑥2≥ 𝑥1

}︁
,

𝑔(𝑥) :=

[︂
0

𝛾𝑥1

]︂
∀𝑥∈𝐷 := ray

[︀
1
1

]︀
,

with 𝛾 > 0.

Vertices
𝒱 = {0𝑛, 𝑣1, 𝑣2}

Arrows

𝒜 = {0𝑛 j−→ 0𝑛, 𝑣2 j−→ 𝑣1⏟  ⏞  
Jump arrows

, 𝑣1 f−→ 𝑣2⏟  ⏞  
Flow arrow

}.

S10n

v1

v2

j

f

j

The weights of the arrows are:

𝒲(0𝑛 j−→ 0𝑛) = {0}
𝒲(𝑣2 j−→ 𝑣1) = {𝛾/

√
2}

𝒲(𝑣1 f−→ 𝑣2) = {
√
2}.
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Example 2

Using 𝑓 and 𝑔 from Example 1, consider
the flow and jump sets:

𝐶 ′ :=
{︁
𝑥 ∈ [0,∞)2

⃒⃒⃒
2𝑥2 ≥ 𝑥1

}︁
𝐷′ := ray

[︀
1
1

]︀
∪ ray

[︀
2
1

]︀
.

S10n

v1

v2

v3

j

f f

j

j

The weights of the arrows are:

𝒲(0𝑛 j−→ 0𝑛) = {0}
𝒲(𝑣2 j−→ 𝑣1) = {𝛾/

√
2} 𝒲(𝑣1 f−→ 𝑣2) = {

√
2}

𝒲(𝑣3 j−→ 𝑣1) = {2𝛾/
√
5} 𝒲(𝑣1 f−→ 𝑣3) = {

√
5}.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback 93



Example 3 — Non-singleton Set-valued Weights
Conical hybrid system:

ℋ :

{︃
𝑥̇ = 𝑓(𝑥) := −1, 𝐶 := [0,∞),

𝑥+ = 𝑔(𝑥) := 𝑥/2, 𝐷 := [0,∞).

The origin is asymptotically stable
for ℋ.
Vertices

𝒱 = {0, 1}
Arrows

𝒜 =
{︀
0 j−→ 0, 1 j−→ 1, 1 f−→ 0, 1 f−→ 1

}︀
.
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Main Result

Theorem 2

Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid system with conical transition graph
𝒢 = (𝒱,𝒜,𝒲). Suppose the following:

1. The origin is pre-asymptotically stable for (𝐶, 𝑓).

2. There exists 𝑀 > 0 such that every walk 𝑤 through 𝒢 satisfies sup𝒲(𝑤) ≤𝑀 .

3. Every well-formed infinite-length walk 𝑤 through 𝒢 satisfies 𝒲(𝑤) = {0}.

Then, the origin of ℋ is pAS.

When 𝒱 is finite:

▶ Condition 2 is implied by 3 if each individual arrow weight is bounded.
▶ Condition 3 is satisfied if and only if sup𝒲(𝑤) < 1 for every well-formed

elementary cycle 𝑤 in 𝒢.
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Example 2 — Continued

S10n

v1

v2

v3

j

f f

j

j

Arrow Weights:

𝒲(0𝑛 j−→ 0𝑛) = {0}
𝒲(𝑣2 j−→ 𝑣1) = {𝛾/

√
2} 𝒲(𝑣1 f−→ 𝑣2) = {

√
2}

𝒲(𝑣3 j−→ 𝑣1) = {2𝛾/
√
5} 𝒲(𝑣1 f−→ 𝑣3) = {

√
5}.

Weights of Elementary Cycles:

𝒲(0𝑛 j−→ 0𝑛) = {0}
𝒲(𝑣1 f−→ 𝑣2 j−→ 𝑣1) =𝒲(𝑣2 j−→ 𝑣1 f−→ 𝑣2) = {𝛾}
𝒲(𝑣1 f−→ 𝑣3 j−→ 𝑣1) =𝒲(𝑣3 j−→ 𝑣1 f−→ 𝑣3) = {2𝛾}

=⇒ For all 0 < 𝛾 < 1/2, the origin is pAS.
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Future Work

Directions for future work:

1. Expand the scope of systems for which our approach is tractable.
▶ Construct CTG’s for conical hybrid systems with linear flows.
▶ Handle CTG’s that have a large or infinite number of vertices.

2. Extend the CTG results to more general hybrid systems:
▶ Hybrid systems with switching between logical modes.
▶ Hybrid systems with set-valued flow and jump maps.
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Proposition 1 (Flow Arrows — Constant Flows)

Let ℋ be a conical system with constant flows and let 𝒢 be the CTG of ℋ.
Then, 𝑣(0) f−→ 𝑣(f) is a flow arrow in 𝒢 from
𝑣(0) ∈ 𝒱 ∩ 𝑔(𝐷) to 𝑣(f) ∈ 𝒱 ∩𝐷 if and only if

▶ nrv(𝑣(0)
⊥ ) = nrv(𝑣(f)

⊥ ),

▶ 𝑣(f) ̸= 0𝑛 or 𝑣(0) ̸= 0𝑛,

▶ ⟨𝑣(f) − 𝑣(0), 𝑓(0𝑛)⟩ ≥ 0,

▶ 𝑣(0)
⊥ ̸= 0𝑛 =⇒ ⟨𝑣(f) − 𝑣(0), 𝑓(0𝑛)⟩ > 0,

▶ 𝜃𝑣(0) + (1− 𝜃)𝑣(f) ∈ 𝐶 ∀𝜃 ∈ [0, 1].

f̌(0)

af

v(0)

v(f)

v(0)

A formula for the weight of af := 𝑣(0) f−→ 𝑣(f) is given in the paper.
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Computational Considerations for Finite Conical Transition
Graphs

A walk through a graph is called an elementary cycle if it starts and ends at the same
vertex and does not visit any other vertex more than once.

We can enumerate over all of the elementary cycles using Johnson’s enumeration
algorithm (Johnson, 1975). The worst-case time complexity of Johnson’s algorithm is

𝑂
(︀
(no. of vertices+ no. of edges)(no. of elementary cycles+ 1)

)︀
.
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Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Technical Definitions
Non-smooth Analysis
Set-valued Lie derivative

Additional Results for Uniting Feedback

Further Results for Relaxed Lyapunov Conditions
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Definition of UGAS

Definition 2

A nonempty set 𝒜 ⊂ R𝑛 is said to be

▶ uniformly globally stable if there exists a continuous, strictly increasing function 𝛼
such that every solution 𝑥 to ℋ satisfies |𝑥(𝑡, 𝑗)|𝒜 ≤ 𝛼(|𝑥(0, 0)|𝒜) for each
(𝑡, 𝑗) ∈ dom𝑥; and

▶ uniformly globally attractive for ℋ if every maximal solution is complete and for all
𝜀 > 0 and 𝑟 > 0, there exists 𝑇 > 0 such that every solution 𝑥 to ℋ with
|𝑥(0, 0)|𝒜 ≤ 𝑟 satisfies |𝑥(𝑡, 𝑗)|𝒜 ≤ 𝜀 for all (𝑡, 𝑗) ∈ dom𝑥 such that 𝑡+ 𝑗 ≥ 𝑇 .

▶ If 𝒜 is both uniformly globally stable and uniformly globally attractive for ℋ, then
it is said to be uniformly globally asymptotically stable (UGAS) for ℋ.

◇
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Because 𝜅0 is Lyapunov-certified there exists a Lyapunov function

𝑉 : R𝑛p → [0,∞)

that guarantees 𝒜 is UGAS for

𝑧̇ = 𝑓p(𝑧, 𝜅0(𝑧)).

Namely, there exist 𝛼1, 𝛼2 ∈ 𝒦∞ and a continuous positive definite function 𝜌 such that

𝛼1(|𝑧|𝒜) ≤ 𝑉 (𝑧) ≤ 𝛼2(|𝑧|𝒜) ∀𝑧 ∈ R𝑛,

𝑉̇0(𝑧) ≤ −𝜌(|𝑧|𝒜) ∀𝑧 ∈ R𝑛.
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Hybrid Systems

We consider hybrid systems modeled as

ℋ :

{︃
𝑥̇ = 𝑓(𝑥) 𝑥 ∈ 𝐶

𝑥+ = 𝑔(𝑥) 𝑥 ∈ 𝐷

with

▶ flow set 𝐶 ⊂ R𝑛

▶ flow map 𝑓 : 𝐶 → R𝑛

▶ jump set 𝐷 ⊂ R𝑛

▶ jump map 𝑔 : 𝐷 → R𝑛
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Definition (Lower Semicontinuous)

A function 𝑓 is lower semicontinuous (LSC) at 𝑥0 if

𝑓(𝑥0) ≤ lim inf
𝑥→𝑥0

𝑓(𝑥).

Lower Semicontinuous (LSC). Upper Semicontinuous (USC). Not LSC, not USC.
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Contingent Cone

Let 𝑆 ⊂ R𝑛 be nonempty and let 𝑥 ∈ 𝑆. The contingent cone 8 to 𝑆 at 𝑥 is denoted
𝑇𝑆(𝑥), and is given by The contingent cone 𝑇𝑆(𝑥) is the set of all vectors 𝑣 ∈ R𝑛 such
that there exist a sequence of positive real numbers ℎ𝑖 → 0+ and a sequence of vectors
𝑣𝑖 → 𝑣 such that

𝑥+ ℎ𝑖𝑣𝑖 ∈ 𝑆

for all 𝑖 ∈ N.

8Aubin and Frankowska (2009), “Tangent Cones”.
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Clark Generalized Gradient and Directional Derivative

For a locally Lipschitz function 𝑉 : R𝑛 → R, the Clarke generalized gradient of 𝑉 at
𝑥 ∈ R𝑛 is

𝜕∘𝑉 (𝑥) := conv

{︂
lim
𝑖→∞
∇𝑉 (𝑥𝑖)

⃒⃒⃒⃒
∃(𝑥𝑖 → 𝑥) s.t. 𝑉 is differentiable at each 𝑥𝑖

}︂
. (2)

The Clarke generalized directional derivative of 𝑉 at 𝑥 in the direction 𝑤 ∈ R𝑛 is given
by 𝑉 ∘(𝑥,𝑤) = max𝜁∈𝜕∘𝑉 (𝑥)⟨𝜁, 𝑤⟩. The Clarke generalized directional derivative of 𝑉
at 𝑥 ∈ R𝑛 in the direction 𝑤 ∈ R𝑛 is given by

𝑉 ∘(𝑥,𝑤) = max
𝜁∈𝜕∘𝑉 (𝑥)

⟨𝜁, 𝑤⟩. (3)
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Lie Derivative

For a differential inclusion 𝑥̇ ∈ 𝐹 (𝑥) with a set-valued map 𝐹 : R𝑛 ⇒ R𝑛 and a
Lipschitz continuous function 𝑉 : R𝑛 → R, we define the set-value Lie derivative of 𝑉
along 𝐹 as

ℒ𝐹𝑉 (𝑥) := sup{⟨𝜁, 𝑓⟩ | 𝜁 ∈ 𝜕∘𝑉 (𝑥)⏟  ⏞  
Generalized Gradient

, 𝑓 ∈ 𝐹 (𝑥) ∩ 𝑇𝐶(𝑥)⏟  ⏞  
Tangent Cone

}.

Furthermore, since ℒ𝐹𝑉 (𝑥) is a set in R, we can write the least upper bound as
supℒ𝐹𝑉 (𝑥).
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Rate of change of 𝑉 for 𝑥̇ ∈ 𝐹 (𝑥)

Consider
𝑥̇ ∈ 𝐹 (𝑥) 𝑥 ∈ 𝐶 ⊂ R𝑛. (⋆)

and a locally Lipschitz function 𝑉 : R𝑛 → R.

For each 𝑥 ∈ 𝐶,

𝑉̇ (𝑥) := ℒ𝐹𝑉 (𝑥) = sup{⟨𝜁, 𝑓⟩ | 𝜁 ∈ 𝜕∘𝑉 (𝑥)⏟  ⏞  
Generalized Gradient

, 𝑓 ∈ 𝐹 (𝑥) ∩ 𝑇𝐶(𝑥)⏟  ⏞  
Tangent Cone

}.

For any solution 𝜑 to (⋆) and all 𝑡1, 𝑡2 ∈ dom𝜑,

𝑉
(︀
𝜑(𝑡2)

)︀
− 𝑉

(︀
𝜑(𝑡1)

)︀
≤

∫︁ 𝑡2

𝑡1

𝑉̇
(︀
𝜑(𝑡)

)︀
𝑑𝑡.
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Outline

SHARC: Simulator for Hardware Architecture and Real-time Control

Conical Transition Graph

Technical Definitions

Additional Results for Uniting Feedback
Positive Lower Bound on Time Between Switches
Results for Uniting Feedback for UGAS

Further Results for Relaxed Lyapunov Conditions
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Theorem (Forward Invariance Without Chattering)

Suppose that

▶ 𝐵 is a 𝒞1 barrier function of 𝐾 for 𝑧̇ = 𝑓0 (𝑧).

▶ 𝑓0 and 𝑓1 are globally Lipschitz continuous with Lipschitz constants 𝐿0 and 𝐿1.

▶ 𝛿0 , 𝛿1 , 𝜃0 , and 𝜃1 are continuous and satisfy the threshold function inequalities.

▶ There exists 𝜏 > 0 such that for all 𝑧0 ∈ 𝒵0 ↦→1 and 𝑧1 ∈ 𝒵1↦→0 ,

|𝑧0 − 𝑧1| ≥ 𝜏 max
{︀
| 𝑓0 (𝑧0)| exp(𝐿0𝜏), | 𝑓1 (𝑧1)| exp(𝐿1𝜏)

}︀
.

Then,

▶ 𝜏 is a lower bound on the time between jumps for all solutions to ℋ.
▶ Every maximal solution 𝜑 to ℋ is complete and sup𝑡 dom𝜑 =∞.
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Proof Sketch of Section 1

▶ Forward pre-invariance is proven using the same barrier function as in Theorem 1.

▶ Solutions to 𝑧̇ = 𝑓0 (𝑧) and 𝑧̇ = 𝑓1 (𝑧) cannot escape to infinity in finite time

because 𝑓0 and 𝑓1 are globally Lipschitz.

▶ Let 𝑧0 ∈ 𝒵0↦→1 and 𝑧1 ∈ 𝒵1↦→0 . To prove 𝜏 is a lower bound on the time
between jumps, we show
▶ The (unique) solution to 𝑧̇ = 𝑓0 (𝑧) starting at 𝑧0 satisfies

|𝑧0 − 𝑧1| ≥ 𝜏 | 𝑓0 (𝑧0)| exp(𝐿0𝜏) ≥ |𝑧(𝑡)− 𝑧0| ∀𝑡 ∈ [0, 𝜏 ].

Thus, in time 𝜏 , a solution to ℋ cannot move from (𝑧0, 1) ∈ 𝑔(𝐷0↦→1 ) to

(𝑧1, 1) ∈ 𝐷1↦→0 .
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Proof Sketch of Section 1

▶ The (unique) solution to 𝑧̇ = 𝑓1 (𝑧) starting at 𝑧1 satisfies

|𝑧0 − 𝑧1| ≥ 𝜏 | 𝑓1 (𝑧1)| exp(𝐿1𝜏) ≥ |𝑧(𝑡)− 𝑧1| ∀𝑡 ∈ [0, 𝜏 ].

Thus, in time 𝜏 , a solution to ℋ cannot move from (𝑧1, 0) ∈ 𝑔(𝐷1↦→0 ) to

(𝑧0, 0) ∈ 𝐷0↦→1 .
▶ The time to move from 𝑔(𝐷) to 𝐷 is at least 𝜏 .
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Example: Lower Bound on Switching Times

Consider the plant

𝑧̇ = 𝑓p(𝑧, 𝑢) :=

[︂
𝑧1
𝑢

]︂
with 𝑧 = (𝑧1, 𝑧2) ∈ R2 and 𝑢 ∈ R.
Admissible Set: Lower Half Plane of R2

Controllers: 𝜅0 (𝑧) := −|𝑧1|
𝜅1 (𝑧) := +|𝑧1|

Barrier Function: 𝐵(𝑧) := 𝑧2.

Thresholds: 𝛿0 (𝑧) := −2− 2|𝑧1|
𝛿1 (𝑧) := −1− |𝑧1|.

Satisfies Theorem 1 =⇒ 𝐾 is forward invariant.

0 20 40

z1

-80

-60

-40

-20

0

z 2

Phase Plot

?(0; 0)

Inadmissible
Z17!0

? (q = 0)
? (q = 1)
Z07!1

Solutions are unbounded =⇒ Theorem 1 does not
guarantee solutions existence for all 𝑡 > 0.
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Example: Lower Bound on Switching Times

We find that for 𝜏 := 0.25,

|𝑧0 − 𝑧1| ≥ |𝑧
0
1 |+ 1√

5
> 𝜏 | 𝑓0 (𝑧0)| exp(𝐿0𝜏),

|𝑧0 − 𝑧1| ≥ |𝑧
1
1 |+ 1√

2
> 𝜏 | 𝑓1 (𝑧1)| exp(𝐿1𝜏).

Satisfies Section 1 =⇒
{︃
The time between jumps is at least 𝜏 = 0.25.

Every maximal solution exists for all 𝑡 ≥ 0.
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Clarke Generalized Gradient of ̃︀𝑉 (𝑥)

For the function ̃︀𝑉 (𝑥) := max{𝑉 (𝑧), 𝑣},
the Clarke generalized gradient at 𝑥 = (𝑧, 𝑣, 𝑞) in the direction 𝑤 = (𝑤𝑧, 𝑤𝑣, 0) is

̃︀𝑉 ∘(𝑥,𝑤) =

⎧⎪⎨⎪⎩
⟨∇𝑧𝑉 (𝑧), 𝑤𝑧⟩ if 𝑉 (𝑧) > 𝑣,

max{⟨∇𝑧𝑉 (𝑧), 𝑤𝑧⟩, 𝑤𝑣} if 𝑉 (𝑧) = 𝑣,

𝑤𝑣 if 𝑉 (𝑧) < 𝑣.

(4)
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𝜎lsc(𝑥) ≥ 𝜎c(𝑥).
𝜎lsc(𝑥) ≥ 𝜎c(𝑥)

Given 𝜎lsc.

For all 𝑥 ∈ R𝑛, let

𝜎c(𝑥) := inf
𝑥′∈R𝑛

(︀
𝜎lsc(𝑥

′) + ℓ|𝑥′ − 𝑥|
)︀
.

Then,

▶ 𝜎c is Lipschitz continuous with
Lipschitz constant ℓ

▶ 𝜎c is positive definite w.r.t. 𝒜
▶ 𝜎lsc(𝑥) ≥ 𝜎c(𝑥) for all 𝑥 ∈ R𝑛.
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Construction of 𝜎c

Given 𝑥0 ∈ dom(𝜎lsc),

𝜎c(𝑥0) := inf
𝑥′

(︀
𝜎lsc(𝑥

′) + |𝑥′ − 𝑥0|
)︀
.
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Non-Example
Consider

𝜎1(𝑥) :=

{︃
𝑥(1− 𝑥) if 𝑥 ∈ [0, 1)

1 if 𝑥 ≥ 1

¥ Positive definite (w.r.t. 0).

q Not lower semicontinuous at 𝑥 = 1.

Any continuous function 𝜎2 between 0 and 𝜎1 is 0 at 𝑥 = 1 because

lim inf
𝑥→1

𝜎1(𝑥) = 0,

¥ Continuous

q Not Positive definite (w.r.t. 0)
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𝜎c(𝑥) ≥ 𝜌lsc(|𝑥|𝒜).
𝜎c(𝑥) ≥ 𝜌lsc(|𝑥|𝒜)

Given 𝜎c.

Let

𝜌lsc(𝑟) := inf
{︀
𝜎c(𝑥) : |𝑥|𝒜 = 𝑟

}︀
∀𝑟 ≥ 0.

Then,

▶ 𝜌lsc is lower semicontinuous

▶ 𝜌lsc is positive definite (w.r.t. 0)

▶ 𝜎c(𝑥) ≥ 𝜌lsc(|𝑥|𝒜) for all 𝑥 ∈ R𝑛.
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Construction of 𝜎c

𝜌lsc(𝑟) := inf
{︀
𝜎c(𝑥) : |𝑥|𝒜 = 𝑟

}︀
∀𝑟 ≥ 0.
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𝜌lsc(|𝑥|𝒜) ≥ 𝜌c(|𝑥|𝒜)
𝜌lsc(|𝑥|𝒜) ≥ 𝜌c(|𝑥|𝒜)

Given 𝜌lsc.

There exists 𝜌c such that

▶ 𝜌c is Lipschitz continuous

▶ 𝜌c is positive definite w.r.t. 0

▶ 𝜌lsc(𝑠) ≥ 𝜌c(𝑠) for all 𝑠 ≥ 0.

Wintz — Exploiting Uncertified Controllers via Uniting Feedback 122



𝜎lsc(𝑥) ≥ 𝜌c(|𝑥|𝒜)
𝜎lsc(𝑥) ≥ 𝜌c(|𝑥|𝒜)

Proposition 2

Suppose 𝒜 is compact and
𝜎lsc : R𝑛 → [0,∞) is

▶ lower semicontinuous, and

▶ positive definite w.r.t. 𝒜.

Then, there exists 𝜌c such that

▶ 𝜌c is Lipschitz continuous,

▶ 𝜌c is positive definite w.r.t. 0, and

▶ 𝜎lsc(𝑥) ≥ 𝜌c(|𝑥|𝒜) for all 𝑥 ∈ R𝑛.
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Proof Sketch

Suppose 𝜎lsc ∈ 𝒫𝒟(𝒜) is LSC. By ??, there exists a continuous function 𝜎c ∈ 𝒫𝒟(𝒜)
such that

𝜎c(𝑥) ≤ 𝜎lsc(𝑥) ∀𝑥 ∈ R𝑛.

By ??, there exists an LSC and positive definite function 𝜌lsc ∈ 𝒫𝒟(0) such that

𝜌lsc(|𝑥|𝒜) ≤ 𝜎c(𝑥) ∀𝑥 ∈ R𝑛.

Again, by ??, for any ℓ > 0 there exists an ℓ-Lipschitz continuous function 𝜌c ∈ 𝒫𝒟(0)
such that

𝜌c(𝑟) ≤ 𝜌lsc(𝑟) ∀𝑟 ≥ 0.

Thus, for all 𝑥 ∈ R𝑛,

𝜌c(|𝑥|𝒜) ≤ 𝜌lsc(|𝑥|𝒜) ≤ 𝜎c(𝑥) ≤ 𝜎lsc(𝑥).
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Proposition (Simplified Conditions for Persistent Flows).

Consider a hybrid system ℋ and a nonempty closed set 𝒜. Suppose that for each 𝑟 ≥ 0,
there exist Δ𝑇 > 0 and Δ𝐽 > 0 such that for every solution 𝜑 with |𝜑(0, 0)|𝒜 ∈ (0, 𝑟]
and for every (𝑡0, 𝑗0), (𝑡1, 𝑗1) ∈ dom𝜑,

|𝑡1 − 𝑡0| ≤ Δ𝑇 =⇒ |𝑗1 − 𝑗0| ≤ Δ𝐽 . (5)

Then, for each 𝑟 ≥ 0, there exist 𝑁𝑟 ≥ 0 and 𝛾𝑟 ∈ 𝒦∞ such that for each solution 𝜑
to ℋ with |𝜑(0, 0)|𝒜 ∈ (0, 𝑟],

𝑡 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟 ∀(𝑡, 𝑗) ∈ dom𝜑. (6)
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Proposition (Simplified Conditions for Persistent Jumps).

Consider a hybrid system ℋ and a nonempty closed set 𝒜. Suppose that for each 𝑟 ≥ 0,
there exists Δ𝑇 > 0 and Δ𝐽 > 0 such that for every solution 𝜑 to ℋ with
|𝜑(0, 0)|𝒜 ∈ (0, 𝑟] and for all (𝑡0, 𝑗0), (𝑡1, 𝑗1) ∈ dom𝜑,

|𝑗1 − 𝑗0| ≤ Δ𝐽 =⇒ |𝑡1 − 𝑡0| ≤ Δ𝑇 . (7)

Then, for each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for each solution 𝜑
to ℋ with |𝜑(0, 0)|𝒜 ∈ (0, 𝑟],

𝑗 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟 ∀(𝑡, 𝑗) ∈ dom𝜑. (8)
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Proof that 𝜌lsc(|𝑥|𝒜) ≤ 𝜎c(𝑥).

For any 𝑥 ∈ R𝑛,

𝜌lsc(|𝑥|𝒜) = inf
{︀
𝜎c(𝑥

′) : |𝑥|𝒜 = |𝑥′|𝒜
}︀
≤ 𝜎c(𝑥).
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Proof that 𝜌lsc is positive definite.

For each 𝑟 ≥ 0, 𝜎c attains a minimum on the compact set {𝑥 : |𝑥|𝒜 = 𝑟}.
The minimum is positive if and only if 𝑟 > 0 since 𝜎c is positive definite w.r.t. 𝒜.
Therefore, 𝜌lsc is positive definite (w.r.t. 0).

Proof sketch that 𝜌lsc is lower semicontinuous.

To establish that 𝜌lsc is LSC, we exploit the fact that 𝒜 is compact and 𝜎c is
continuous. For each 𝑟 ≥ 0, we pick a compact set 𝐾𝑟 containing an open
neighborhood of 𝒜+ 𝑟B. Since 𝜎c is continuous, its restriction to the compact set 𝐾𝑟

is uniformly continuous. This allows us to do a 𝛿-𝜖 proof of lower semicontinuity.
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