
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

SAFETY AND ASYMPTOTIC STABILITY WHILE
EXPLOITING UNCERTIFIED CONTROLLERS VIA

UNITING FEEDBACK

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

APPLIED MATHEMATICS

by

Paul Kenna Wintz

December 2025

The dissertation of Paul Kenna Wintz is
approved by:

Professor Ricardo Sanfelice, Chair

Professor Qi Gong

Professor Daniele Venturi

Associate Adjunct Professor Alessandro Pinto

Peter Biehl
Dean of Graduate Studies

Copyright © by

Paul Kenna Wintz

2025

Table of Contents

Abstract vi

Dedication vii

Acknowledgments viii

1 Introduction 9
1.1 Preliminaries . 13

1.1.1 Hybrid Systems . 14
1.1.2 Notation for Sets and Set-valued Maps 16
1.1.3 Set-valued Lie derivative . 17
1.1.4 Stability Properties and Lyapunov Functions 17
1.1.5 Safety, Forward Invariance, and Barrier Functions 20

2 Uniting Feedback For Safety with Static Controllers 22
2.1 Problem Setting . 24
2.2 Hybrid Closed–Loop System . 26
2.3 Forward Invariance of 𝐾 . 29
2.4 Unbounded Solutions Without Chattering 34

3 Uniting Feedback for Asymptotic Stability with Static Controllers 40
3.1 Hybrid Control Strategy . 41
3.2 Construction of the Closed-Loop System with Static Feedback 45

4 Uniting Feedback with Hybrid Controllers and a Hybrid Plant 48
4.1 Uniting Feedback for Hybrid Plant with Hybrid Controllers 48

4.1.1 Regularity of the Closed-loop System 53
4.1.2 Existence of Solutions . 55
4.1.3 Ensuring Minimum Dwell Times 58

4.2 Supervisor Design for Global Asymptotic Stability 61

5 Relaxed Lyapunov Conditions for Hybrid Systems 71
5.1 Introduction . 71
5.2 Insertion Theorems . 73

5.2.1 Insertion Theorems for Positive Definite Functions 73

iii

5.2.2 Insertion Theorems for Class K-infinity Functions 78
5.3 Lyapunov Theorems for Compact Sets 79

5.3.1 Simplified Assumptions on Hybrid Time Domains 85
5.3.2 Bounded Solutions from Lyapunov Functions 89
5.3.3 Continuous-Time and Discrete-Time Systems 91

6 Conical Transition Graph (CTG) 93
6.1 Introduction . 93
6.2 Preliminaries . 96

6.2.1 Conical Hybrid Systems . 98
6.2.2 Properties of Conical Hybrid Systems 100

6.3 Applications of Conical Hybrid Systems 102
6.3.1 Sampled Linear Systems . 102
6.3.2 Conical Approximations . 103

6.4 Conical Transition Graph . 104
6.5 Establishing Pre-asymptotic Stability via the CTG 113

6.5.1 CTG Simulations . 114
6.5.2 Stability and Asymptotic Stability 128

6.6 Abstractions to Reduce the Graph Size 131
6.7 Numerical Example . 136

6.7.1 Results . 138
6.8 Future Work . 138

7 Simulator for Hardware Architecture and Real-time Control 140
7.1 Introduction . 140

7.1.1 Problem Setting . 141
7.1.2 Literature Review . 142

7.2 Modeling . 144
7.2.1 Physics and Controller . 144
7.2.2 Interaction between Physics and Controller with Computation

Delays . 145
7.2.3 Computational Hardware Simulation 147

7.3 SHARC Simulator . 149
7.3.1 Serial Mode . 150
7.3.2 Parallel Mode . 151

7.4 Numerical Experiments . 155
7.4.1 Adaptive Cruise Control . 155

7.5 Conclusion . 159

A Hybrid Equations Toolbox 169

B Additional Results and Proofs 172
B.1 Additional proofs from Chapter 4 . 172

B.1.1 Proof of Hybrid Basic Conditions 172
B.1.2 Proof that V is a Lyapunov function candidate 174
B.1.3 Proof of Lemma 4.2 . 175

iv

B.1.4 Construction of Class K-infinity bounds on V 177
B.1.5 Tangent Cone Results . 178

B.2 Additional Results for Relaxed Lyapunov Conditions 179
B.2.1 Additional Results for Hybrid Time Domains 179

B.3 Additional Results for CTG . 182

v

Abstract

Safety and Asymptotic Stability while Exploiting

Uncertified Controllers via Uniting Feedback

by

Paul Kenna Wintz

Certificate functions, such as barrier functions and Lyapunov functions, are com-

monly used to verify control system properties. The construction of these certificates,

however, is often difficult, typically requiring significant trial and error. Once a cer-

tificate function is found, modifications to the controller are hindered because each

change requires the construction of a new certificate function. This problem is ad-

dressed in this dissertation by the design of uniting feedback strategies that allow

uncertified controllers to be safely used by exploiting a controller with a known certifi-

cate as a backup. In uniting feedback, an automatic supervisor switches between two

controllers. The result is a hybrid control strategy that switches between certified

and uncertified controllers while preserving the safety or asymptotic property that

is guaranteed for the certified controller. By using a certified controller as a backup,

these uniting feedback strategies allow for exploiting uncertifiable controllers that

may have other desirable properties. A general framework is developed that allows

for the design of supervisors for systems with both the controllers and the plant

modeled as hybrid dynamical systems with set-valued dynamics, while ensuring the

closed-loop system is well-posed and the switching does not occur too often.

Several auxiliary tools and results are also included. A hybrid Lyapunov theorem

is presented that relaxes several key assumptions in prior hybrid Lyapunov theorems.

These relaxations make it easier to construct Lyapunov certificates and are used

to prove results in this dissertation. Additionally, the conical transition graph is

presented as a tool for algorithmically checking stability in conical hybrid systems,

guiding the search for Lyapunov functions or identifying when such a search is futile.

Finally, the Simulator for Hardware Architecture and Real-time Control (Sharc) is

a simulation tool for verifying the performance of computationally delayed control

systems, providing a useful testing platform for verifying uniting feedback strategies

when deployed on systems with limited computational resources.

To Mom and Dad

Although you didn’t teach me to love math,

you did teach me to love learning and to love people.

That has made all of the difference.

In Memory of Nitesh Kumar Singh

One of the kindest people I have known.

vii

Acknowledgments

This dissertation is the product of support, mentorship, and instruction from count-

less (but not uncountable) teachers, coaches, friends, and family who helped me

along the way. From my Kindergarten teacher, Mrs. Johnston, to the all my pro-

fessors at UCSC, I’ve learned important lessons from each of you. I am especially

thankful to my parents, Loa and Brian Wintz, for homeschooling me from 1st grade

until high school graduation and giving me constant support through college and

grad school; to Professor Anna Parmely at Santa Barbara City College for showing

me that I can enjoy and succeed in mathematical studies; and to Professor Michael

Sommermann for helping me to think rigorously and communicate clearly about

math and physics. The work in this dissertation was done under the ever patient

guidance of Professor Ricardo Sanfelice. If I had listened to all of his advice, I would

have finished much sooner.

Finally, I want to thank all of my friends in Santa Cruz and beyond for making

grad school a time I will remember fondly, including Austin Chan, Caitlin Voorhees,

David Kooi, Delaney Newhouse, Dev Purandare, Isabel Kain, Mike Briden, Peter

Braun, Sean Riedel, Sofie Tuyls-Eckert, and many others. I am deeply grateful to

my friends Ryan Johnson, Callie Chappell, Adam Grant, and my sister, Mary Alice

Wintz, for their help preparing for my defense, and their persistent encouragement,

advice, and kindness throughout the years.

viii

Chapter 1

Introduction

This dissertation considers the design of controllers for control systems to pro-

duce desired properties in the closed-loop system. We consider a broad class of

control systems and controllers, but as an initial illustration consider a continuous-

time control system with state 𝑧 ∈ R𝑛 and 𝑢 ∈ R𝑚 that we write as an ordinary

differential equation (ODE) with an input:

𝑧̇ = 𝑓(𝑧, 𝑢),

where values of 𝑢 are generated by the controller and 𝑧̇ := 𝑑𝑧/𝑑𝑡 . A static state feed-

back controller assigns the input as a function of the current state, e.g., 𝑢(𝑡) = 𝜅(𝑧(𝑡)),

where 𝜅 : R𝑛 → R𝑚. Such a controller does not depend on the past, so it is called

memoryless. For historical reasons, the system that is to be controlled is called

the plant (derived from the early application of control engineering to chemical

plants). Aside from modeling the evolution of a plant continuous-time as an ODEs,

the dynamics can also be given in discrete time as difference equations, or in both

as a combination of continuous- and discrete-time, which we call hybrid systems.

The class of control systems can be further broadened by allowing for set-valued

dynamics, which in the case of a continuous-time system results in a differential

inclusion,

𝑧̇ ∈ 𝐹 (𝑧, 𝑢)

where 𝐹 is a set-valued map that describes a set of possible values of the derivative 𝑧̇.

Generally, solutions are not unique for systems with set-valued dynamics, which

makes them suitable for modeling uncertainty or non-deterministic control systems.

Similarly, we can also consider a broader class of controllers beyond static

feedback. In fact, controllers can also have internal states that evolve according to

9

some dynamics. Returning to the context of continuous-time systems, as dynamic

feedback controller with state 𝜂 ∈ R𝑝 can be written as⎧⎨⎩𝜂̇ = 𝑓𝑐(𝑧, 𝜂)

𝑢 = 𝜅(𝑧, 𝜂),

where 𝑧 and 𝑢 are the state and input of the plant, as before. As with plants,

the dynamic feedback controllers can have dynamics in continuous-, discrete-, or

hybrid-time as well as be set valued.

There are two of the fundamental goals in the design of control systems: i) Move

the system to a target. ii) Avoid obstacles and any unsafe or prohibited states.

The first goal, target-reaching, can be stated mathematically as convergence of the

system’s state to a set in its configuration space. Typically, one wishes to design

a system that can converge to the target from any point in some region around it.

We call this property asymptotic stability. If the system converges to the target

from every initial state (within some domain of consideration), then we say that

the target is globally asymptotically stable. Thus, the first goal can be restated as

“design a controller that renders the target set to be globally asymptotically stable.”

The second goal, called constraint-satisfaction or safety, is described mathe-

matically by the concept of forward invariance. Informally, a set of configurations

in a dynamical system’s state space is called forward invariant if every trajectory

that starts inside the set will always remain inside the set as it evolves according to

the system dynamics.1 When designing a safe controller, the particular goal is to

produce a forward invariant set that is fully within the constraints and contains all

possible initial system states.

The process of achieving the two goals has parts relevant to this work, namely

controller synthesis and formal verification.2 Although I will refer to these as “steps,”

1Trajectories may, however, enter a forward invariant set. The “forward” indicates that solutions

do not leave the set time progresses forward. In contrast, backward invariance would indicate that

solutions remain in the set as you consider trajectories moving backward in time, indicating that

no trajectories move into the set.
2Other tasks are also involved. Before one can synthesize a controller, one typically creates

or learns a model of the system, including finding numerical values for system parameters. Once

a controller is designed, mathematically, the implementation onto a physical system also carries

significant challenges. On a physical system, one must also estimate the state of the system using

measurements and account for unmodeled disturbances and uncertainties.

10

their execution is not sequential, as they typically require multiple iterations. The

synthesis step consists of selecting a controller that is intended to satisfy the system

specifications. There are existing formulaic methods for controller synthesis for

particular classes of control systems, such as linear control systems, but the task is

generally non-trivial. The verification step consists of demonstrating that the goal

is achieved. Although such verification can be preformed empirically, via statistical

analysis of physical or simulated experiments, we are interested in formal methods

of proving that a mathematical model of a control system satisfies given properties

through deductive reasoning.

One prominent method for verification of asymptotic stability or safety of a

closed-loop system is via the construction of a certificate function with certain

properties, namely positive definiteness and monotonic rate of change along flows

in certain regions. For stability properties, certificate functions are called Lyapunov

functions and for safety, certificates are called barrier functions or barrier certificates.

There are, in fact, many varieties of Lyapunov functions. Differences arise from the

particular type of stability desired (Lyapunov stability, local/global asymptotic

stability, finite-time stability, fixed-time stability, input-to-state stability, practical

asymptotic stability), with a similar variety of theorems that apply for various

combinations of system and type of stability. There are also several varieties of

barrier functions, although fewer, with distinctions primarily arising from differences

in the types of systems considered. In this work, we consider Lyapunov functions for

certifying global asymptotic stability and barrier functions for safety with respect

to hybrid dynamical systems, including hybrid systems with set-valued dynamics.

Constructing Lyapunov and barrier functions for nonlinear systems is gener-

ally a difficult problem. For each variety of Lyapunov function, there is condition

that the function is positive definite with respect to the target set and one or more

other conditions that are sufficient for ensuring that Lyapunov function is mono-

tonically decreasing or nondecreasing for all trajectories the system can take. The

process typically involves trial and error. Once a Lyapunov or barrier function

is known, modifications to the controller is difficult because each change requires

the construction of a new certificate function, limiting iteration. We address this

problem in Chapters 2–4 by introducing uniting feedback strategies that allow un-

certified controllers to be used by exploiting a controller with a known certificate as

11

a backup. The result is a hybrid control strategy that switches between the certified

and uncertified controllers while preserving the safety or asymptotic property that

is guaranteed for the certified controller. Our control strategy is designed to prevent

chattering and ensures that the safety or asymptotic stability property is robust to

small measurement noise.

In Chapters 3 and 4 we give a uniting feedback strategy for global asymptotic

stability. To prove that the uniting feedback produces global asymptotic stability, we

generate a new certificate function for the hybrid closed-loop system, which turns out

to be a non-smooth function. Although there are existing theorems for nonsmooth

Lyapunov functions in the context of hybrid systems, we found the assumptions too

strict for what we needed. Thus, we developed a hybrid Lyapunov theorem with

relaxed assumptions, which is presented in Chapter 5.

The application of our uniting feedback strategy requires that one must first

construct a Lyapunov function. The construction of Lyapunov functions is generally

difficult. In fact, is often unclear whether or not one’s search for a Lyapunov function

is futile. The search can be unsuccessful because the right function has not been

tried or because the system is actually unstable. While constructing Lyapunov

functions, it is not obvious during if failure to find a Lyapunov function is due to

not yet trying the right function or if no such function exists because the system is

unstable. Thus, it would be useful to have reliable methods for checking the target

set is asymptotically stable or unstable before one starts searching for a Lyapunov

function. For continuous- or discrete-time systems, stability of the origin can be

immediately determined by examining the eigenvalues of the system’s matrix. In

Chapter 6, we investigate a method for evaluating stability in a class of hybrid

systems that we call conical hybrid systems and is a reasonably close analog to

linear systems for hybrid systems. We developed a tool called the conical transition

graph (CTG) that can automatically determine stability for conical hybrid systems,

including systems that switch between multiple modes.

One promising application of our uniting feedback strategies is for deployment

of computationally demanding controllers on cyber-physical systems with limited

computational resources. Suppose system designers want to deploy an advanced

controller that is expected to perform well but is difficult to verify due to complex

interactions between the system’s trajectory, delays in updating the control values,

12

and the variable amount of time required to compute updates. By using a compu-

tationally inexpensive controller as the certified controller in the uniting feedback

strategy, the designers can deploy advanced controllers without jeopardizing the

system. In Chapter 7, we present a tool called SHARC for computing trajectories of

cyber-physical systems that uses a cycle-accurate simulation of the system’s comput-

ing hardware to incorporate the computational delays into the timing of the system’s

control updates.

1.1 Preliminaries

For notation, we use N := {0, 1, 2, . . . } and R≥0 := [0,∞). The Euclidean

norm of 𝑥 ∈ R𝑛 is written |𝑥| and the inner product between 𝑥 and 𝑦 ∈ R𝑛 is

written ⟨𝑥, 𝑦⟩. The concatenation of vectors 𝑥1 ∈ R𝑛1 and 𝑥2 ∈ R𝑛2 is denoted

(𝑥1, 𝑥2) :=
[︀
𝑥1
𝑥2

]︀
∈ R𝑛1+𝑛2 . We write the unit ball in R𝑛 as B := {𝑥 ∈ R𝑛 : |𝑥| ≤ 1}.

For a set 𝑆 ⊂ R𝑛, we denote the boundary as 𝜕𝑆, the interior as int(𝑆), the closure

as 𝑆, and the convex hull as conv(𝑆). A neighborhood of 𝑆 is any open set 𝑈

such that 𝑆 ⊂ 𝑈 . The distance from 𝑥 to 𝑆 is |𝑥|𝑆 := inf𝑦∈𝒜|𝑦 − 𝑥|. For any

sets 𝑆1, 𝑆2 ∈ R𝑛, we write dist(𝑆1, 𝑆2) := inf{|𝑠1 − 𝑠2| : 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}. Given a

nonempty set 𝒜 ⊂ R𝑛, the distance from any 𝑥 ∈ R𝑛 to 𝒜 is

|𝑥|𝒜 := inf
𝑎∈𝒜

|𝑎− 𝑥|.

We write the domain of a function 𝑓 as dom(𝑓). “Continuously differentiable”

is abbreviated as 𝒞1. If 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ dom(𝑓), then the gradient

of 𝑓 at 𝑥 is denoted ∇𝑓(𝑥). We say 𝑓 is lower semicontinuous (LSC) if

𝑓(𝑥0) ≤ lim inf
𝑥→𝑥0

𝑓(𝑥) ∀𝑥0 ∈ dom(𝑓).

If 𝑓 is LSC, then 𝑔 := −𝑓 is upper semicontinuous (USC).

A continuous function 𝛼 : [0, 𝑐) → R≥0 is class–𝒦 if 𝛼 is zero at zero and strictly

increasing. A continuous function 𝛼 : R≥0 → R≥0 is said to be in class–𝒦∞ if it is

zero at zero, strictly increasing, and lim𝑟→∞ 𝛼(𝑟) = ∞. A function 𝜌 : R≥0 → R≥0 is

positive definite if 𝜌(0) = 0 and 𝜌(𝑟) > 0 for all 𝑟 > 0. We write the set of all positive

definite functions on R≥0 as 𝒫𝒟(0). Given nonempty sets 𝒜 ⊂ R𝑛 and 𝒳 ⊂ R𝑛, a

function 𝜎 : R𝑛 → R≥0 is said to be positive definite on 𝒳 with respect to 𝒜 if

13

𝜎(𝑥) = 0 for all 𝑥 ∈ 𝒜 ∩ 𝒳 and 𝜎(𝑥) > 0 for all 𝑥 ∈ 𝒳 ∖ 𝒜. The set of all positive

definite functions on 𝒳 = R𝑛 with respect to 𝒜 is denoted 𝒫𝒟(𝒜). A function 𝑓 is

said to be negative definite if 𝑔 := −𝑓 is positive definite.

The contingent cone [1] to a set 𝑆 at 𝑥 is denoted 𝑇𝑆(𝑥). For nonsmooth

functions, we use the Clarke generalized gradient and Clarke generalized directional

derivative [2]. For a locally Lipschitz function 𝑉 : R𝑛 → R, the Clarke generalized

gradient of 𝑉 at 𝑥 ∈ R𝑛 is

𝜕∘𝑉 (𝑥) := conv

{︂
lim
𝑖→∞

∇𝑉 (𝑥𝑖)

⃒⃒⃒⃒
∃(𝑥𝑖 → 𝑥) s.t. 𝑉 (𝑥𝑖) is
differentiable at each 𝑥𝑖

}︂
. (1.1)

The Clarke generalized directional derivative of 𝑉 at 𝑥 ∈ R𝑛 in the direction 𝑤 ∈ R𝑛

is given by

𝑉 ∘(𝑥,𝑤) = max
𝜁∈𝜕∘𝑉 (𝑥)

⟨𝜁, 𝑤⟩. (1.2)

A set-valued map 𝐹 : 𝑋 ⇒ 𝑌 maps each 𝑥 ∈ 𝑋 to a set 𝐹 (𝑥) ⊂ 𝑌 . The domain

of 𝐹 is defined as dom(𝐹) := {𝑥 ∈ 𝑋 | 𝐹 (𝑥) ̸= ∅}. We say 𝐹 is outer semicontinuous

(OSC) [3, Def. A.32] if for each 𝑥0 ∈ dom(𝐹), each sequence {𝑥𝑖}∞𝑖=1 in dom(𝐹)

converging to 𝑥0, and each convergent sequence {𝑦𝑖}∞𝑖=1 with each 𝑦𝑖 ∈ 𝐹 (𝑥𝑖), we

have that

lim
𝑖→∞

𝑦𝑖 ∈ 𝐹 (𝑥0).

We say 𝐹 is locally bounded if for each 𝑥0 ∈ dom(𝐹), there exists a neighborhood 𝑈

of 𝑥0 such that 𝐹 (𝑈 ∩ dom𝐹) is bounded [3, Def. A.11].

1.1.1 Hybrid Systems

We consider hybrid systems on R𝑛 written as

ℋ :

⎧⎨⎩ 𝑥̇ ∈ 𝐹 (𝑥) 𝑥 ∈ 𝐶

𝑥+ ∈ 𝐺(𝑥) 𝑥 ∈ 𝐷
(1.3)

with state 𝑥 ∈ R𝑛, flow set 𝐶 ⊂ R𝑛, flow map 𝐹 : 𝐶 ⇒ R𝑛, jump set 𝐷 ⊂ R𝑛, and

jump map 𝐺 : 𝐷 ⇒ R𝑛. We writeℋ compactly asℋ = (𝐶,𝐹,𝐷,𝐺). The continuous-

time system formed by removing the discrete dynamics of ℋ is written as (𝐶, 𝑓).

Solutions to hybrid systems are defined on hybrid time domains, which consist

of pairs of values (𝑡, 𝑗) ∈ R × N where 𝑡 parameterizes the passage of ordinary

time and 𝑗 parameterizes the passage of discrete time, counted as the number of

14

discrete jumps that have occurred. More precisely, a hybrid time domain 𝐸 is a

subset of R≥0 × N such that there exists 𝐽 ∈ N∪{∞} and a nondecreasing sequence

{𝑡𝑗}𝑗∈{0,1,...,𝐽} with 𝑡0 := 0 such that for every (𝑡*, 𝑗*) ∈ 𝐸, the following holds:

𝐸∩
(︀
[0, 𝑡*]×{0,1, . . . ,𝑗*}

)︀
=
(︀
[𝑡0, 𝑡1]×{0}

)︀
∪
(︀
[𝑡1, 𝑡2]×{1}

)︀
∪·· ·∪

(︀
[𝑡𝑗*, 𝑡

]×{𝑗}
)︀
.

(1.4)

Each 𝑡1, 𝑡2, . . . , 𝑡𝐽 is called a jump time in 𝐸. If 𝑡𝑗 < 𝑡𝑗+1, then the interval

𝐼𝑗 := {𝑡 | (𝑡, 𝑗) ∈ dom(𝜙)} (which has nonempty interior) is called an interval of

flow in 𝐸. We write

sup𝑡𝐸 := sup{𝑡 ∈ R≥0 | (𝑡, 𝑗) ∈ 𝐸},

sup𝑗 𝐸 := sup{𝑗 ∈ N | (𝑡, 𝑗) ∈ 𝐸},

length(𝐸) := sup𝑡𝐸 + sup𝑗 𝐸.

A function 𝜙 : dom(𝜙) → R𝑛 is called a hybrid arc if dom(𝜙) is a hybrid time

domain and 𝜙 is absolutely continuous on each interval of flow in dom(𝜙).3 A hybrid

arc 𝜙 is said to be complete if length(dom𝜙) = ∞. A hybrid arc 𝜙 is said be an

extension of another hybrid arc 𝜓 if dom(𝜓) is a strict subset of dom(𝜙) and

𝜙(𝑡, 𝑗) = 𝜓(𝑡, 𝑗) ∀(𝑡, 𝑗) ∈ dom(𝜓).

Definition 1.1 (Hybrid Solution). A hybrid arc 𝜙 is called a solution of ℋ if it

satisfies the following:

∙ At each jump time 𝑡𝑗 in dom(𝜙), the hybrid arc 𝜙 must satisfy

𝜙(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷 (1.5a)

𝜙(𝑡𝑗 , 𝑗) ∈ 𝐺
(︀
𝜙(𝑡𝑗 , 𝑗 − 1)

)︀
. (1.5b)

∙ For each interval of flow 𝐼𝑗 in dom(𝜙) (with 𝐼𝑗 = [𝑡𝑗 , 𝑡𝑗+1] or 𝐼𝑗 = [𝑡𝑗 ,∞) for

some 𝑗),

𝜙(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ int 𝐼𝑗 (1.6a)

𝑑𝜙

𝑑𝑡
(𝑡, 𝑗) ∈ 𝐹 (𝜙(𝑡, 𝑗)) for almost all 𝑡 ∈ 𝐼𝑗 . (1.6b)

3Absolute continuity is the weakest form of continuity that implies a function is differentiable

almost everywhere, making it the weakest assumption suitable for the definition of solutions to

differential inclusions.

15

A solution 𝜙 to ℋ is said to be a maximal solution if it cannot be extended. That

is, 𝜙 is maximal if there does not exist another solution 𝜓 to ℋ such that dom(𝜙)

a strict subset of dom(𝜓) and 𝜙(𝑡, 𝑗) = 𝜓(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜙). At a jump

time 𝑡 in a hybrid domain, 𝑡 corresponds to several values of 𝑗, so it is useful to

define a function that maps each 𝑡 to a single value of 𝑗. In particular, for each

(𝑡, 𝑗) ∈ dom(𝜙), we define

𝑡 ↦→ 𝚥(𝑡) := max{𝑗 | (𝑡, 𝑗) ∈ dom(𝜙)}. (1.7)

For more on hybrid systems, see [3, 4].

A hybrid system ℋ is called well-posed if its set of solutions is sequentially

compact, meaning that the limit of any graphically convergent sequence of solutions is

also a solution. Well-posedness is useful for establishing properties such as robustness

of asymptotic stability of compact sets. The following conditions [4, Assumption 6.5]

are sufficient for a hybrid system to be well-posed.

Definition 1.2 (Hybrid Basic Conditions [3, Def. 2.20]). A hybrid system ℋ =

(𝐶,𝐹,𝐷,𝐺) on R𝑛 as in (1.3) is said to satisfy the hybrid basic conditions if

(A1) 𝐶 and 𝐷 are closed;

(A2) 𝐶 ⊂ dom(𝐹), 𝐹 is outer semicontinuous and locally bounded relative to 𝐶,

and 𝐹 (𝑥) is convex for each 𝑥 ∈ 𝐶; and

(A3) 𝐷 ⊂ dom(𝐺), and 𝐺 is outer semicontinuous and locally bounded relative

to 𝐷. ◇

1.1.2 Notation for Sets and Set-valued Maps

In this work we use several notations that simplify writing about dynamical

systems with set-valued maps. For sets 𝐴 ⊂ R𝑛 and 𝐵 ⊂ R𝑚, we write the Cartesian

product using array notation, as shown here:⎡⎣𝐴
𝐵

⎤⎦ := 𝐴×𝐵.

16

We also use the same notation to construct a mixture of column vectors and sets,

e.g., for 𝐴 ⊂ R𝑛 and 𝑣 ∈ R𝑚, ⎡⎣𝐴
𝑣

⎤⎦ := 𝐴× {𝑣}.

For set-valued maps 𝐹1 : R𝑚 ⇒ R𝑛 and 𝐹2 : R𝑚 ⇒ R𝑛, we define 𝐹1 ∩ 𝐹2 :

R𝑚 ⇒ R𝑛 as

(𝐹1 ∩ 𝐹2)(𝑥) = 𝐹1(𝑥) ∩ 𝐹2(𝑥) ∀𝑥 ∈ R𝑛.

1.1.3 Set-valued Lie derivative

For a differential inclusion 𝑥̇ ∈ 𝐹 (𝑥) with a set-valued map 𝐹 : R𝑛 ⇒ R𝑛 and a

Lipschitz continuous function 𝑉 : R𝑛 → R, we define the set-value Lie derivative of

𝑉 along 𝐹 as

ℒ𝐹𝑉 (𝑥) :=
{︀
⟨𝜁, 𝑓⟩

⃒⃒
𝜁 ∈ 𝜕∘𝑉 (𝑥), 𝑓 ∈ 𝐹 (𝑥)

}︀
∀𝑥 ∈ R𝑛.

The set-valuedness of ℒ𝐹𝑉 (𝑥) comes from two places:

1. The set-valued right-hand side of the differential inclusion 𝑥̇ = 𝐹 (𝑥), and

2. the set-valued Clarke generalized gradient of 𝑉 , which we use because 𝑉 is

only assumed to be Lipschitz—not necessarily differentiable.

Thus, even if 𝐹 is single valued or, alternatively, 𝑉 is smooth, the Lie Derivative

of 𝑉 along 𝐹 would still be set-valued. For each 𝑥0 ∈ R𝑛, ℒ𝐹𝑉 (𝑥0) is a set in R,

we can write the least upper bound as supℒ𝐹𝑉 (𝑥0), which gives an upper bound

on the rate of change of 𝑉 for solutions to 𝑥̇ ∈ 𝐹 (𝑥) at 𝑥0. This is essential to

Lyapunov-like theorems for differential inclusions, as considered in the next section.

1.1.4 Stability Properties and Lyapunov Functions

We consider a variety of stability properties for hybrid systems, which we collect

into two groups: local stability properties, given in Definition 1.3 and global stability

properties, given in Definition 1.4. In both definitions, the prefix “pre-” indicates

that these properties allow for maximal solutions that terminate after finite time

(e.g., due to leaving 𝐶 ∪𝐷).

17

Definition 1.3. For a hybrid system ℋ as in (1.3), a nonempty set 𝒜 ⊂ R𝑛 is said

to be

∙ stable for ℋ if for all 𝜀 > 0, there exists 𝛿 > 0 such that for every solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ≤ 𝛿, we have that |𝜙(𝑡, 𝑗)|𝒜 ≤ 𝜀 for all (𝑡, 𝑗) ∈ dom(𝜙); and

∙ pre-attractive for ℋ if there exists 𝜇 > 0 such that for each solution 𝜙 to ℋ with

|𝜙(0, 0)|𝒜 ≤ 𝜇, we have that (𝑡, 𝑗) ↦→ |𝜙(𝑡, 𝑗)|𝒜 is bounded and, if 𝜙 is complete,

then

lim
𝑡+𝑗→∞

|𝜙(𝑡, 𝑗)|𝒜 = 0.

If 𝒜 is stable and pre-attractive for ℋ, then it is said to be pre-asymptotically stable

(pAS). ◇

For the global stability properties, we consider uniform global pre-asymptotic

stability of sets, which is a stronger condition than global pre-asymptotic stability.

The “uniformity” in the defined term refers to the requirement that for each 𝜀 > 0

and 𝑟 > 0, there is a uniform bound 𝑇 > 0 on the hybrid time it takes any hybrid

solution that starts within a distance of 𝑟 from 𝒜 to converge within a distance 𝜀

from 𝒜.

Definition 1.4 ([3, Def. 3.7]). For a hybrid system ℋ as in (1.3), a nonempty set

𝒜 ⊂ R𝑛 is said to be

∙ uniformly globally stable for ℋ if there exists a class-𝒦∞ function 𝛼 such that

every solution 𝜙 to ℋ satisfies |𝜙(𝑡, 𝑗)|𝒜 ≤ 𝛼(|𝜙(0, 0)|𝒜) for each (𝑡, 𝑗) ∈ dom(𝜙);

and

∙ uniformly globally pre-attractive for ℋ if for each 𝜀 > 0 and 𝑟 > 0, there exists

𝑇 > 0 such that every solution 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ≤ 𝑟 satisfies |𝜙(𝑡, 𝑗)|𝒜 ≤ 𝜀

for all (𝑡, 𝑗) ∈ dom(𝜙) such that 𝑡+ 𝑗 ≥ 𝑇 .

If 𝒜 is both uniformly globally stable and uniformly globally pre-attractive for ℋ,

then it is said to be uniformly globally pre-asymptotically stable (UGpAS) for ℋ. ◇

If every maximal solution to ℋ is complete, then the “pre-” prefixes are omitted,

18

in which case, if 𝒜 is pAS or UGpAS, then we say 𝒜 is, respectively, asymptotically

stable (AS) or uniformly globally asymptotically stable (UGAS).

A classical approach to show stability is by construction of a Lyapunov function

(of some sort). The following definition gives basic assumptions that make a function

a viable candidate to be a Lyapunov function in the context of hybrid systems with

set-valued maps.

Definition 1.5 (Lyapunov function candidate). Consider a hybrid system ℋ :=

(𝐶,𝐹,𝐷,𝐺) on R𝑛 and a set 𝒜 ⊂ R𝑛. A function 𝑉 : dom(𝑉) → R is a Lyapunov

function candidate with respect to 𝒜 for ℋ if the following conditions hold:

(LFC1)
(︀
𝐶 ∪𝐷 ∪𝐺(𝐷)

)︀
⊂ dom𝑉 ;

(LFC2) 𝑉 is continuous and is locally Lipschitz on an open neighborhood of 𝐶;

(LFC3) 𝑉 is positive definite on 𝐶 ∪𝐷 ∪𝐺(𝐷) with respect to 𝒜. ◇

A Lyapunov theorem for hybrid systems is given in [3, Thm. 3.19]. In Chapter 5,

we present an alternative hybrid Lyapunov theorem by relaxing the assumptions

of [3, Thm. 3.19]. The following corollary gives a special case of the results in

Theorem 5.1 which

1. illustrates the general form of a hybrid Lyapunov theorem and

2. is used in Chapter 4 to assert uniform global asymptotic stability.

Corollary 1.1. Consider a hybrid system ℋ = (𝐶,𝐹,𝐷,𝐺) on R𝑛, a nonempty

compact set 𝒜 ⊂ R𝑛, and a Lyapunov function candidate 𝑉 with respect to 𝒜 for

ℋ. Suppose there exists 𝛼 ∈ 𝒦∞ and an LSC function 𝜎c ∈ 𝒫𝒟(𝒜) such that

𝛼(|𝑥|𝒜) ≤ 𝑉 (𝑥) ∀𝑥 ∈ 𝐶 ∪𝐷 ∪𝐺(𝐷), (1.8a)

supℒ𝐹∩𝑇𝐶
𝑉 (𝑥) ≤ −𝜎c(𝑥) ∀𝑥 ∈ 𝐶, (1.8b)

𝑉 (𝑔) ≤ 𝑉 (𝑥) ∀𝑥 ∈ 𝐷, ∀𝑔 ∈ 𝐺(𝑥), (1.8c)

and, for each 𝑟 > 0, there exist Δ𝑇 > 0 and Δ𝐽 > 0 such that for every solution with

|𝜙(0, 0)|𝒜 ≤ 𝑟 and every (𝑡0, 𝑗0) ∈ dom(𝜙) and (𝑡1, 𝑗1) ∈ dom(𝜙),

|𝑡1 − 𝑡0| ≤ Δ𝑇 =⇒ |𝑗1 − 𝑗0| ≤ Δ𝐽 . (1.9)

Then, 𝒜 is UGpAS for ℋ.

19

1.1.5 Safety, Forward Invariance, and Barrier Functions

Definition 1.6 (Forward Invariance). A set 𝐾 ⊂ R𝑛 is said to be forward pre-

invariant for a hybrid system ℋ if, for each 𝑥0 ∈ 𝐾 and each maximal solution 𝜙

starting from 𝜙(0, 0) = 𝑥0: 𝜙(𝑡, 𝑗) ∈ 𝐾 for all (𝑡, 𝑗) ∈ dom(𝜙). If, additionally, each

maximal solution starting in 𝐾 is complete, then 𝐾 is called forward invariant. ◇

Forward invariance is a useful concept for the analysis of dynamical systems,

but to show that a control system is “safe,” we must show the existence of a forward

invariant set that does not intersect the inadmissible (that is, every point inside the

forward invariant set satisfies the system’s constraints) and that contains the initial

set (the set of all possible starting configurations of the system).

Definition 1.7. A control system on R𝑛 with admissible set 𝒳 ⊂ R𝑛 and initial set

𝒳0 ⊂ R𝑛 is called safe if there exists a forward invariant set 𝐾 such that 𝐾 ⊂ 𝒳
and 𝒳0 ⊂ 𝐾. ◇

One of the standard tools for demonstrating that a set is forward (pre-)invariant

is by finding a barrier function.

Definition 1.8. Consider a hybrid systemℋ = (𝐶,𝐹,𝐷,𝐺) in R𝑛 as in Definition 1.1

and a set 𝐾 ⊂ R𝑛. We call a 𝒞1 function 𝐵 a barrier function of 𝐾 for ℋ if

(B1) 𝐾 = {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≤ 0},

(B2) There exists a neighborhood 𝑈 of 𝐾 such that for all 𝑥 ∈ (𝑈 ∖𝐾) ∩ 𝐶,

supℒ𝐹∩𝑇𝐶
𝐵(𝑥) ≤ 0,

(B3) For all 𝑥 ∈ 𝐾 ∩𝐷,

𝐺(𝑥) ⊂ 𝐶 ∪𝐷,

(B4) For all 𝑥 ∈ 𝐾 ∩𝐷 and 𝛾 ∈ 𝐺(𝑥),

𝐵(𝛾) ≤ 0. ◇

By [5, Thm. 1], the existence of a barrier function implies that 𝐾 is forward

pre-invariant. In the following corollary, we give a simplified version of [5, Thm. 1]

that is sufficient for our uses.

20

Corollary 1.2. Suppose that ℋ is a hybrid system as in Definition 1.1 that satisfies

the hybrid basic conditions in Definition 1.2. If there exists a 𝒞1 barrier function of

a set 𝐾 for ℋ as in Definition 1.8, then 𝐾 is forward pre-invariant for ℋ.

For a differential equation 𝑧̇ = 𝑓(𝑧), conditions (B3) and (B4) hold vacuously

and (B2) simplifies to the following:

(B2′) There exists a neighborhood 𝑈 of 𝐾 such that

⟨∇𝐵(𝑥), 𝑓(𝑥)⟩ ≤ 0 ∀𝑥 ∈ 𝑈 ∖𝐾.

21

Chapter 2

Uniting Feedback For Safety with

Static Controllers

This chapter introduces a uniting feedback strategy for ensuring safety while

using an uncertified controller for a continuous-time plant and static feedback con-

trollers, which are assumed to be continuous functions. Compared to subsequent

chapters, this setting is the simplest since it does not require a mechanism to ensure

convergence, as in Chapter 3, nor does it involve set-valued dynamics as in Chapter 4.

For a constrained nonlinear control system, we introduce a supervisor that

controls switches between a barrier function–certified controller and an uncertified

controller. The supervisor’s switching strategy allows for properties of the uncertified

controller to be exploited while preserving the forward invariance that is guaranteed

by the barrier function for the certified controller. Tunable threshold functions de-

termine regions of the state space where the supervisor switches between controllers.

Conditions are given to prevent chattering by establishing a positive minimum time

between switches. An example illustrates achieving forward invariance despite using

an uncertified MPC controller with delayed computations.

Control systems often have operational constraints, such as physical obstacles,

legal regulations, or limits on the amount of force or electrical current that a system

can safely endure. A popular approach to verify that a system satisfies its constraints

is via a barrier function (also called a barrier certificate) [5], [6], [7]. There are several

definitions of barrier functions in the literature [8]. For the definition used in this

chapter, a barrier function maps the system’s state space to R and satisfies conditions

such that its zero-sublevel set is forward invariant and every point in that set is

admissible. The zero-level set is a barrier that the state cannot cross, so if the system

22

starts in the zero-sublevel set, then it is safe.

We consider a continuous-time nonlinear plant with state space R𝑛 and a set

𝐾 ⊂ R𝑛 that we want to render forward invariant. If, for a controller 𝜅, the set 𝐾 is

rendered forward invariant and a barrier function of 𝐾 is known for the closed-loop

system, then we say 𝜅 is barrier-certified. A controller for which a barrier function

is unavailable is uncertified. Per Definition 1.7, we assume that system designers

would pick 𝐾 such that it is fully within the system constraints and contains all of

the initial states so that forward invariance of 𝐾 implies system is safe.

Although uncertified controllers are not expected to render the set 𝐾 forward

invariant, they can have other desirable properties, such as tracking a reference

trajectory, minimizing control effort, or reducing computational demands. As an

example, consider model predictive control (MPC). An MPC controller computes

the input at discrete sample times by solving a finite-horizon optimization problem.

The advantages of MPC are that it computes an approximately optimal control

input that satisfies constraints. For nonlinear systems with nonlinear constraints,

however, computing an MPC input is computationally expensive, which can lead

to delayed updates that cause the system to violate constraints (see Example 2.2

and [9]). This motivates the development of supervisory control that uses a certified

controller as “guardrails”—if the uncertified controller moves the system too close

to the unsafe set, the supervisor triggers a switch to the certified controller so that

the system stays in the safe set.

The Simplex architecture is an approach for switching between an “advanced,”

unverified controller and a “simple,” easy-to-verify controller [10], [11]. In the

Simplex architecture, a decision module decides at each time step whether to use

the unverified controller—if it is performing safely—or to fall back to the verified

controller. In [11], barrier functions are used with the Simplex architecture to

achieve safety for hybrid systems, but this approach requires costly reachability

analysis and has only “one way” switching—that is, there are no conditions given

for returning to the unverified controller after switching to the verified controller.

The Simplex architecture is also used with a barrier certificate in [12], but there are

several limitations to their approach that we overcome in this chapter; namely, only

rectangular constraints are considered, and the switching criteria depends on the

extremal values of the vector field over the entire admissible set, leading to excessive

23

conservatism.

In this chapter, we introduce a hybrid control strategy for switching between

a barrier-certified controller 𝜅0 and an uncertified controller 𝜅1 such that the set

𝐾 is forward invariant for the resulting hybrid closed-loop system; the uncertified

controller 𝜅1 is preferred over the certified controller 𝜅0; and the switching between

𝜅0 and 𝜅1 does not chatter (i.e., the time between all switches is greater than some

positive constant). In our switching strategy, user-defined thresholds on the value

and the rate-of-change of the barrier function determine where switches occur. The

thresholds are defined as functions of the state, so that larger margins can be chosen

in regions where the system has faster dynamics. We show that our hybrid control

strategy renders 𝐾 forward invariant, and we provide conditions for establishing a

positive minimum time between switches. This work was first published in [13].

2.1 Problem Setting

Consider a continuous-time plant

𝑧̇ = 𝑓p(𝑧, 𝑢) (2.1)

with state 𝑧 ∈ R𝑛, input 𝑢 ∈ R𝑚, and 𝑓p : R𝑛 × R𝑚 → R𝑛. Suppose we are given

a closed set 𝐾 ⊂ R𝑛 to be rendered forward invariant, and two static feedback

controllers 𝜅0, 𝜅1 : R𝑛 → R𝑚 such that the vector fields

𝑧 ↦→ 𝑓p(𝑧, 𝜅0(𝑧)) and 𝑧 ↦→ 𝑓p(𝑧, 𝜅1(𝑧))

are continuous. In conjunction with 𝜅0, we are also given a 𝒞1 barrier function

𝐵 : R𝑛 → R of 𝐾 for the closed–loop

𝑧̇ = 𝑓0(𝑧) := 𝑓p(𝑧, 𝜅0(𝑧)). (2.2)

The controller 𝜅1 is not assumed to render 𝐾 forward invariant for the closed–loop

𝑧̇ = 𝑓1(𝑧) := 𝑓p(𝑧, 𝜅1(𝑧)). (2.3)

Since 𝐵 guarantees that 𝐾 is forward invariant for (2.2), we call 𝜅0 a certified

controller, whereas 𝜅1, which has no such guarantee, is called uncertified.

24

Given the 𝒞1 barrier function 𝐵 of 𝐾 for (2.2), we define

𝐵̇𝑞(𝑧) := ⟨∇𝐵(𝑧), 𝑓p
(︀
𝑧, 𝜅𝑞(𝑧)

)︀
⟩ ∀(𝑧, 𝑞) ∈ 𝒳 , (2.4)

which is the (hypothetical) rate of change of 𝑡 ↦→ 𝐵(𝑧(𝑡)) if 𝑡 ↦→ 𝑧(𝑡) were to evolve

according to 𝑧̇ = 𝑓𝑞(𝑧).

 Switching

Logic

Plant

Hybrid Control Strategy

Figure 2.1. Feedback diagram for the closed–loop system ℋ in (2.6).

The decision unit that determines when to switch between 𝜅0 and 𝜅1 is called a

supervisor. As shown in Figure 2.1, an auxiliary logic variable 𝑞 ∈ {0, 1} is used to

select which controller is used. When 𝑞 = 0, the certified controller 𝜅0 is used and

when 𝑞 = 1, the uncertified controller 𝜅1 is used. The supervisor’s switching logic

is defined by two switching sets: 𝒵0↦→1, 𝒵1↦→0 ⊂ R𝑛. The set 𝒵0↦→1 specifies where

the supervisor switches from 𝑞 = 0 to 𝑞 = 1 and the set 𝒵1↦→0 specifies where the

supervisor switches from 𝑞 = 1 to 𝑞 = 0. As complements of the switching sets, we

define hold sets

𝒵0 := R𝑛 ∖ 𝒵0↦→1 and 𝒵1 := R𝑛 ∖ 𝒵1↦→0 (2.5)

that specify where the supervisor holds constant 𝑞 = 0 and 𝑞 = 1, respectively. In

Section 2.2, we design 𝒵0 ↦→1 and 𝒵1↦→0 such that the hybrid closed–loop system with

the switched feedback 𝑢 := 𝜅𝑞(𝑧) satisfies the following properties:

∙ The set 𝐾 is forward invariant.

∙ The uncertified controller 𝜅1 is preferred over the certified controller 𝜅0.

∙ The switching between 𝜅0 and 𝜅1 does not chatter.

25

Z0 7→1

Z17→0

δ0 δ1

θ0

θ1

Ḃ1(z)

B(z)

Figure 2.2. Diagram of the switching sets 𝒵0↦→1 and 𝒵1↦→0.

2.2 Hybrid Closed–Loop System

We model the closed–loop system with a supervisor for switching between

controllers 𝜅0 and 𝜅1 as a hybrid system ℋ with state 𝑥 := (𝑧, 𝑞) in state space

𝒳 := R𝑛 × {0, 1}, and dynamics given by

ℋ:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[︃
𝑧̇

𝑞

]︃
= 𝑓(𝑧, 𝑞) :=

[︃
𝑓𝑞(𝑧)

0

]︃
(𝑧, 𝑞) ∈ 𝐶 := 𝐶0 ∪ 𝐶1[︂

𝑧+

𝑞+

]︂
= 𝑔(𝑧, 𝑞) :=

[︂
𝑧

1− 𝑞

]︂
(𝑧, 𝑞) ∈ 𝐷 := 𝐷0 ∪𝐷1

(2.6)

where

𝐶0 := 𝒵0 × {0}, 𝐶1 := 𝒵1 × {1},

𝐷0 := 𝒵0↦→1 × {0}, 𝐷1 := 𝒵1 ↦→0 × {1}.
To design 𝒵0↦→1 and 𝒵1 ↦→0, we introduce four threshold functions 𝛿0, 𝛿1, 𝜃0, 𝜃1 :

R𝑛 → R≤0, such that

𝛿0(𝑧) < 𝛿1(𝑧) ≤ 0 and 𝜃0(𝑧) < 𝜃1(𝑧) ≤ 0 ∀𝑧 ∈ R𝑛. (2.7)

We use the functions 𝛿0 and 𝛿1 as thresholds on 𝐵 and the functions 𝜃0 and 𝜃1 as

thresholds on 𝐵̇1 to determine where switches occur. Thus, we define the switching

sets as

𝒵0↦→1 := {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≤ 𝛿0(𝑧) or 𝐵̇1(𝑧) ≤ 𝜃0(𝑧)}

𝒵1↦→0 := {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≥ 𝛿1(𝑧), 𝐵̇1(𝑧) ≥ 𝜃1(𝑧)}.
(2.8)

The switching sets 𝒵0↦→1 and 𝒵1↦→0 are shown in Figure 2.2. Expanding the definitions

in (2.5) of the hold sets 𝒵0 and 𝒵1 produces

𝒵0 = {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≥ 𝛿0(𝑧), 𝐵̇1(𝑧) ≥ 𝜃0(𝑧)}

𝒵1 = {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≤ 𝛿1(𝑧) or 𝐵̇1(𝑧) ≤ 𝜃1(𝑧)}.
(2.9)

We have that 𝐶 ∪𝐷 = 𝒳 because 𝒵0 ∪𝒵0↦→1 = 𝒵1 ∪𝒵1↦→0 = R𝑛.

26

The set 𝒵0 is designed such that the supervisor continues to use the certified

controller 𝜅0 so long as the state is close to the boundary of𝐾 (namely, 𝐵(𝑧) ≥ 𝛿0(𝑧))

and the hypothetical rate of change of 𝐵 under 𝜅1 is too large (𝐵̇1(𝑧) ≥ 𝜃0(𝑧)).

As the complement, 𝒵0↦→1 is designed such that the supervisor switches to the

uncertified controller 𝜅1 when the state is either far from 𝜕𝐾 (i.e., 𝐵(𝑧) ≤ 𝛿0(𝑧)) or

the hypothetical rate that 𝐵 would decrease under 𝜅1 is fast enough (𝐵̇1(𝑧) ≤ 𝜃0(𝑧)).

For 𝑞 = 1, the set 𝒵1 is designed such that the supervisor continues to use

the uncertified controller 𝜅1 at each state 𝑧 ∈ 𝐾 that is far from 𝜕𝐾 or where the

rate that 𝐵 would decrease under 𝜅1 is fast enough. The set 𝒵1↦→0 is the closed

complement of 𝒵1 and is designed to trigger a switch to the certified controller 𝜅0

whenever the state is too close to 𝐾 and is moving toward 𝐾 (or, more precisely,

not moving away fast enough).

Example 2.1. To illustrate the design of ℋ, consider the double integrator plant

𝑧̇ = 𝑓p(𝑧, 𝑢) :=

⎡⎣0 1

0 0

⎤⎦𝑧 +
⎡⎣0
1

⎤⎦𝑢. (2.10)

Suppose we want the system to avoid a disk with radius 1, centered on the 𝑧1-axis

at 𝑐 := (5, 0) ∈ R2. The admissible set, which we want to render forward invariant,

is

𝐾 :=
{︀
𝑧 ∈ R2 : |𝑧 − 𝑐| ≥ 1

}︀
=
{︀
𝑧 ∈ R2 : 1− |𝑧 − 𝑐| ≤ 0

}︀
.

Let 𝜅0(𝑧) := [−1 1](𝑧 − 𝑐) and 𝐵(𝑧) := 1
2(1− |𝑧 − 𝑐|2).

The closed–loop system is

𝑧̇ = 𝑓0(𝑧) =

⎡⎣ 0 1

−1 1

⎤⎦(𝑧 − 𝑐)

and

𝐵̇0(𝑧) = −(𝑧 − 𝑐)⊤

⎡⎣ 0 1

−1 1

⎤⎦(𝑧 − 𝑐) = −𝑧22 ≤ 0.

Thus, 𝐾 is forward invariant for the system 𝑧̇ = 𝑓0(𝑧).

27

z1

-2

-1

1

2
z2

Phase Plot

?(0; 0)

-1 1 3 5

z2

Inadmissible

? (q = 0)

? (q = 1)

!100

!10!1

Switching Criteria

/1(z)
B(z)
/0(z)

!100

!10!1
31(z)
_B1(z)
30(z)

0 1 2 3 4 5

t [s]

0

1

q

Figure 2.3. A solution 𝜙 (left) for Example 2.1 and the corresponding switch-
ing criteria (right). The first five switches occur when 𝐵(𝑧) ≤ 𝛿0(𝑧) or
𝐵(𝑧) ≥ 𝛿1(𝑧). At 𝑡 = 2.4 sec, a switch to 𝑞 = 1 occurs because 𝐵̇1(𝑧) ≤ 𝜃0(𝑧).
Dotted lines indicate thresholds that do not have an effect for the current
value of 𝑞.

For the uncertified controller, let 𝜅1(𝑧) := [−1 −2]𝑧, which renders the origin

of system (2.10) globally exponentially stable, but violates constraints. The closed–

loop system under 𝜅1 is

𝑧̇ = 𝑓1(𝑧) =

⎡⎣ 0 1

−1 −2

⎤⎦𝑧.
The set 𝐾, however, is not forward invariant under 𝜅1. At 𝑧 = (5, 1) ∈ 𝜕𝐾,

𝐵̇1(𝑧) = (𝑧 − 𝑐)⊤

⎡⎣0 −1

1 2

⎤⎦𝑧 > 0.

We use constant threshold functions, which we write (with abuse of notation)

as 𝜃0 := −1, 𝜃1 := −0.1, 𝛿0 := −1, and 𝛿1 := −0.1. Figure 2.3 shows a solution to

ℋ and the corresponding switching criteria.1 These plots show that the system is

controlled by the uncertified controller 𝜅1 until it becomes too close to the obstacle

and switches to the certified controller 𝜅0. The closed–loop system ℋ satisfies the

assumptions of Theorem 2.2 given in Section 2.3, so the set 𝐾 is forward invariant

for ℋ. ◇
1Simulations are computed in Matlab with the HyEQ Toolbox [14].

28

https://www.mathworks.com/matlabcentral/fileexchange/41372-hybrid-equations-toolbox

3.5 4 4.5 5 5.5 6 6.5

z1

-1

-0.5

0
z 2

Delayed vs. Undelayed MPC

?(0;0)
Delayed
Not Delayed

3.5 4 4.5 5 5.5 6 6.5

z1

-1

-0.5

0

z 2

Delayed MPC with Supervision

?(0;0)
? (q = 0)
? (q = 1)

Figure 2.4. Trajectories for Example 2.2 using only 𝜅1 without supervision (left)
and using supervised switching between 𝜅0 and 𝜅1 (right). Computational
delays cause unsupervised 𝜅1 to violate constraints (dashed line), using our
supervisor preserves the constraint due to switching to 𝜅0 near the inadmis-
sible set.

Example 2.2. Consider the system given in Example 2.1 with the uncertified con-

troller 𝜅1 replaced by an MPC controller. If each periodic MPC computation finishes

immediately, then the trajectory grazes the boundary of the unsafe set but does not

enter it. MPC computations can be slow, however, in the presence of nonlinear or

non-convex constraints. In Figure 2.4, we see that adding small, random delays to

the update times for the MPC input causes the solution to violate the constraint,

but using our supervisory control strategy, ℋ respects the constraint by switching

to the certified controller. ◇

2.3 Forward Invariance of 𝐾

Our first result, Theorem 2.1, states that 𝐾 is forward pre-invariant for ℋ,

meaning that each solution toℋ remains in𝐾 for as long as the solution exists. Under

stronger assumptions, Theorem 2.2 asserts that𝐾 is forward invariant by establishing

that every maximal solution 𝜙 is complete (sup𝑡 dom(𝜙) = ∞ or sup𝑗 dom(𝜙) = ∞)

and, if 𝜙 is bounded, then sup𝑡 dom(𝜙) = ∞.

Theorem 2.1 (Forward Pre-Invariance). Consider ℋ in (2.6). Suppose 𝐵 is a 𝒞1

barrier function of 𝐾 for 𝑧̇ = 𝑓0(𝑧); the vector fields 𝑓0 and 𝑓1 are continuous; and

the threshold functions 𝛿0, 𝛿1, 𝜃0, and 𝜃1 satisfy the inequalities in (2.7). Then,

𝐾 ′ := 𝐾 × {0, 1} is forward pre-invariant for ℋ in (2.6).

29

Proof. Let 𝐵′ := (𝑧, 𝑞) ↦→ 𝐵(𝑧). The proof proceeds by first showing 𝐵′ is a barrier

function of 𝐾 ′ for ℋ, and is completed by applying Corollary 1.2.

By assumption, 𝐵 is a barrier function of 𝐾 for 𝑧̇ = 𝑓0(𝑧), so we have that

𝐾 = {𝑧 ∈ R𝑛 | 𝐵(𝑧) ≤ 0}. Thus, for all (𝑧, 𝑞) ∈ 𝒳 ,

𝐾 ′ =
{︀
(𝑧, 𝑞) ∈ 𝒳

⃒⃒
𝐵′(𝑧, 𝑞) ≤ 0

}︀
,

because 𝐵(𝑧) = 𝐵′(𝑧, 𝑞). Thus, 𝐵′ is a barrier function candidate of 𝐾 ′, meaning it

satisfies (B1).

Because 𝐵 is a barrier function of 𝐾 for 𝑧̇ = 𝑓0(𝑧), we can take from (B2′)

a neighborhood 𝑈 of 𝐾 where 𝐵̇0(𝑧) ≤ 0. Consequently, the set 𝑈 ′ := 𝑈 × {0, 1}
is a neighborhood of 𝐾 ′. We want to show that ⟨∇𝐵′(𝑧, 𝑞), 𝑓(𝑧, 𝑞)⟩ ≤ 0 for all

(𝑧, 𝑞) ∈ (𝑈 ′ ∖ 𝐾 ′) ∩ 𝐶, as required by (B2). Every element (𝑧, 𝑞) of (𝑈 ′ ∖ 𝐾 ′) ∩ 𝐶
satisfies one of two disjoint cases:

∙ If 𝑞 = 0 and 𝑧 ∈ (𝑈 ∖𝐾) ∩ 𝒵0, then, by (B2′),

⟨∇𝐵′(𝑧, 0), 𝑓0(𝑧)⟩ = 𝐵̇0(𝑧) ≤ 0.

∙ If 𝑞 = 1 and 𝑧 ∈ (𝑈 ∖𝐾)∩𝒵1, then by the design of 𝒵1, either 𝐵(𝑧) ≤ 𝛿1(𝑧) ≤ 0

or 𝐵̇1(𝑧) ≤ 𝜃1(𝑧) ≤ 0. Because 𝑧 ̸∈ 𝐾, we must have 𝐵(𝑧) > 0 ≥ 𝛿1(𝑧). Thus,

every 𝑧 in (𝑈 ∖𝐾) ∩ 𝒵1 satisfies 𝐵̇1(𝑧) ≤ 𝜃1(𝑧), so

⟨∇𝐵′(𝑧, 1), 𝑓1(𝑧)⟩ = 𝐵̇1(𝑧) ≤ 𝜃1(𝑧) ≤ 0.

Therefore, (B2) is satisfied.

From the definition of 𝑔, we have that 𝐵′(𝑔(𝑧, 𝑞)) = 𝐵′(𝑧, 1− 𝑞). Additionally,

the assumption (B1) states that 𝐵(𝑧) ≤ 0 for all 𝑧 ∈ 𝐾. Thus,

𝐵′(𝑔(𝑧, 𝑞)) ≤ 0 ∀(𝑧, 𝑞) ∈ 𝐾 ′ ∩𝐷. (2.11)

Finally, the condition

𝑔(𝑧, 𝑞) ∈ 𝐶 ∪𝐷 ∀(𝑧, 𝑞) ∈ 𝐾 ′ ∩𝐷

holds trivially because 𝐶∪𝐷 = 𝒳 . Thus, (B4) is satisfied, so 𝐵′ is a barrier function

of 𝐾 ′ for ℋ.

Checking the remaining assumptions of Corollary 1.2, we have that 𝑓 is contin-

uous because 𝑓0 and 𝑓1 are continuous by assumption. The set 𝐾 ′ is closed because

𝐵′ is 𝒞1. Therefore, by Corollary 1.2, 𝐾 ′ is forward pre-invariant for ℋ.

30

In the following results, we assert, under appropriate assumptions, that the

closed–loop system ℋ is well-posed (Lemma 2.2), the existence of a lower bound

on the time between switches for bounded solutions (Lemma 2.2), and that every

maximal solution to ℋ is complete.

Lemma 2.1 (Hybrid Basic Conditions). Consider ℋ in (2.6). Suppose 𝑓0, 𝑓1, 𝜃0,

𝜃1, 𝛿0, and 𝛿1 are continuous and 𝐵 is 𝒞1. Then, the system ℋ in (2.6) satisfies the

hybrid basic conditions (A1)–(A3) in Definition 1.2.

Proof. The continuity of 𝑓 and 𝑔 follow directly their definitions and the continuity

of 𝑓0 and 𝑓1, thereby satisfying (A2) and (A3). The gradient ∇𝐵 is continuous

because 𝐵 is 𝒞1, and the vector field 𝑓0 is continuous by assumption, so the function

𝐵̇0 is continuous also. Thus, the sets 𝒵0, 𝒵0↦→1, 𝒵1, and 𝒵1↦→0 are closed because

they can be written as finite unions and intersections of sublevel sets of continuous

functions:

𝒵0 = {𝑧 ∈ R𝑛 | 𝜃0(𝑧)− 𝐵̇1(𝑧) ≤ 0} ∩ {𝑧 ∈ R𝑛 | 𝛿0(𝑧)−𝐵(𝑧) ≤ 0}

𝒵0↦→1 = {𝑧 ∈ R𝑛 | 𝐵̇1(𝑧)− 𝜃0(𝑧) ≤ 0} ∪ {𝑧 ∈ R𝑛 | 𝐵(𝑧)− 𝛿0(𝑧) ≤ 0}

𝒵1 = {𝑧 ∈ R𝑛 | 𝐵̇1(𝑧)− 𝜃1(𝑧) ≤ 0} ∪ {𝑧 ∈ R𝑛 | 𝐵(𝑧)− 𝛿1(𝑧) ≤ 0}

𝒵1↦→0 = {𝑧 ∈ R𝑛 | 𝜃1(𝑧)− 𝐵̇1(𝑧) ≤ 0} ∩ {𝑧 ∈ R𝑛 | 𝛿1(𝑧)−𝐵(𝑧) ≤ 0}.

Thus, 𝐶 = (𝒵0×{0})∪ (𝒵1×{1}) and 𝐷 = (𝒵0↦→1×{0})∪ (𝒵1↦→0×{1}) are closed,

satisfying (A1).

In the following result, we assert (under appropriate assumptions) that each

bounded solution to the closed–loop system ℋ has a positive minimum dwell time

between jumps. This result, combined with a proof that all maximal solutions are

complete (in Theorem 2.2, below), allows us to conclude that maximal solutions

exist for all time 𝑡 ≥ 0.

Lemma 2.2. Suppose 𝐵 : R𝑛 → R is 𝒞1; the vector fields 𝑓0 and 𝑓1 are continuous;

and the threshold functions 𝛿0, 𝛿1, 𝜃0, and 𝜃1 are continuous and satisfy the inequal-

ities in (2.7). For each solution 𝜙 to ℋ in (2.6), if 𝜙 is bounded, then there exists

𝛾 > 0 such that 𝑡𝑗+1 − 𝑡𝑗 ≥ 𝛾 for every pair of jump times 𝑡𝑗 and 𝑡𝑗+1 in dom(𝜙).

Proof. To establish a lower bound on the time between jumps, we will show 𝐷 and

𝑔(𝐷) are disjoint and apply [3, Prop. 2.34]. The sets 𝐷 and 𝑔(𝐷) are disjoint if and

31

only if 𝒵0↦→1 and 𝒵1↦→0 are disjoint because

𝐷0 = 𝒵0↦→1 × {0} and 𝐷1 = 𝒵1 ↦→0 × {1},

and

𝑔(𝐷0) = 𝒵0↦→1 × {1} and 𝑔(𝐷1) = 𝒵1↦→0 × {0}.

Take any 𝑧0 ∈ 𝒵0↦→1. By (2.7) and the definition of 𝒵0↦→1,

𝐵̇1(𝑧
0) ≤ 𝜃0(𝑧

0) < 𝜃1(𝑧
0) or 𝐵(𝑧0) ≤ 𝛿0(𝑧

0) < 𝛿1(𝑧
0),

thus 𝑧0 ̸∈ 𝒵1↦→0. Similarly, for every 𝑧1 ∈ 𝒵1↦→0,

𝐵̇1(𝑧
1) ≥ 𝜃1(𝑧

1) > 𝜃0(𝑧
1) and 𝐵(𝑧1) ≥ 𝛿1(𝑧

1) > 𝛿0(𝑧
1),

so 𝑧1 ̸∈ 𝒵0↦→1. Therefore, 𝒵0↦→1 and 𝒵1↦→0 are disjoint and 𝐷 ∩ 𝑔(𝐷) = ∅.

By Lemma 2.1, ℋ satisfies the hybrid basic conditions Definition 1.2. Thus, the

conclusion follows from [3, Prop. 2.34].

To ensure solutions to ℋ exist for all 𝑡 ≥ 0, we require that all solutions

to 𝑧̇ = 𝑓0(𝑧) and 𝑧̇ = 𝑓1(𝑧) do not exhibit “finite escape times.” We say that

𝑧 : [𝑡0, 𝑇) → R𝑛 with 𝑡0 < 𝑇 has a finite escape time 𝑇 if lim𝑡↗𝑇 |𝑧(𝑡)| = ∞.

Lemma 2.3 (Maximal Solutions are Complete). Suppose 𝐵 is a 𝒞1 barrier function

of 𝐾 for 𝑧̇ = 𝑓0(𝑧); the functions 𝑓0, 𝑓1, 𝜃0, 𝜃1, 𝛿0, and 𝛿1 are continuous; for each

𝑞 ∈ {0, 1}, no solution to

𝑧̇ = 𝑓𝑞(𝑧) 𝑧 ∈ 𝒵𝑞

has a finite escape time; and the threshold functions 𝜃0, 𝜃1, 𝛿0, and 𝛿1 are continuous

and satisfy the inequalities in (2.7). Then, every maximal solution 𝜙 to ℋ in (2.6)

is complete. If, additionally, 𝜙 is bounded, then sup𝑡 dom(𝜙) = ∞ (that is, 𝜙 is

defined for all ordinary time 𝑡 ≥ 0).

Proof. Our proof uses [3, Prop. 2.34]. For a hybrid system ℋ′ = (𝐶 ′, 𝑓 ′, 𝐷′, 𝑔′), a

point 𝑥0 ∈ 𝐶 ′ ∪ 𝐷′ is said to satisfy the viability condition (VC) if there exists a

neighborhood 𝑈 of 𝑥0 such that 𝑓 ′(𝑥) ∈ 𝑇𝐶′(𝑥) for every 𝑥 ∈ 𝑈 ∩ 𝐶 ′.

To show that VC holds for ℋ at every point in 𝐶 ∖𝐷, we use the following fact:

For any set 𝑆 ⊂ R𝑛, the tangent cone of 𝑆 at an interior point 𝑥 ∈ int𝑆 is the entire

space. That is,

𝑇𝑆(𝑥) = 𝑇R𝑛(𝑥) ∀𝑥 ∈ int𝑆.

32

Because, by assumption, 𝐵 is 𝒞1 and 𝑓0, 𝑓1, 𝛿0, 𝛿1, 𝜃0, and 𝜃1 are continuous,

Lemma 2.1 asserts that 𝐶 is closed (A1). Because 𝐶 is closed and 𝐷 = 𝒳 ∖ 𝐶,
we have that 𝐶 ∖ 𝐷 ⊂ int𝐶. Thus, 𝑇𝐶(𝑥) = 𝑇𝒳 (𝑥) for all 𝑥 ∈ 𝐶 ∖ 𝐷. It follows

that for every 𝑥0 ∈ 𝐶 ∖𝐷, there exists a neighborhood 𝑈 ⊂ int𝐶 of 𝑥0 such that

𝑓p(𝑥) ∈ 𝑇𝐶(𝑥) for all 𝑥 ∈ 𝑈 ∩ 𝐶. Therefore, VC holds everywhere in 𝐶 ∖𝐷.

Because ℋ satisfies the hybrid basic conditions and VC holds at each point

in 𝐶 ∖ 𝐷, every maximal solution 𝜙 to ℋ satisfies exactly one of the following

conditions [3, Prop. 2.34]:

(M1) 𝜙 escapes to infinity in finite time.

(M2) 𝜙 leaves 𝐶 ∪𝐷.

(M3) 𝜙 is complete.

By assumption, every solution does not escape to infinity in finite time, ruling

out (M1). Furthermore, 𝑔(𝐷) ⊂ 𝐶 ∪𝐷 = 𝒳 , so, per the note in [3, Prop. 2.34], (M2)

does not occur. By elimination, only (M3) is possible, therefore every maximal

solution is complete.

Let 𝜙 be a maximal solution to ℋ and let 𝑇 := sup𝑡 dom(𝜙) and 𝐽 :=

sup𝑗 dom(𝜙). Because 𝜙 is complete, either 𝑇 = ∞ or 𝐽 = ∞ (or both). If 𝑇 = ∞,

then 𝜙 is defined for all ordinary time. Suppose 𝐽 = ∞. Let {𝑡𝑗}∞𝑗=0 be the sequence

of jump times in 𝜙. With the given assumptions, Lemma 2.2 asserts that there exists

𝛾 > 0 such that

𝑡𝑗+1 − 𝑡𝑗 ≥ 𝛾 for 𝑗 = 0, 1,

The infinite sum of a positive constant diverges, so

𝑇 =
∞∑︁
𝑗=0

𝑡𝑗+1 − 𝑡𝑗 ≥
∞∑︁
𝑗=0

𝛾 = ∞.

Theorem 2.2 (Forward Invariance). Suppose 𝐵 is a 𝒞1 barrier function of 𝐾 for

𝑧̇ = 𝑓0(𝑧); the vector fields 𝑓0 and 𝑓1 are continuous; the threshold functions 𝛿0, 𝛿1,

𝜃0, and 𝜃1 are continuous and satisfy the inequalities in (2.7); and for each 𝑞 ∈ {0, 1},
no solution to

𝑧̇ = 𝑓𝑞(𝑧) 𝑧 ∈ 𝒵𝑞

33

has a finite escape time. Then, 𝐾 ′ := 𝐾 × {0, 1} is forward invariant for ℋ and

every maximal solution 𝜙 to ℋ is complete. Furthermore, if 𝜙 is bounded, then

sup𝑡 dom(𝜙) = ∞.

Proof. By Theorem 2.1, the set 𝐾 ′ is forward pre-invariant for ℋ. Furthermore,

Lemma 2.3 asserts that every maximal solution is complete.

The “no finite escape time” assumption in Theorem 2.2 is satisfied if, for each

𝑞 ∈ {0, 1}, the vector field 𝑓𝑞 is globally Lipschitz continuous or the set 𝒵𝑞 is bounded.

Remark 2.1. Under the assumptions of Theorem 2.2, ℋ is well-posed because it

satisfies the hybrid basic conditions in [4, Assumption 6.5]. Solutions to a well-posed

hybrid system have (in a sense) continuous dependence on initial conditions, although

the sense of continuity is weaker (upper semi-continuous instead of continuous) than

it is for well-posed continuous-time systems [4, Chapter 6].

2.4 Unbounded Solutions Without Chattering

There are several practical difficulties with Lemma 2.2 and Theorem 2.2 that

we address in this section. Notably, the minimum dwell time 𝛾 > 0 in Lemma 2.2

depends on the choice of solution, rather than being a uniform lower bound that

applies to all solutions. This can cause problems if, for example, the minimum

dwell time 𝛾 for a particular solution is shorter than the clock rate of the computer

processor used to run the supervisor. Furthermore, if a solution is unbounded, then

the time between switches may converge to zero, as shown in Example 2.3, below. To

address these problems, Theorem 2.3 provides conditions for establishing a uniform

lower bound on the time between jumps for all solutions to ℋ (including unbounded

solutions).

Example 2.3. One can construct ℋ with 𝑧 ∈ R2 and with

𝑓0(𝑧) = (𝑧1,−1), 𝒵0↦→1 := {(𝑧1, 𝑧2) | 𝑧2 ≤ 0},

𝑓1(𝑧) = (𝑧1,+1), 𝒵1↦→0 :=
{︀
(𝑧1, 𝑧2)

⃒⃒
𝑧2 ≥ exp(−𝑧21)

}︀
,

such that ℋ satisfies the assumptions of Theorem 2.2. Consider a maximal and

complete solution 𝜙 that starts in the right-half plane. The 𝑧1-component of 𝜙 grows

exponentially, approaching +∞ as 𝑡+ 𝑗 → ∞, so 𝜙 is unbounded. Meanwhile, the

34

𝑧2-component of 𝜙 bounces between 𝒵0 ↦→1 and 𝒵1 ↦→0 as the distance between them

approaches zero—causing the time between switches to also approach zero. ◇

The following result, Lemma 2.4, establishes an upper bound on the distance

that a solution to a differential equation can travel in a fixed amount of time,

assuming a Lipschitz-continuous vector field.

Lemma 2.4. Suppose 𝑓 : R𝑛 → R𝑛 is Lipschitz continuous with Lipschitz constant

𝐿. Then, for each 𝑥0 ∈ R𝑛 and each solution 𝑡 ↦→ 𝜙(𝑡) to 𝑥̇ = 𝑓(𝑥) with 𝜙(0) = 𝑥0,

the distance between 𝜙 and 𝑥0 satisfies

|𝜙(𝑡)− 𝑥0| ≤ 𝑡|𝑓(𝑥0)| exp(𝐿𝑡) ∀𝑡 ≥ 0.

Proof. Take any 𝑥0 ∈ R𝑛 and 𝜏 ≥ 0. Let 𝑡 ↦→ 𝜙(𝑡) be a solution to 𝑥̇ = 𝑓(𝑥),

𝑥(0) = 𝑥0 and let 𝑡 ↦→ 𝜓(𝑡) = 𝑥0 + 𝑡𝑓(𝑥0). For each 𝑡 ≥ 0,⃒⃒⃒⃒
𝑓(𝜓(𝑡))− 𝑑𝜓

𝑑𝑡
(𝑡)

⃒⃒⃒⃒
=
⃒⃒⃒
𝑓
(︀
𝑥0 + 𝑡𝑓(𝑥0)

)︀
− 𝑓(𝑥0)

⃒⃒⃒
.

By Lipschitz continuity,⃒⃒⃒
𝑓
(︀
𝑥0 + 𝑡𝑓(𝑥0)

)︀
− 𝑓(𝑥0)

⃒⃒⃒
≤ 𝐿

⃒⃒⃒
𝑥0 + 𝑡𝑓(𝑥0)− 𝑥0

⃒⃒⃒
= 𝑡𝐿|𝑓(𝑥0)|.

Therefore, by the Solution Comparison Theorem in [15] with 𝜀 := 𝑡𝐿|𝑓(𝑥0)| implies

that for all 𝑡 ≥ 0,

|𝜙(𝑡)− 𝜓(𝑡)| ≤ 𝑡|𝑓(𝑥0)|(exp(𝐿𝑡)− 1). (2.12)

We substitute 𝑥0 = 𝜓(𝑡)− 𝑡𝑓(𝑥0) into |𝜙(𝑡)− 𝑥0|:

|𝜙(𝑡)− 𝑥0| = |𝜙(𝑡)− 𝜓(𝑡) + 𝑡𝑓(𝑥0)|.

Using the triangle inequality, we find

|𝜙(𝑡)− 𝑥0| ≤ |𝜙(𝑡)− 𝜓(𝑡)|+ 𝑡|𝑓(𝑥0)|.

Using inequality (2.12), we find that for all 𝑡 ≥ 0,

|𝜙(𝑡)− 𝑥0| ≤ 𝑡|𝑓(𝑥0)|(exp(𝐿𝑡)− 1) + 𝑡|𝑓(𝑥0)|

= 𝑡|𝑓(𝑥0)| exp(𝐿𝑡).

Using the bound in Lemma 2.4, along with assumptions of Lipschitz continuity

for 𝑓0 and 𝑓1, Lemma 2.5 provides conditions to establish a uniform lower bound on

dwell times for all solutions to ℋ.

35

Lemma 2.5 (Uniform Lower Bound on Dwell Times). Consider ℋ in (2.6) with

data as in (2.8). Suppose 𝑓0 is Lipschitz continuous with Lipschitz constant 𝐿0. Let

𝜏 > 0 be fixed. If, for each 𝑧0 ∈ 𝒵0↦→1, the distance from 𝑧0 to 𝒵1↦→0 is greater than

𝑅0(𝑧0, 𝜏) := 𝜏 |𝑓0(𝑧0)| exp(𝐿0𝜏),

then, every solution to ℋ does not have a jump from 𝑞 = 0 to 𝑞 = 1 within a time

𝜏 after a jump from 𝑞 = 1 to 𝑞 = 0. Similarly, if, for each 𝑧1 ∈ 𝒵1↦→0, the distance

from 𝑧1 to 𝒵0↦→1 is greater than

𝑅1(𝑧1, 𝜏) := 𝜏 |𝑓1(𝑧1)| exp(𝐿1𝜏),

then, every solution to ℋ does not have a jump from 𝑞 = 1 to 𝑞 = 0 within a time 𝜏

after a jump from 𝑞 = 0 to 𝑞 = 1.

Proof. Take 𝜏 ≥ 0. Suppose that for each 𝑧0 ∈ 𝒵0↦→1, the distance from 𝑧0 to 𝒵1↦→0

is greater than 𝑅0(𝑧0, 𝜏). By Lemma 2.4 with 𝑓 := 𝑓0, the time it takes a solution

to ℋ to travel a distance 𝑅0(𝑧0, 𝜏) from any point 𝑧0 in 𝒵1↦→0 is at least 𝜏 . By

assumption, the distance from 𝑧0 to 𝒵0 ↦→1 is greater than 𝑅0(𝑧0, 𝜏), so no solution

from 𝒵1↦→0 can reach 𝒵0↦→1 in a time 𝑡 ≤ 𝜏 .

After a switch to 𝑞 = 0, a solution is in 𝒵1 ↦→0 and for a switch to 𝑞 = 1 to occur,

the solution must be in 𝒵0↦→1. Then, the solution must travel for a time greater than

𝜏 before it 𝒵0↦→1 where a switch to 𝑞 = 1 may occur. Therefore, the time between a

jump to 𝑞 = 0 and a jump to 𝑞 = 1 is greater than 𝜏 .

Lemma 2.5 leads immediately to Theorem 2.3, which asserts a minimum time

between all switches and thereby establishes that maximal solutions to ℋ exist for

all 𝑡 ≥ 0.

Theorem 2.3. Suppose that 𝐵 is a 𝒞1 barrier function of 𝐾 for 𝑧̇ = 𝑓0(𝑧); the

vector fields 𝑓0 and 𝑓1 are globally Lipschitz continuous with Lipschitz constants

𝐿0 and 𝐿1; the threshold functions 𝛿0, 𝛿1, 𝜃0, and 𝜃1 are continuous and satisfy

the inequalities in (2.7); and there exists 𝜏 > 0 such that for all 𝑧0 ∈ 𝒵0↦→1 and

𝑧1 ∈ 𝒵1↦→0, the following hold:

|𝑧0 − 𝑧1| ≥ 𝜏 |𝑓0(𝑧0)| exp(𝐿0𝜏), (2.13)

|𝑧0 − 𝑧1| ≥ 𝜏 |𝑓1(𝑧1)| exp(𝐿1𝜏). (2.14)

36

Then, for every solution 𝜙 to ℋ in (2.6), and each pair of jump times 𝑡𝑗 and 𝑡𝑗+1

in dom(𝜙), we have that 𝑡𝑗+1− 𝑡𝑗 ≥ 𝜏 . Furthermore, if 𝜙 is a maximal solution, then

sup𝑡 dom(𝜙) = ∞.

Proof. Because 𝑓0 and 𝑓1 are globally Lipschitz continuous, maximal solutions to

𝑧̇ = 𝑓0(𝑧) and 𝑧̇ = 𝑓1(𝑧) exist for all 𝑡 ≥ 0, so no solutions have a finite escape time.

By Lemma 2.3 with the given assumptions, every maximal solution to ℋ is complete.

By Lemma 2.5, every solution to ℋ does not have a jump within a time 𝜏 after

another jump. Therefore, every maximal solution 𝜙 to ℋ exists for all 𝑡 ≥ 0.

The following example illustrates Theorem 2.3 with a system that has un-

bounded solutions.

Example 2.4. Consider the plant

𝑧̇ = 𝑓p(𝑧, 𝑢) :=

⎡⎣𝑧1
𝑢

⎤⎦, 𝑧 = (𝑧1, 𝑧2) ∈ R2, 𝑢 ∈ R

with admissible set 𝐾 :=
{︀
𝑧 ∈ R2

⃒⃒
𝑧2 ≤ 0

}︀
, certified controller 𝜅0(𝑧) := −|𝑧1|,

barrier function 𝐵(𝑧) := 𝑧2, uncertified controller 𝜅1(𝑧) := |𝑧1|, and threshold

functions 𝛿0(𝑧) := −2− 2|𝑧1| and 𝛿1(𝑧) := −1− |𝑧1|. The threshold functions 𝜃0 and

𝜃1 have no effect because 𝐵̇1(𝑧) = |𝑧1| ≥ 0. Thus, the switching sets are

𝒵0↦→1 = {(𝑧1, 𝑧2) ∈ R𝑛 | 𝑧2 ≤ −2− 2|𝑧1|},

𝒵1↦→0 = {(𝑧1, 𝑧2) ∈ R𝑛 | 𝑧2 ≥ −1− |𝑧1|}.

By Theorem 2.2, 𝐾 is forward invariant for ℋ. We can apply Theorem 2.3 to

show that solutions exist for all 𝑡 ≥ 0 and the time between every pair of jumps

is longer than 𝜏 := 0.25 sec. The vector fields 𝑓0 and 𝑓1 are globally Lipschitz

continuous with Lipschitz constants 𝐿0 = 𝐿1 = 1. Take any points 𝑧0 := (𝑧01 , 𝑧
0
2) ∈

𝒵0↦→1 and 𝑧1 := (𝑧11 , 𝑧
1
2) ∈ 𝒵1↦→0. Using the geometry of 𝒵0↦→1 and 𝒵1↦→0, and the

fact that 𝜏 exp(𝐿0𝜏) = 𝜏 exp(𝐿1𝜏) = 0.25 exp(0.25) < 1
3 , we find

|𝑧0 − 𝑧1| ≥ |𝑧01 |+ 1√
5

>
1

3
|𝑧01 | > 𝜏 |𝑓0(𝑧0)| exp(𝐿0𝜏),

|𝑧0 − 𝑧1| ≥ |𝑧11 |+ 1√
2

>
1

3
|𝑧11 | > 𝜏 |𝑓1(𝑧1)| exp(𝐿1𝜏).

37

0 20 40

z1

-80

-60

-40

-20

0

z 2

Phase Plot

?(0; 0)

Inadmissible
Z17!0

? (q = 0)
? (q = 1)
Z07!1

!103

!101

Switching Criteria

/1(z)
B(z)
/0(z)

0 5 10 15 20 25 30 35

t [s]

0

1
q

Figure 2.5. A solution 𝜙 to ℋ in Example 2.4 (left) and the corresponding
switching criteria for 𝜙 (right).

Take any 𝑧(1) = (𝑧
(1)
1 , 𝑧

(1)
2) ∈ 𝜕𝒵0↦→1. Thus, 𝐵(𝑧(1)) = 𝛿0(𝑧

(1)) = −2 − 2|𝑧(1)1 |. By

the Lipschitz continuity of 𝐵 and 𝛿1, for all 𝑧
′ ∈ R2 such that |𝑧′ − 𝑧(1)| ≤ 𝑅(𝑧(1), 𝜏),

|𝐵(𝑧′)−𝐵(𝑧(1))| ≤ 𝑅(𝑧(1), 𝜏)𝐿𝐵 <
1

3
|𝑧(1)1 |,

|𝛿1(𝑧′)− 𝛿1(𝑧
(1))| ≤ 𝑅(𝑧(1), 𝜏)𝐿𝛿1 <

1

3
|𝑧(1)1 |.

Using triangle inequalities and substitution we find 𝐵(𝑧′) < 𝛿1(𝑧
′), so 𝑧′ is not in

𝜕𝒵1↦→0. This shows that 𝐵(𝑧′) < 𝛿1(𝑧
′), so 𝑧′ is not in 𝜕𝒵1↦→0. Therefore, (2.13)

and (2.14) are satisfied, so Theorem 2.3 asserts that every solution to ℋ exists for all

time 𝑡 ≥ 0. A solution to ℋ is shown in Figure 2.5 and the corresponding switching

criteria are shown in Figure 2.5. ◇

It is important to note the effects of discrete sampling in the supervisor. If the

supervisor only checks the switching conditions periodically (instead of continuously)

with some sample time 𝑇𝑠 > 0, then the set 𝐾 is not, in general, forward invariant

for ℋ. In particular, for Example 2.4, solutions that start with 𝜙(0, 0) in 𝜕𝐾 × {1}
will leave 𝐾 due to the supervisor applying 𝜅1 over the interval [0, 𝑇𝑠), before the

first update. If, however, the threshold functions 𝛿0 and 𝜃0 are chosen such that the

distance from 𝒵0↦→1 to R𝑛 ∖𝐾 is farther than the system can travel in time 𝑇𝑠, then

solutions that start in 𝒵0↦→1 will never leave 𝐾.

Conclusion

In this chapter, we designed a supervisory hybrid control algorithm that switches

between a given barrier-certified controller that renders a desired set forward invari-

38

ant and an uncertified controller that may not. The resulting hybrid control strategy

guarantees forward invariance while preferentially using the uncertified controller.

Our approach allows for advanced controllers, such as neural networks and MPC, to

be safely used while avoiding the difficult task of constructing barrier functions for

them.

The next chapter considers a similar system as was considered here, but with

the goal of ensuring uniform global asymptotic stability. Chapter 4 provides results

for extending the strategy in this chapter to hybrid plants with hybrid controllers,

including systems with set-valued dynamics. Among other uses, that extension can

be applied to use discontinuous static feedback controllers.

39

Chapter 3

Uniting Feedback for Asymptotic

Stability with Static Controllers

In this chapter, we present a hybrid control strategy for rendering a set uniformly

globally asymptotically stable using uniting feedback to switch between two static

feedback controllers. One controller is Lyapunov-certified, which we exploit to

allow us to opportunistically use the second controller, which is uncertified, while

retaining the guarantee of asymptotic stability. This chapter introduces important

ideas for ensuring convergence with uniting feedback and serves as a stepping stone

to Chapter 4 which handles the general case of a hybrid plant with hybrid controllers.

As in Chapter 2, we consider a continuous time plant

𝑧̇ = 𝑓p(𝑧, 𝑢) (3.1)

with state 𝑧 ∈ R𝑛 and input 𝑢 ∈ R𝑚. Let 𝒜p ⊂ R𝑛 be a given nonempty set we

want to render globally asymptotically stable. Let 𝜅0, 𝜅1 : R𝑛 → R𝑚 be given

static feedback controllers. For 𝑞 ∈ {0, 1}, we write the closed-loop system using

the feedback control law 𝑢 = 𝜅𝑞(𝑧) as 𝑧̇ = 𝑓𝑞(𝑧) := 𝑓p(𝑧, 𝜅𝑞(𝑧)). We assume that

𝜅0 renders 𝒜p globally asymptotically stable, as asserted by the existence of a

differentiable Lyapunov function 𝑉p, as formalized in Assumption 3.1, below.

Assumption 3.1 (Lyapunov Conditions). For 𝑧̇ = 𝑓0(𝑧) and a nonempty compact

set 𝒜p, there exists a differentiable function 𝑉p : R𝑛 → R≥0 such that

(L1) There exists 𝛼1, 𝛼2 ∈ 𝒦∞ such that

𝛼1(|𝑧|𝒜) ≤ 𝑉p(𝑧) ≤ 𝛼2(|𝑧|𝒜) ∀𝑧 ∈ R𝑛.

40

(L2) There exists a lower semicontinuous function 𝜎 : R𝑛 → R≥0 that is positive

definite with respect to 𝒜p such that

⟨∇𝑉p(𝑧), 𝑓0(𝑧)⟩ ≤ −𝜎(𝑧) ∀𝑧 ∈ R𝑛. ◇

The function 𝑉p in Assumption 3.1 is called a Lyapunov function1 of 𝒜p for

𝑧̇ = 𝑓0(𝑧). Condition (L2) is sufficient for 𝒜p to be globally asymptotically stable

for 𝑧̇ = 𝑓0(𝑧). If 𝒜p is compact, then Assumption 3.1 is sufficient for 𝒜p to be

uniformly globally asymptotically stable for 𝑧̇ = 𝑓0(𝑧). If Assumption 3.1 is satisfied

by 𝑧̇ = 𝑓(𝑧, 𝜅0(𝑧)) with Lyapunov function 𝑉p, we say that 𝜅0 is a Lyapunov-certified

controller.

In this chapter we design a supervisor for switching between 𝜅0 and 𝜅1, as

shown in Figure 3.1, such that

1. 𝒜p is uniformly globally asymptotically stable,

2. the time between jumps is lower bounded by a positive constant, and

3. the uncertified controller 𝜅1 is preferred over the certified controller 𝜅0.

The resulting closed-loop system is hybrid, which we model as in (1.3).

 Switching

Logic

Plant

Hybrid Control Strategy

Figure 3.1. The switching logic passes 𝑞 as an output to a switch, which deter-
mines whether 𝜅0 or 𝜅1 is applied to the plant.

3.1 Hybrid Control Strategy

Our hybrid control strategy uses the plant state 𝑧 ∈ R𝑛p , the logic variable

𝑞 ∈ {0, 1} (described above), and an auxiliary variable 𝑣 ≥ 0. The purpose of each

1There are many varieties of Lyapunov function in the literature, so this should not be taken

as one of many competing definitions.

41

variable is summarized here:

∙ 𝑧 ∈ R𝑛p is the state of the plant. Our goal is to steer 𝑧 asymptotically to 𝒜p.

∙ 𝑞 ∈ {0, 1} determines the current feedback controller. When 𝑞 = 0, then

𝑢 = 𝜅0(𝑧) is used and when 𝑞 = 1, then 𝑢 = 𝜅1(𝑧) is used.

∙ 𝑣 ∈ R≥0 is used to measure whether 𝑉p(𝑧) is converging fast enough. When

using the 𝜅1 controller, 𝑉p(𝑧) may increase because 𝜅1 is not Lyapunov-certified,

so we impose 𝑣 as an upper bound on 𝑉p(𝑧), thereby restricting how much 𝑉p(𝑧)

can grow (or fail to decrease) before triggering a switch to 𝑞 = 0. During flows

𝑣 decreases, converging to zero (per the dynamics of 𝑣 designed in Section 3.2).

Because 𝑣 converges to zero, 𝑉p(𝑧) will be squeezed to zero also.

The state of the closed-loop system is then

𝑥 := (𝑧, 𝑣, 𝑞) ∈ 𝒳 := R𝑛p × R≥0 × {0, 1}, (3.2)

and the set that we want the closed-loop system to asymptotically stabilize is

𝒜 := {𝑥 ∈ 𝒳 | 𝑧 ∈ 𝒜p, 𝑣 = 0} = 𝒜p × {0} × {0, 1}. (3.3)

The core idea of our hybrid control strategy is as follows:

1. The auxiliary variable 𝑣 acts as an upper bound on 𝑉p(𝑧). The dynamics of 𝑣

chosen such that 𝑣 converges to zero.

2. The system switches from 𝑞 = 1 to 𝑞 = 0—that is, from the uncertified con-

troller 𝜅1 to the certified controller 𝜅0—when 𝑉p(𝑧) ≥ 𝑣.2

3. The system switches from 𝑞 = 0 (the certified controller 𝜅0) to 𝑞 = 1 (the

uncertified controller) when 𝑉p(𝑧) is less than 𝑣 with a sufficiently large gap

or buffer between the values. The size of the buffer between 𝑉p(𝑧) and 𝑣 that

is required to switch is defined by a function 𝑧 ↦→ 𝛿(𝑧) such that 𝛿(𝑧) > 0 for

all 𝑧 ∈ R𝑛p . We call 𝛿 a buffer function.

2Technically, the system is permitted to switch when 𝑉p(𝑧) = 𝑣 and must switch when 𝑉p(𝑧) > 𝑣

or 𝑉p(𝑧) = 𝑣 and 𝑉p(𝑧) would increase relative to 𝑣. These technicalities are handled by the

mathematical analysis, but unimportant in practice since 𝑉p(𝑧) = 𝑣 is numerically unlikely to occur,

except at 𝑉p(𝑧) = 𝑣 = 0.

42

At each switch, 𝑣 is set to 𝑣+ = max{𝑉p(𝑧), 𝑣}, causing 𝑣 to increase if 𝑉p(𝑧) is

larger than 𝑣, otherwise 𝑣 is not changed. Between switches, 𝑣 evolves according to

𝑣̇ = 𝑓v(𝑧, 𝑣), where 𝑓v is designed to force 𝑣 to converge to zero. In particular,

𝑣̇ = 𝑓v(𝑧, 𝑣) := −𝛾 tanh(𝑣)𝜎0(𝑧)− 𝜇
(︀
𝑣 − 𝑉p(𝑧)

)︀
, (3.4)

where 𝛾 ∈ (0, 1], 𝜇 > 0, and 𝜎0 is the bound on the rate of change of 𝑉p given in

the Lyapunov condition (L2). The parameters 𝛾 and 𝜇 affect the rate at which 𝑣

converges. The term −𝜇(𝑣−𝑉p(𝑧)) pulls 𝑣 toward 𝑉p(𝑧), which helps 𝑣 to “catch up”

if 𝑉p(𝑧) has dropped quickly, or causes 𝑣 to grow if it is initialized less than 𝑉p(𝑧).

The term −𝛾 tanh(𝑣)𝜎0(𝑧) pulls 𝑣 toward 0, which ensures that 𝑣 converges to 0 if

𝑉p(𝑧) stagnates at some nonzero value. When 𝑣 = 0, 𝑓v(𝑧, 𝑣) must be nonnegative,

to avoid pushing 𝑣 below zero, so the hyperbolic tangent tanh(𝑣) is used as a sigmoid

function that goes to zero as 𝑣 → 0. The specific criteria for switching are defined,

as follows.

∙ While the feedback controller 𝜅0 is applied to the plant, due to 𝑞 being equal

to 0, we monitor 𝑉p(𝑧), 𝛿(𝑧), and 𝑣. If ever 𝑉p(𝑧) + 𝛿(𝑧) ≤ 𝑣, we allow a

switch from 𝑞 = 0 to 𝑞 = 1, since there is a sufficient buffer to safely use the

uncertified controller. Conversely, if 𝑉p(𝑧) + 𝛿(𝑧) ≥ 𝑣, then the system holds

𝑞 = 0 since there is not enough of a buffer.

∙ While the feedback controller 𝜅1 is applied, due to 𝑞 being equal to 1, the

values of 𝑉p(𝑧) and 𝑣 are monitored. The system switches from 𝑞 = 1 to 𝑞 = 0

if ever 𝑉p(𝑧) ≥ 𝑣, since this indicates that 𝜅1 has eliminated the buffer between

𝑉p(𝑧) and 𝑣. While 𝑞 = 1 and either 𝑉p(𝑧) ≤ 𝑣, the system flows, holding 𝑞 = 1,

meaning the system continues to use 𝜅1.

After each switch to 𝑞 = 1, a subsequent switch back to 𝑞 = 0 indicates that 𝜅1

caused 𝑉p(𝑧) to either increase or decrease less quickly than 𝑣 over an interval of

time. The buffer between 𝑉p(𝑧) and 𝑣 upon a switch to 𝑞 = 1 permits the uncertified

controller to increase the value of 𝑉p(𝑧) briefly. The assumptions on 𝑓v, however,

ensure that 𝑣 converges to zero, so 𝑉p(𝑧) is either squeezed to zero or a switch to

𝑞 = 0 is eventually triggered when 𝑉p(𝑧) = 𝑣 occurs.

Before we formulate the hybrid closed-loop system, we demonstrate the switch-

ing logic with a toy example.

43

t [s]
0 2 4 6 8 10

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Plant State

50 only

51 only

Switched

10!4

10!2

100

Switching Criteria

v (q = 0)
v (q = 1)

VP(z) + /(z)

VP(z)

t [s]
0 2 4 6 8 10

0

1

q

Figure 3.2. Trajectories of 𝑧 (left) from Example 3.1 using 𝜅0 only, 𝜅1, and
opportunistic switching between 𝜅0 and 𝜅1, and trajectories of 𝑞, 𝑣, 𝑉p(𝑧) +
𝛿(𝑧), and 𝑉p(𝑧) (right), which determine switches.

Example 3.1. Consider the plant 𝑧̇ = 𝑢 with 𝑧, 𝑢 ∈ R and controllers 𝜅0(𝑧) := −𝑧
and 𝜅1(𝑧) := −2𝑧 sin(1/(𝑧 + 0.1)). The controller 𝜅0 is certified to render the set

𝒜p := {0} UGAS by he Lyapunov function 𝑧 ↦→ 𝑉p(𝑧) :=
1
2𝑧

2 with 𝜎(𝑧) := 𝑧2. For

the supervisor parameters, let 𝛾 := 1/2, 𝜇 := 2, and 𝛿(𝑧) := |𝑧|2. Figure 3.2 shows

solutions to 𝑧̇ = 𝜅0(𝑧) and 𝑧̇ = 𝜅1(𝑧) (without switching), and to 𝑧̇ = 𝜅𝑞(𝑧) with

𝑞 switching according to our hybrid control strategy.3 Initially, the solution with

the feedback 𝜅1 decreases quickly, but it fails to converge to zero, instead becoming

stuck above 𝑧 = 0.2. On the other hand, the solution with the certified feedback

𝜅0 converges to the origin. For the solution with switching, 𝑣 reaches 𝑉p(𝑧) around

𝑡 = 6 sec, which triggers a switch to 𝜅0. After 𝑡 = 6 sec, 𝑉p(𝑧) decreases quickly until

the buffer between 𝑉p and 𝑣 is larger than 𝛿(𝑧), triggering a switch back to 𝜅1. ◇

3Simulations are computed in Matlab with the HyEQ Toolbox [14].

44

3.2 Construction of the Closed-Loop System with Static

Feedback

We are now ready to define the hybrid closed-loop system. If 𝑞 = 0, jumps occur

when 𝑥 = (𝑧, 𝑣, 𝑞) is in

𝐷0↦→1 := {(𝑧, 𝑣, 0) ∈ 𝒳 | 𝑉p(𝑧) + 𝛿(𝑧) ≤ 𝑣} (3.5)

and flows occur when 𝑥 is in

𝐶0 := {(𝑧, 𝑣, 0) ∈ 𝒳 | 𝑉p(𝑧) + 𝛿(𝑧) ≥ 𝑣}. (3.6)

Similarly, if 𝑞 = 1, then the system jumps when 𝑥 is in

𝐷1↦→0 := {(𝑧, 𝑣, 1) ∈ 𝒳 | 𝑉p(𝑧) ≥ 𝑣} (3.7)

and flows when 𝑥 is in

𝐶1 := {(𝑧, 𝑣, 1) ∈ 𝒳 | 𝑉p(𝑧) ≤ 𝑣} (3.8)

The jump set is then defined as 𝐷 := 𝐷0↦→1 ∪𝐷1↦→0 and the flow set is 𝐶 := 𝐶0 ∪ 𝐶1.

Note that the flow set is the closed complement of the jump set, i.e., 𝐶 = 𝒳 ∖𝐷.

At each jump, 𝑧 is constant, since the plant state is continuous in time; 𝑣 is

set to 𝑣+ = max{𝑉p(𝑧), 𝑣} to record the of 𝑉p(𝑧) if it is larger than 𝑣. Due to the

design of 𝐷0↦→1 and 𝐷1 ↦→0, the value of 𝑣 after a switch to 𝑞 = 0 is always 𝑉p(𝑧) and

the value of 𝑣 does not change at a switch to 𝑞 = 1. The mode 𝑞 is toggled to the

opposite value in {0, 1}. During flows, 𝑧 evolves according to 𝑧̇ = 𝑓p(𝑧, 𝜅𝑞(𝑧)), the

auxiliary variable 𝑣 evolves according to 𝑣̇ = 𝑓v(𝑧, 𝑣), and the logic variable 𝑞 is held

constant (𝑞 = 0).

The construction above leads to the hybrid closed-loop system ℋ = (𝐶, 𝑓,𝐷, 𝑔)

with state 𝑥 = (𝑧, 𝑣, 𝑞) ∈ 𝒳 and data given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓(𝑥) :=

⎡⎢⎢⎣
𝑓𝑞(𝑧)

𝑓v(𝑥)

0

⎤⎥⎥⎦ ∀𝑥 ∈ 𝐶 := 𝐶0 ∪ 𝐶1

𝑔(𝑥) :=

⎡⎢⎢⎣
𝑧

max{𝑉p(𝑧), 𝑣}
1− 𝑞

⎤⎥⎥⎦ ∀𝑥 ∈ 𝐷 := 𝐷0↦→1 ∪𝐷1↦→0

(3.9)

45

Proposition 3.1. Suppose that

1. 𝑓p, 𝜅0, 𝜅1, and 𝛿 are continuous;

2. 𝑓p and 𝜅0 satisfy Assumption 3.1 for 𝒜p with Lyapunov function 𝑉p, and

3. 𝛿(𝑧) > 0 for all 𝑧 ∈ R, 𝛾 > 0, and 𝜇 > 0

Then, the set 𝒜 in (3.3) is UGAS for ℋ given in (3.9) and for each solution 𝜙 to ℋ,

sup 𝑡 dom(𝜙) = ∞,

and there exists a minimum dwell time 𝑑min > 0 between switches.

The proof Proposition 3.1 is conducted by constructing a new Lyapunov function

for the closed-loop system, namely

𝑉 (𝑥) := max{𝑉p(𝑧), 𝑣}.

We defer the proof until Chapter 4 where we consider a more general case of the

control strategy in this chapter.

Example 3.2 (LQR). Consider the nonlinear

𝑧̇ =

⎛⎝ ⎡⎣ 1 2

−2 1

⎤⎦
⏟ ⏞

=:𝐴1

+min{|𝑧|, 1}

⎡⎣−2 0

4 −1

⎤⎦
⏟ ⏞

=:𝐴2

⎞⎠𝑧 +
⎡⎣2 1

3 4

⎤⎦
⏟ ⏞

=:𝐵

𝑢, (3.10)

and the set 𝒜p := {0}. This system behaves like 𝑧̇ = 𝐴1𝑧 +𝐵𝑢 near the origin

and like 𝑧̇ = (𝐴1 + 𝐴2)𝑧 + 𝐵𝑢 far from it. The origin of (3.10) is UGAS for

𝜅0(𝑧) :=
[︀−5 0

0 −6

]︀
𝑧. For 𝜅1, we linearize (3.10) about the origin and use the linear

quadratic regulator (LQR) feedback that solves the following infinite-horizon optimal

control problem:

minimize
𝑢

∫︁ ∞

0
|𝑧(𝑡)|2 + |𝑢(𝑡)|2 𝑑𝑡

subject to 𝑧̇ = 𝐴1𝑧 +𝐵𝑢.

(3.11)

The LQR feedback is

𝜅1(𝑧) := −

⎡⎣−1.82 −0.50

−0.61 −0.87

⎤⎦𝑧.
46

z1

5 10

z2

-10

-8

-6

-4

-2

2

Plant State

z0

z (q = 0)
z (q = 1)

10!4

10!2

100

Supervisor Values

v (q = 0)
v (q = 1)

VP(z) + /(z)

VP(z)

100

u0

u1

u

t [s]
0 0.5 1 1.5 2

0

1

q

Figure 3.3. Trajectories for the plant and supervisor states in Example 3.2
starting from 𝑧0 := (11, 2) and 𝑣0 := 30.

Figure 3.3 shows a solution to the hybrid closed-loop system using 𝑓v from (3.4)

with 𝛾 = 2 and 𝜇 = 4, and 𝛿(𝑧) = 1
10 |𝑧|2 + 10−3. The switching logic uses 𝜅1 near

the origin, reducing |𝑢|. The buffer between 𝑣 and 𝑉p(𝑧) allows 𝑉p(𝑧) to briefly slow

without triggering a switch to 𝑞 = 0. The switch is followed by a spike in control

effort, a period of faster convergence, and a subsequent switch back to 𝑞 = 1. ◇

47

Chapter 4

Uniting Feedback with Hybrid

Controllers and a Hybrid Plant

In this chapter, we extend the hybrid control strategy that allows for uniting

feedback between a certified controller and one that is uncertified (in some sense)

to the case of systems with hybrid controllers and plants with set-valued dynamics.

Specifically, we extend the strategy in Chapter 3 for uniting feedback to achieve

asymptotic stability from the case of pure feedback (“memoryless”) controllers, to a

strategy for plants and controllers modeled as hybrid systems with inputs, including

set-valued dynamics given by differential inclusions and difference inclusions.

4.1 Uniting Feedback for Hybrid Plant with Hybrid

Controllers

In this section, we consider the case where the plant, certified controller, and

uncertified controller are all hybrid inclusions with inputs, as described in [3]. The

closed-loop system ℋ, depicted in Figure 4.1, is composed a plant ℋp, controllers

ℋk0 and ℋk1 , a supervisor ℋs, and a switch. The system is designed under the

assumption that ℋk0 is certified to achieve some property whereas ℋk1 is uncertified.

The state of the closed-loop system is 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) where 𝑧 ∈ R𝑛p , 𝜂0 ∈ R𝑛0 ,

𝜂1 ∈ R𝑛1 , and (𝑣, 𝑞) ∈ R𝑛s × {0, 1} are the states of the respective subsystems ℋp,

ℋk0 , ℋk1 , and ℋs. To allow for restricted state spaces for each subsystem, we define

ℰp,0 ⊂ R𝑛p × R𝑛0 , ℰ1 ⊂ R𝑛1 , and 𝒱 ⊂ R𝑛s such that (𝑧, 𝜂0) ∈ ℰp,0, 𝜂1 ∈ ℰ1, and
𝑣 ∈ 𝒱. The closed-loop state 𝑥 has dimension 𝑛 := 𝑛p+𝑛0+𝑛1+𝑛s+1 and belongs

48

to a set 𝒳 ⊂ R𝑛 defined as

𝒳 := ℰp,0 × ℰ1 × 𝒱 × {0, 1}. (4.1)

To facilitate discussion of the separate modes, let

𝒳0 := {(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 | 𝑞 = 0} and 𝒳1 := {(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 | 𝑞 = 1}.

The subsystems are written as

ℋp :

⎧⎨⎩ 𝑧̇ ∈ 𝐹p(𝑧, 𝑢) (𝑧, 𝑢) ∈ 𝐶p

𝑧+ ∈ 𝐺p(𝑧, 𝑢) (𝑧, 𝑢) ∈ 𝐷p.

input: 𝑢

state: 𝑧
(4.2a)

ℋk0
:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜂̇0 ∈ 𝐹k0(𝑧, 𝜂0) (𝑧, 𝜂0) ∈ 𝐶k0

𝜂+

0 ∈ 𝐺k0(𝑧, 𝜂0) (𝑧, 𝜂0) ∈ 𝐷k0

𝑢0 = 𝜅0(𝑧, 𝜂0).

input: 𝑧

state: 𝜂0

output: 𝑢0

(4.2b)

ℋk1
:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜂̇1 ∈ 𝐹k1(𝑥) 𝑥 ∈ 𝐶k1

𝜂+

1 ∈ 𝐺k1(𝑥) 𝑥 ∈ 𝐷k1

𝑢1 = 𝜅1(𝑥).

inputs: 𝑧, 𝜂0, 𝑣, 𝑞

state: 𝜂1

output: 𝑢1

(4.2c)

ℋs :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣𝑣̇
𝑞

⎤⎦ =

⎡⎣𝑓v(𝑥)
0

⎤⎦ 𝑥 ∈ 𝐶s⎡⎣𝑣+

𝑞+

⎤⎦ =

⎡⎣𝑔v(𝑥)
1− 𝑞

⎤⎦ 𝑥 ∈ 𝐷s

inputs: 𝑧, 𝜂0, 𝜂1

state: 𝑣, 𝑞.
(4.2d)

The output 𝑞 ∈ {0, 1} from ℋs determines whether the plant ℋp receives its input

from ℋk0 or ℋk1 . The supervisor’s flow and jump sets are defined as

𝐶s := (𝒮0 × {0}) ∪ (𝒮1 × {1}) and 𝐷s := (𝒮0↦→1 × {0}) ∪ (𝒮1↦→0 × {1}),

where 𝒮0↦→1 and 𝒮1↦→0 are called the switching sets of ℋs and 𝒮0 and 𝒮1 are called

the hold sets of ℋs. The switching set 𝒮0 ↦→1 and 𝒮1 ↦→0 determine where 𝑞 switches

from 0 to 1, and from 1 to 0, respectively. The hold set 𝒮0 determines when the

supervisor is allowed to continue using 𝑞 = 0, if 𝑞 is already 0, whereas 𝒮1 determines

where ℋs will continue using 𝑞 = 1. The functions 𝑓v and 𝑔v define the dynamics of

the supervisor’s auxiliary variable, 𝑣. One choice of supervisor to achieve uniform

global asymptotic stability is given in Section 4.2.

49

Certified Controller

Uncertified Controller

Supervisor

Plant

Figure 4.1. Feedback diagram for the hybrid closed-loop system ℋ using a hybrid
plant ℋp, hybrid controllers ℋk0

and ℋk1
, and supervisor ℋs.

The controller ℋk0 will be called the certified controller because we assume the

existence of a (barrier or Lyapunov) certificate function for the closed-loop system

formed from ℋp and ℋk0 . On the other hand, ℋk1 will be called the uncertified

controller, because no such assumption is made.

By passing (𝑧, 𝜂0, 𝑣, 𝑞) toℋk1 , we permit the uncertified controller to be designed

with it full knowledge of the state of all of the subsystems. In practice, the inputs

used by ℋk1 will typically be limited to 𝑧, but allowing ℋk1 access to the full state

of the closed-loop system allows designers to exploit knowledge of other subsystems.

We have two examples of how this can be useful. If the uncertified controller is

a learning-based controller, then the certified controller can be used as an expert

demonstration to perform online training of the uncertified controller while 𝑞 = 0.

Alternatively, if the uncertified controller is computationally expensive, then it may

be advantageous to stop the computations of the control values while 𝑞 = 0 (when

the certified controller is used) and only run expensive computations when 𝑞 = 1.

Since each subsystem ℋp, ℋk0 , ℋk1 , and ℋs has different sized inputs, states,

and outputs, it is notationally convenient to standardize the dimensions of the data

for each subsystem. To this end, we define 𝜅 : 𝒳 → 𝒰 such that 𝜅(𝑥) gives the

control value at any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 , selecting the control from ℋk0 and ℋk1

50

depending on the value of 𝑞 according to

𝜅(𝑥) :=

{︃
𝜅0(𝑧, 𝜂0) if 𝑞 = 0

𝜅1(𝑥) if 𝑞 = 1.
(4.3)

For each subsystem, we define the closed-loop (CL) flow maps 𝐹 cl
p : 𝒳 ⇒ R𝑛p ,

𝐹 cl
k0

: 𝒳 ⇒ R𝑛0 , 𝐹 cl
k1

: 𝒳 ⇒ R𝑛1 , and 𝐹 cl
s : 𝒳 ⇒ R𝑛s × {0} as

𝐹 cl
p (𝑥) := 𝐹p

(︀
𝑧, 𝜅(𝑥)

)︀
, 𝐹 cl

k0
(𝑥) := 𝐹k0(𝑧, 𝜂0), (4.4)

𝐹 cl
k1
(𝑥) := 𝐹k1(𝑥), 𝐹 cl

s (𝑥) :=

[︃
𝑓v(𝑥)

0

]︃
. (4.5)

Similarly, we define

𝐺cl
p (𝑥) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐺p(𝑧, 𝜅(𝑥))

𝜂0

𝜂1

𝑣

𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐺cl

k0
(𝑥) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑧

𝐺k0(𝑧, 𝜂0)

𝜂1

𝑣

𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.6)

𝐺cl
k1
(𝑥) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑧

𝜂0

𝐺k1(𝑥)

𝑣

𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐺cl

s (𝑥) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑧

𝜂0

𝜂1

𝑔v(𝑥)

1− 𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.7)

To simplify the construction of the closed-loop system, we will impose that

dom(𝐹p) = 𝐶p and dom(𝐺p) = 𝐷p,

which be achieved by restricting the domain of given functions. As a result of this

assumption,

𝐹p(𝑧, 𝑢) ̸= ∅ ⇐⇒ (𝑧, 𝑢) ∈ 𝐶p.

For 𝑥 ̸∈ dom(𝑓v), we define 𝐹 cl
s (𝑥) = ∅ and for 𝑥 ̸∈ dom(𝑔v), we define 𝐺cl

s (𝑥) = ∅.

It is worth noting that vector produced by each 𝐹 cl
⋆ matches the state dimension

of the subsystem ⋆, whereas the output of each 𝐺cl
⋆ matches the dimension 𝑛 of the

entire closed-loop system. This difference arises from the fact that the state of all of

the subsystems flow at the same time, but jump individually, so, for example, 𝐹 cl
p

only defines the flow for the plant ℋp as 𝑧̇ ∈ 𝐹 cl
p (𝑥), whereas 𝐺cl

p defines how all of

51

the subsystem states jump, according to 𝑧+ ∈ 𝐺p(𝑥), but all of the components in

𝑥 are unchanged except 𝑧.

The closed-loop subsystem flow and jump sets are given by

𝐶cl
p := {𝑥 ∈ 𝒳 | (𝑧, 𝜅(𝑥)) ∈ 𝐶p}, 𝐶cl

k0
:= 𝐶k0 × ℰ1 × 𝒱 × {0, 1},

𝐷cl
p :=

{︀
𝑥 ∈ 𝒳

⃒⃒ (︀
𝑧, 𝜅(𝑥)

)︀
∈ 𝐷p

}︀
, 𝐷cl

k0
:= 𝐷k0 × ℰ1 × 𝒱 × {0, 1},

𝐶cl
k1

:= 𝐶k1 , 𝐶cl
s := 𝐶s,

𝐷cl
k1

:= 𝐷k1 , 𝐷cl
s := 𝐷s.

(4.8)

The closed-loop system is

ℋ :

⎧⎨⎩𝐶 :=𝐶cl
p ∩𝐶cl

k0
∩𝐶cl

k1
∩𝐶cl

s , 𝐹 (𝑥) := 𝐹 cl
p (𝑥)×𝐹 cl

k0
(𝑥)×𝐹 cl

k1
(𝑥)×𝐹 cl

s (𝑥),

𝐷 :=𝐷cl
p ∪𝐷cl

k0
∪𝐷cl

k1
∪𝐷cl

s , 𝐺(𝑥) :=𝐺cl
p (𝑥)∪𝐺cl

k0
(𝑥)∪𝐺cl

k1
(𝑥)∪𝐺cl

s (𝑥).

(4.9)

The closures in the definitions of 𝐶cl
p and 𝐷cl

p are necessary to ensure the sets are

closed, since 𝜅1 is not assumed to be continuous. Compare the set{︀
𝑥 ∈ 𝒳

⃒⃒ (︀
𝑧, 𝜅(𝑥)

)︀
∈ 𝐷p

}︀
,

which may not include all of its boundary points (causing it to not be closed),

even if 𝐶p is closed, due to discontinuities in 𝜅1. By the construction of each 𝐺cl
⋆ ,

along with (B3) in Assumption 4.1 (below), we have that dom(𝐺cl
⋆) = 𝐷cl

⋆ for

each ⋆ ∈ {p,k0,k1, s}. Thus, the state 𝜂⋆ of subsystem ⋆ only jumps according to

𝜂+
⋆ ∈ 𝐺cl

⋆ (𝑥) if 𝑥 ∈ 𝐷cl
⋆ . More compactly, let 𝒮 := {p,k0,k1, s}. Then,

𝐹 (𝑥) :=
∏︁
⋆∈𝒮

𝐹 cl
⋆ (𝑥), 𝐶(𝑥) :=

⋂︁
⋆∈𝒮

𝐶cl
⋆ , 𝐺(𝑥) :=

⋃︁
⋆∈𝒮

𝐺cl
⋆ (𝑥), 𝐷(𝑥) :=

⋃︁
⋆∈𝒮

𝐷cl
⋆ .

It is convenient to define the closed-loop system composed of only the plant ℋp

and the certified controller ℋk0 , since ℋk0 is, by assumption, certified to produce

some property in this system.

𝐹p×0(𝑧, 𝜂0) :=

⎡⎣𝐹p

(︀
𝑧, 𝜅0(𝑧, 𝜂0)

)︀
𝐹k0(𝑧, 𝜂0)

⎤⎦ (4.10)

𝐺p×0(𝑧, 𝜂0) :=

⎡⎣𝐺p

(︀
𝑧, 𝜅0(𝑧, 𝜂0)

)︀
𝜂0

⎤⎦ ∪

⎡⎣ 𝑧

𝐺k0(𝑧, 𝜂0)

⎤⎦ (4.11)

𝐶p×0 :=
{︀
(𝑧, 𝜂0)

⃒⃒ (︀
𝑧, 𝜅0(𝑧, 𝜂0)

)︀
∈ 𝐶p, (𝑧, 𝜂0) ∈ 𝐶k0

}︀
(4.12)

𝐷p×0 :=
{︀
(𝑧, 𝜂0)

⃒⃒ (︀
𝑧, 𝜅0(𝑧, 𝜂0)

)︀
∈ 𝐷p or (𝑧, 𝜂0) ∈ 𝐷k0

}︀
. (4.13)

52

The closed loop system formed from ℋp and ℋk0 (without any switching between

controllers) is

ℋp×0 :

⎧⎨⎩
(︀
𝑧̇, 𝜂̇0

)︀
∈ 𝐹p×0(𝑧, 𝜂0) (𝑧, 𝜂0) ∈ 𝐶p×0(︀

𝑧+, 𝜂+

0

)︀
∈ 𝐺p×0(𝑧, 𝜂0) (𝑧, 𝜂0) ∈ 𝐷p×0.

(4.14)

Example 4.1 (Systems in Chapter 3). We can model the closed-loop system pre-

sented Chapter 3 using the model presented above. The plant in Chapter 3 is a

continuous-time system and the controllers are static feedback controllers, which we

write as

ℋp:
{︁
𝑧̇ = 𝐹p(𝑧, 𝑢) := 𝑓p(𝑧, 𝑢) , ℋk0

:
{︁
𝑢0 = 𝜅0(𝑧) and ℋk1

:
{︁
𝑢1 = 𝜅1(𝑧) .

The dynamics for ℋk0 and ℋk1 are omitted because 𝑛0 = 𝑛1 = 0. The supervisor

Chapter 3 has an internal state, and would be written as in (4.2d) with 𝑓v given

in (3.4), 𝑔v(𝑧, 𝑣) := max{𝑉p(𝑧), 𝑣} and

𝒮0↦→1 = {(𝑧, 𝑣) | 𝑉p(𝑧) + 𝛿(𝑧) ≤ 𝑣} 𝒮1↦→0 = {(𝑧, 𝑣) | 𝑉p(𝑧) ≥ 𝑣}

𝒮0 = {(𝑧, 𝑣) | 𝑉p(𝑧) + 𝛿(𝑧) ≥ 𝑣} 𝒮1 = {(𝑧, 𝑣) | 𝑉p(𝑧) ≤ 𝑣}.

The certified closed-loop system ℋp×0 in (4.14) reduces to

ℋp×0 :
{︁
𝑧̇ = 𝐹p×0(𝑧) := 𝑓p(𝑧, 𝜅0(𝑧)). ◇

The next several sections establish certain desirable properties for the closed-

loop system ℋ in the case of a generic supervisor. In Section 4.1.1, ℋ is regularized

to produce a system pℋ that satisfies the hybrid basic conditions under given assump-

tions. Sections 4.1.2 and 4.1.3 establish the existence of solutions for all 𝑡 ≥ 0. By

establishing these fundamental properties in the generic case, we can utilize them for

specific choices of supervisors, as we do in Section 4.2 where we design a supervisor

for global asymptotic stability.

4.1.1 Regularity of the Closed-loop System

We want to keep the assumptions on ℋk1 as weak as possible, so we do not

impose any sort of continuity assumptions on 𝜅1, 𝐹k1 and 𝐺k1 . As a result, ℋ
may violate the hybrid basic conditions (Definition 1.2). Analyzing systems without

53

the hybrid basic conditions is difficult, however. To mitigate, we perform system

regularization to construct a new system pℋ such that pℋ satisfies the hybrid basic

conditions, and every solution to ℋ is also a solution to pℋ. The second point

is important because it allows us to prove certain properties for pℋ (e.g., global

asymptotic stability) and infer that ℋ has the same property.

In particular, we define the regularized system as pℋ := (𝐶, p𝐹 ,𝐷, p𝐺) with p𝐹 and

p𝐺 defined identically to 𝐹 and 𝐺 except that 𝐹 cl
p , 𝐺cl

p , 𝐹 cl
k1
, 𝐺cl

k1
, are replaced by

the following regularization:

y𝐹 cl
p (𝑥) =

⎧⎪⎨⎪⎩
𝐹 cl
p (𝑥) if 𝑞 = 0⋂︁

𝛿>0

conv
(︀
𝐹 cl
p (𝑥+ 𝛿B)

)︀
if 𝑞 = 1,

(4.15a)

y𝐺cl
p (𝑥) =

⎧⎪⎨⎪⎩
𝐺cl

p (𝑥) if 𝑞 = 0⋂︁
𝛿>0

(︀
𝐺cl

p (𝑥+ 𝛿B)
)︀

if 𝑞 = 1,
(4.15b)

y𝐹 cl
k1
(𝑥) =

⋂︁
𝛿>0

conv
(︀
𝐹 cl
k1
(𝑥+ 𝛿B)

)︀
, (4.15c)

y𝐺cl
k1
(𝑥) =

⋂︁
𝛿>0

(︀
𝐺cl

k1
(𝑥+ 𝛿B)

)︀
. (4.15d)

To allow us to use a uniform notation for all of the functions and sets, we also write

y𝐹 cl
⋆ := 𝐹 cl

⋆ and y𝐺cl
⋆ := 𝐺cl

⋆ for each ⋆ ∈ {k0, s}. The functions y𝐹 cl
p , y𝐹 cl

k1
, y𝐺cl

p ,

and y𝐺cl
k1

are OSC (see [4, Lemma 5.16]), and y𝐹 cl
p (𝑥) and y𝐹 cl

k1
(𝑥) are convex for each

𝑥 ∈ 𝒳 . The necessary properties of the remaining functions and sets are achieved

via assumptions. In particular, we impose the following assumptions on ℋp, ℋk0 ,

and ℋk1 to ensure that pℋ satisfies the hybrid basic conditions (Definition 1.2).

Assumption 4.1. The subsystems ℋp, ℋk0 , ℋk1 , and ℋs in (4.2) satisfy the fol-

lowing.

(B1) (Ensure 𝐶 ∪𝐷 = 𝒳):(︀
𝑧, 𝜅(𝑥)

)︀
∈ 𝐶p ∪𝐷p ∀𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳

𝐶k0 ∪𝐷k0 = ℰp,0; 𝐶k1 ∪𝐷k1 = 𝒳 ; and 𝐶s ∪𝐷s = 𝒳 .

(B2) (Ensure p𝐶 and p𝐷 closed): The sets ℰ1, 𝒱, 𝐶⋆, and 𝐷⋆ are closed for each

⋆ ∈ {p,k0,k1, s}.

54

(B3) (Ensure dom(p𝐹) = 𝐶 and dom(p𝐺) = 𝐷):

dom(𝜅0) = ℰp,0, dom(𝜅1) = 𝒳 ,

dom(𝐹p) = 𝐶p, dom(𝐹k0) = 𝐶k0 , dom(𝐹k1) = 𝐶k1 , dom(𝑓v) = 𝐶s,

dom(𝐺p) = 𝐷p, dom(𝐺k0) = 𝐷k0 , dom(𝐺k1) = 𝐷k1 , dom(𝑔v) = 𝐷s.

(B4) (Ensure p𝐹 and p𝐺 are OSC): The functions 𝑓v, and 𝑔v are continuous, and the

maps (𝑧, 𝜂0) ↦→ 𝐹p(𝑧, 𝜅0(𝑧, 𝜂0)), (𝑧, 𝜂0) ↦→ 𝐺p(𝑧, 𝜅0(𝑧, 𝜂0)), 𝐹k0 , and 𝐺k0 are

OSC.

(B5) (Ensure p𝐹 and p𝐺 are locally bounded): The functions 𝜅1, 𝐹⋆, and 𝐺⋆ are locally

bounded for each ⋆ ∈ {p,k0,k1}.

(B6) (Ensure p𝐹 is pointwise–convex): The set 𝐹p(𝑧, 𝑢) is convex for each (𝑧, 𝑢) ∈ 𝐶p,

and 𝐹k0(𝑧, 𝜂0) is convex for each (𝑧, 𝜂0) ∈ 𝐶k0 . ◇

Under the assumptions of Assumption 4.1, we assert basic properties of the

closed-loop system.

Lemma 4.1. Suppose ℋp, ℋk0 , ℋk1 , and ℋs satisfy Assumption 4.1. Then, pℋ
satisfies the hybrid basic conditions (Definition 1.2).

The proof of Lemma 4.1 is in Section B.1.1.

4.1.2 Existence of Solutions

In this section we prove three results to establish the existence of solutions from

each point in 𝒳 . Specifically, we prove p𝐺(𝐷) ⊂ 𝐶 ∪ 𝐷 = 𝒳 (Lemma 4.2), and

p𝐹 (𝑥)∩𝑇𝐶(𝑥) for all 𝑥 ∈ 𝐶 ∖𝐷 (Lemma 4.3). The following assumption ensures that

solutions to ℋ cannot jump out of 𝒳 .

Assumption 4.2. For each 𝑥 = (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 ,

(𝑔𝑧, 𝜂0) ∈ 𝐶k0 ∪𝐷k0 ∀𝑔𝑧 ∈ 𝐺p(𝑧, 𝜅(𝑥)), (4.16)

(𝑧, 𝑔𝜂0) ∈ 𝐶k0 ∪𝐷k0 ∀𝑔𝜂0 ∈ 𝐺k0(𝑧, 𝜂0), (4.17)(︀
𝑧, 𝜂0, 𝑔𝜂1 , 𝑣, 𝑞

)︀
∈ 𝐶k1 ∪𝐷k1 ∀𝑔𝜂1 ∈ 𝐺k1(𝑥), (4.18)(︀

𝑧, 𝜂0, 𝜂1, 𝑔v(𝑥), 1− 𝑞
)︀
∈ 𝐶s ∪𝐷s. (4.19)

55

Lemma 4.2. Suppose ℋp, ℋk0 , ℋk1 , and ℋs satisfy Assumptions 4.1 and 4.2. Then,

𝐶 ∪𝐷 = 𝒳 and p𝐺(𝐷) ⊂ 𝒳 .

The proof of Lemma 4.2 is in Section B.1.3.

To ensure that flows are viable for ℋ at all points in 𝐶 ∖ 𝐷, we impose the

following conditions on the subsystems.

Assumption 4.3. The subsystems ℋp, ℋk0 , ℋk1 , and ℋs satisfy the following.

(V1) (Ensure viability of (𝑧, 𝜂0) when 𝑞 = 0): For all (𝑧, 𝜂0) ∈ 𝐶k0 ∖𝐷k0 ,

𝐹p×0(𝑧, 𝜂0) ∩ 𝑇𝐶k0
(𝑧, 𝜂0) ̸= ∅;

(V2) (Ensure viability of (𝑧, 𝜂0) when 𝑞 = 1): For all (𝑧,𝜂0,𝜂1,𝑣,1)∈𝐶k1∖
(︀
𝒮1↦→0×{1}

)︀
,

(𝑧, 𝜂0) ∈ int(𝐶k0);

(V3) (Ensure viability of 𝜂1): For all 𝑥 ∈ 𝐶k1 ∖𝐷k1 ,

𝐹k1(𝑥) ∩ 𝑇𝐶k1
(𝜂1) ̸= ∅;

(V4) (Ensure viability of 𝑣): For all 𝑥 ∈ 𝐶s ∖𝐷s,

𝑓v(𝑥) ∈ 𝑇𝐶s(𝑥);

(V5) (Ensure 𝑇𝐶(𝑥) can be split): For all 𝑥 = (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶 ∖𝐷,

𝑇𝐶(𝑥) = 𝑇𝐶k0
(𝑧, 𝜂0)× 𝑇𝐶k1

(𝜂1)× 𝑇𝐶s(𝑣)× {0}. (4.20)

Assumption (V5) allows us to separate the tangent cones of 𝐶k0 , 𝐶k1 , and 𝐶s

allowing us to handle them individually. One might be surprised that 𝑇𝐶(𝑥) could

be written without reference to 𝐶p. The reason is that (4.20) is only assumed to

hold for 𝑥 ∈ 𝐶 ∖𝐷. If 𝑥 is in the boundary of 𝐶cl
p , then it must be in the boundary

of 𝐶 (not in 𝜕𝐷cl
p) and 𝑇𝐶cl

p
(𝑥) = 𝑇𝐶(𝑥).

Lemma 4.3 (Viability condition). Suppose ℋp, ℋk0 , ℋk1 , and ℋs satisfy Assump-

tion 4.1 and Assumption 4.3. Then, for each 𝑥 ∈ 𝐶 ∖ 𝐷, there exists an open

neighborhood 𝑈 of 𝑥 such that

𝐹 (𝑥′) ∩ 𝑇𝐶(𝑥′) ̸= ∅ ∀𝑥′ ∈ 𝑈 ∩ 𝐶.

56

Proof. Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶 ∖𝐷. The set 𝐷 is closed (Lemma 4.1), so

there exists an open neighborhood 𝑈 of 𝑥 that is disjoint from 𝐷; that is, 𝑈 ∩𝐷 = ∅.

Take any 𝑥′ ∈ 𝑈 ∩ 𝐶. By (V5),

𝑇𝐶(𝑥) = 𝑇𝐶k0
(𝑧, 𝜂0)× 𝑇𝐶k1

(𝜂1)× 𝑇𝐶s(𝑣)× {0}.

Substituting the definition of 𝐹 and distributing the intersection operation produces

(︀
𝐹 (𝑥) ∩ 𝑇𝐶(𝑥)

)︀
=

⎛⎝⎡⎣𝐹p(𝑧, 𝜅(𝑥))

𝐹k0(𝑧, 𝜂0)

⎤⎦ ∩ 𝑇𝐶k0
(𝑧, 𝜂0)

⎞⎠
×
(︀
𝐹k1(𝑥) ∩ 𝑇𝐶k1

(𝜂1)
)︀

×
(︀
{𝑓v(𝑥)} ∩ 𝑇𝐶s(𝑣)

)︀
× {0}.

(4.21)

By (V3) and (V4), 𝐹k1(𝑥) ∩ 𝑇𝐶k1
(𝜂1) and {𝑓v(𝑥)} ∩ 𝑇𝐶s(𝑣) are nonempty. Thus, all

that remains is to show that⎡⎣𝐹p(𝑧, 𝜅(𝑥))

𝐹k0(𝑧, 𝜂0)

⎤⎦ ∩ 𝑇𝐶k0
(𝑧, 𝜂0)

is nonempty. We consider 𝑞 = 0 and 𝑞 = 1 by cases.

Case 1. Suppose 𝑞 = 0. Then⎡⎣𝐹p(𝑧, 𝜅(𝑥))

𝐹k0(𝑧, 𝜂0)

⎤⎦ =

⎡⎣𝐹p(𝑧, 𝜅0(𝑧, 𝜂0))

𝐹k0(𝑧, 𝜂0)

⎤⎦ = 𝐹p×0(𝑧, 𝜂0).

By (V1),

𝐹p×0(𝑧, 𝜂0) ∩ 𝑇𝐶k0
(𝑧, 𝜂0) ̸= ∅,

completing this case.

Case 2. Suppose 𝑞 = 1. We picked 𝑥 to not be in 𝐷, so 𝑥 ̸∈ 𝒮1↦→0 × {1} (since

𝒮1↦→0 ⊂ 𝐷s ⊂ 𝐷). Thus, (𝑧, 𝜂0) ∈ int(𝐶k0) by (V2). But the tangent cone at an

interior point of a set is the full tangent space, namely

𝑇𝐶k0
(𝑧, 𝜂0) = R𝑛p × R𝑛0 .

Therefore,⎡⎣𝐹p(𝑧, 𝜅(𝑥))

𝐹k0(𝑧, 𝜂0)

⎤⎦ ∩ 𝑇𝐶k0
(𝑧, 𝜂0) =

⎡⎣𝐹p(𝑧, 𝜅1(𝑥))

𝐹k0(𝑧, 𝜂0)

⎤⎦ ∩
(︀
R𝑛p × R𝑛0

)︀
=

⎡⎣𝐹p(𝑧, 𝜅1(𝑥))

𝐹k0(𝑧, 𝜂0)

⎤⎦.
57

The set 𝐹p(𝑧, 𝜅1(𝑥)) = 𝐹 cl
p (𝑥) is nonempty because 𝑥 ∈ 𝐶cl

p = dom(𝐹 cl
p). Similarly,

the set 𝐹k0(𝑧, 𝜂0) is nonempty because (𝑧, 𝜂0) ∈ 𝐶k0 = dom(𝐹k0) per (B3).

By combining Lemmas 4.1–4.3—along with an assumption that solutions do

not have finite escape time during flows—we are able to establish the existence of

solutions and prove that all maximal solutions are complete. Recall that say that

𝑧 : [𝑡0, 𝑇) → R𝑛 with 𝑡0 < 𝑇 has a finite escape time 𝑇 if lim𝑡↗𝑇 |𝑧(𝑡)| = ∞.

Lemma 4.4 (Maximal Solutions are Complete). Suppose ℋp, ℋk0 , ℋk1 , and ℋs

satisfy Assumptions 4.1–4.3, and that no solution to

𝑥̇ ∈ p𝐹 (𝑥) 𝑥 ∈ 𝐶

has a finite escape time, where p𝐹 is given in (4.15). Then, for each 𝑥0 ∈ 𝐶 ∪ 𝐷,

there exists a non-trivial solution to pℋ in (4.15) starting at 𝑥0 and every maximal

solution to pℋ is complete.

Proof. Our proof uses [3, Prop. 2.34]. By Assumption 4.3, we have that ℋ satisfies

the viability condition (VC) of [3, Prop. 2.34] for each 𝑥 ∈ 𝐶 ∖𝐷. Since p𝐹 (𝑥) ⊃ 𝐹 (𝑥),

we immediately have that pℋ also satisfies (VC) for each 𝑥 ∈ 𝐶 ∖𝐷.

Because pℋ satisfies the hybrid basic conditions (Lemma 4.1) and (VC) holds

at each point in 𝐶 ∖𝐷, every maximal solution 𝜙 to ℋ satisfies exactly one of the

following cases [3, Prop. 2.34]:

(M1) 𝜙 escapes to infinity in finite time.

(M2) 𝜙 leaves 𝐶 ∪𝐷.

(M3) 𝜙 is complete.

By assumption, (M1) does not occur. Furthermore, it was shown in Lemma 4.2

that p𝐺(𝐷) ⊂ 𝐶 ∪𝐷, so (M2) does not occur. By elimination, only (M3) is possible,

therefore every maximal solution is complete.

4.1.3 Ensuring Minimum Dwell Times

In Lemma 4.4, we showed that maximal solutions are complete, but this means

that 𝑡 + 𝑗 → ∞ in the domain of solutions—there is no guarantee, yet, that the

solution exists for all ordinary time, since 𝑗 may approach infinity on its own. For

58

our chosen hybrid system model to be practical, however, we must ensure that there

is a positive minimum dwell time between jumps, ensuring that the solution does not

chatter and exists for all ordinary time 𝑡 ≥ 0. The following assumption introduces

conditions that prevent the subsystems from jumping too frequently. Before we state

the assumption, however, we must introduce additional notation. To allow us to

map back from vectors or sets in 𝒳 to the subsystem states, we define a projection

map 𝜋⋆ for each ⋆ ∈ {“𝑧”, “𝜂0”, “𝜂1”, “𝑣”, “𝑞”} as

(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ↦→ 𝜋⋆(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) := ⋆.

For a set ℬ ⊂ 𝒳 , the image of ℬ under 𝜋⋆ is 𝜋⋆(ℬ) := {⋆ | (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ ℬ}.

Assumption 4.4. There exists 𝑑min > 0 such that

dist(𝜋𝑧(𝐷p), 𝐺p(𝐷p)) ≥ 𝑑min, (4.22)

dist(𝜋𝜂0(𝐷k0), 𝐺k0(𝐷k0)) ≥ 𝑑min, (4.23)

dist(𝜋𝜂1(𝐷k1), 𝐺k1(𝐷k1)) ≥ 𝑑min. (4.24)

In the following result, given a solution 𝜙 to ℋ and ⋆ ∈ {p,k0,k1, s}, we say

that (𝑡, 𝑗) ∈ dom(𝜙) is1 a ℋ⋆-jump time if

𝜙(𝑡, 𝑗) ∈ 𝐷cl
⋆ and 𝜙(𝑡, 𝑗 + 1) ∈ 𝐺cl

⋆ (𝜙(𝑡, 𝑗)).

Lemma 4.5. Suppose ℋp, ℋk0 , ℋk1 , and ℋs satisfy Assumptions 4.1–4.4 and

𝐷s ∩𝐺cl
s (𝐷s) = ∅.

Then, for each compact set 𝐾 ⊂ 𝒳 , there exists Δ𝑇 > 0 such that for every solution

𝜙 to pℋ in (4.15) with range(𝜙) ⊂ 𝐾, the following hold:

1. For each ⋆ ∈ {p,k0,k1, s} and every pair of distinct ℋ⋆-jump times (𝑡1, 𝑗1)

and (𝑡2, 𝑗2) in dom(𝜙),

|𝑡2 − 𝑡1| ≥ Δ𝑇 .

(Informally: Δ𝑇 is a minimum dwell time between jumps for each subsystem

of pℋ.)

1A minor technical note: We have defined our closed-loop system so that one subsystem at a

time jumps. Nevertheless, it is possible for a time (𝑡, 𝑗) ∈ dom(𝜙) to be a ℋ⋆-jump for multiple ⋆’s.

How? Consider 𝑥 ↦→ 𝐺cl
p (𝑥) = {𝑥}, 𝑥 ↦→ 𝐺cl

k0(𝑥) = {𝑥}, and a ℋp-jump from 𝑥0 ∈ 𝐷cl
p ∩𝐷cl

k0 .

59

2. For all (𝑡1, 𝑗1) and (𝑡2, 𝑗2) in dom(𝜙),

|𝑡2 − 𝑡1| ≤ Δ𝑇 =⇒ |𝑗2 − 𝑗1| ≤ Δ𝐽 := 4.

Proof. Let 𝑓 := sup
{︁
|𝑓 | : 𝑓 ∈ p𝐹 (𝐾)

}︁
. We have that 𝑓 is finite because p𝐹 is locally

bounded (Lemma 4.1) and 𝐾 is compact.

Take 𝑑min > 0 from Assumption 4.4. The set 𝐷s ∩ 𝐾 is compact and y𝐺cl
s is

continuous (since y𝐺cl
s = 𝐺cl

s , by definition), so y𝐺cl
s (𝐷s∩𝐾) is compact. Furthermore,

y𝐺cl
s (𝐷s ∩𝐾) and 𝐷s ∩𝐾 are disjoint, by assumption, so

𝑑𝑠 := dist(𝐷s ∩𝐾, y𝐺cl
s (𝐷s ∩𝐾))

is positive. Let 𝑑 := min{𝑑𝑠, 𝑑min} and Δ𝑇 := 𝑑
⧸︀
𝑓 , which are also both positive.

We want to show that distance between 𝐷cl
p and y𝐺cl

p (𝐷cl
p) is at least 𝑑min. Take

any

𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐷cl
p and 𝑔 := (𝑔𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ y𝐺cl

p (𝐷cl
p).

We have 𝑧 ∈ 𝜋𝑧(𝐷p) and 𝑔𝑧 ∈ 𝐺p(𝐷p), so

|𝑥− 𝑔| = |𝑧 − 𝑔𝑧| ≥ dist(𝐷p, 𝐺p(𝐷p)) = dist(𝐷p, 𝐺p(𝐷p)) ≥ 𝑑min.

Since this holds for all 𝑥 ∈ 𝐷cl
p and 𝑔 ∈ y𝐺cl

p (𝐷cl
p), we have that

dist(𝐷cl
p ,

y𝐺cl
p (𝐷cl

p)) ≥ 𝑑min.

Similarly, we can find dist(𝐷cl
k𝑞
, z𝐺cl

k𝑞
𝑞(𝐷cl

k𝑞
)) ≥ 𝑑min for 𝑞 ∈ {0, 1}. Thus, for each

⋆ ∈ {p,k0,k1, s},
dist(𝐷cl

⋆ ∩𝐾, y𝐺cl
⋆ (𝐷cl

⋆ ∩𝐾)) ≥ 𝑑.

Take any solution 𝜙 to ℋ with range(𝜙) ⊂ 𝐾 and any ⋆ ∈ {p,k0,k1, s}. For

each jump time (𝑡, 𝑗) ∈ dom(𝜙), the subsystem state of ℋ⋆ jumps (is non-constant)

only if (𝑡, 𝑗) is an ℋ⋆-jump time. Thus, between any distinct pair of ℋ⋆-jump times

(𝑡1, 𝑗1) and (𝑡2, 𝑗2), the solution must flow a distance of at least 𝑑 at a velocity no

more than 𝑓 , therefore,

|𝑡2 − 𝑡1| ≥ Δ𝑇 .

Thus concluding the proof of Item 1.

Item 2 follows directly. Per Item 1, each subsystem can jump at most once

within any interval of length Δ𝑇 , so solutions to pℋ can jump at most Δ𝐽 := 4 times

(once per subsystem) in the same interval.

60

4.2 Supervisor Design for Global Asymptotic Stability

We now return to the problem of rendering a nonempty compact set 𝒜p to be

UGAS. Our goal is to design a hybrid supervisor ℋs that switches between ℋk0

andℋk1 while ensuring that𝒜p remains UGAS despite sometimes exploitingℋk1 . To

do so, we will extend the design of the supervisor developed in Chapter 3 to the more

general setting of this chapter. We assume the existence of a Lyapunov function 𝑉p

that certifies, via Corollary 1.1, that 𝒜p is UGpAS for ℋp×0 (Assumption 4.5).

Additionally, sufficient conditions are assumed to ensure that all maximal solutions

to ℋp×0 are complete and switching is not too frequent.

In contrast to Section 3.1 where 𝒜p was taken as a subset of the plant’s state

space, we now want to account for the state 𝜂0 of ℋk0 since it may be necessary

to ensure that the joint state (𝑧, 𝜂0) of ℋp and ℋk0 converge to a given set. Thus,

we let 𝒜p be a subset of 𝐶k0 ∪𝐷k0 ⊂ R𝑛p × R instead of just R𝑛p . The following

assumption gives Lyapunov conditions asserting that ℋk0 is a Lyapunov-certified

controller for the plant ℋp.

Assumption 4.5. The set 𝒜p ⊂ ℰp,0 and the closed-loop system ℋp×0 in (4.14)

satisfy the following:

(L1) 𝒜p is compact and nonempty;

(L2) There exists a continuous function 𝑉p : R𝑛p × R𝑛0 → R≥0 such that

∙ 𝑉p is 𝒞1 on an open neighborhood of 𝐶k0

∙ 𝑉p is positive definite on ℰp,0 with respect to 𝒜p;

(L3) there exists 𝛼 ∈ 𝒦∞ such that 𝛼(|(𝑧, 𝜂0)|𝒜p) ≤ 𝑉p(𝑧, 𝜂0) for all (𝑧, 𝜂0) ∈ ℰp,0;

(L4) there exists a continuous function 𝜎0 : ℰp,0 → R≥0 that is positive definite on

ℰp,0 with respect to 𝒜p, and

supℒ𝐹p×0𝑉p(𝑧, 𝜂0) ≤ −𝜎0(𝑧, 𝜂0) ∀(𝑧, 𝜂0) ∈ 𝐶p×0;

(L5) For all (𝑧, 𝜂0) ∈ ℰp,0 and (𝑧, 𝑢) ∈ 𝐷p,

𝑉p(𝑔𝑧, 𝜂0) ≤ 𝑉p(𝑧, 𝜂0) ∀𝑔𝑧 ∈ 𝐺p(𝑧, 𝑢).

61

For all (𝑧, 𝜂0) ∈ 𝐷k0 ,

𝑉p(𝑧, 𝑔𝜂0) ≤ 𝑉p(𝑧, 𝜂0) ∀𝑔𝜂0 ∈ 𝐺k0(𝑧, 𝜂0). ◇

Remark 4.1. Condition (L5) imposes that 𝑉p is nonincreasing at jumps for any input

value 𝑢 (regardless of whether 𝑢 is produced by 𝜅0), and 𝑉p is also nonincreasing for

jumps in the value 𝜂0 according to the dynamics of ℋk0 .

The supervisor’s state variable 𝑣 is assumed to be any nonnegative real number,

so the state space is 𝒱 := R≥0. When 𝑞 = 0 and there is a sufficient buffer between

𝑉p(𝑧, 𝜂0) and 𝑣, then the supervisor will trigger a switch from 𝑞 = 0 to 𝑞 = 1. When

𝑞 = 1, if 𝑉p(𝑧, 𝜂0) ≥ 𝑣 ever holds, then the supervisor switches to 𝑞 = 0. In particular,

a continuous positive function (𝑧, 𝜂0) ↦→ 𝛿(𝑧, 𝜂0) > 0 defines a state-dependent buffer

required between 𝑉p(𝑧, 𝜂0) and an auxiliary variable 𝑣 that is required before a

switch to 𝑞 = 1 is permitted. The supervisor switching and hold sets must satisfy

the following inclusions:

𝒮0 ⊃ {(𝑧, 𝜂0, 𝜂1, 𝑣) | 𝑉p(𝑧, 𝜂0) + 𝛿(𝑧, 𝜂0) ≥ 𝑣}, (4.25a)

𝒮0↦→1 ⊂ {(𝑧, 𝜂0, 𝜂1, 𝑣) | 𝑉p(𝑧, 𝜂0) + 𝛿(𝑧, 𝜂0) ≤ 𝑣}, (4.25b)

𝒮1 ⊂ {(𝑧, 𝜂0, 𝜂1, 𝑣) | 𝑉p(𝑧, 𝜂0) ≤ 𝑣}, (4.25c)

𝒮1↦→0 ⊃ {(𝑧, 𝜂0, 𝜂1, 𝑣) | 𝑉p(𝑧, 𝜂0) ≥ 𝑣}. (4.25d)

You may sometimes simply choose the switching and hold sets using equality in (4.25),

but having flexibility may be of use in the following ways:

1. Picking a restricted switching set 𝒮0↦→1 (and larger 𝒮0) may be desirable to

avoid switching to ℋk1 at times when ℋk1 is not expected to perform well.

Alternatively, one may wish to ensure that there is a minimum dwell time when

𝑞 = 0 before switching to the uncertified controller by introducing an auxiliary

timer variable 𝜏 ≥ 0 to the system with 𝜏 = 1, we can impose a minimum

dwell time 𝑇 > 0 by picking

𝒮0↦→1 := {(𝑧, 𝜂0, 𝜂1, 𝑣, 𝜏) | 𝑉p(𝑧, 𝜂0) + 𝛿(𝑧, 𝜂0) ≤ 𝑣, 𝜏 ≥ 𝑇}.

2. Picking an expanded switching set 𝒮1↦→0 (and smaller 𝒮1) can be necessary to

force the system back to the certified controller. For example, if ℋk1 would

62

cause (𝑧, 𝜂0) to move out of ℰp,0, we can ensure viability by choosing 𝒮1↦→0

to cover the boundary. Specifically, 𝒮1 ↦→0 should be chosen to satisfy (V2) in

Assumption 4.3.

To define the dynamics of 𝑣, we define 𝑓v and 𝑔v for all (𝑧, 𝜂0, 𝑣) ∈ ℰp,0×R≥0 as

𝑓v(𝑧, 𝜂0, 𝑣) := −𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0)− 𝜇
(︀
𝑣 − 𝑉p(𝑧, 𝜂0)

)︀
(4.26)

𝑔v(𝑧, 𝜂0, 𝑣) := max{𝑉p(𝑧, 𝜂0), 𝑣}. (4.27)

The term −𝜇(𝑣 − 𝑉p(𝑧, 𝜂0)) pulls 𝑣 toward 𝑉p(𝑧, 𝜂0), which helps 𝑣 to “catch up”

if 𝑉p(𝑧, 𝜂0) has dropped quickly, and allows 𝑣 to grow if 𝑣 is initialized less than

𝑉p(𝑧, 𝜂0). The term −𝑟 tanh(𝑣)𝜎0(𝑧, 𝜂0) pushes 𝑣 toward zero to prevent 𝑣 from

stopping if 𝑉p(𝑧, 𝜂0) = 𝑣 ̸= 0. Since −𝜎0(𝑧, 𝜂0) < 0 for (𝑧, 𝜂0) ̸∈ 𝒜p, we multiply

𝜎(𝑧, 𝜂0) by tanh(𝑣) so that 𝑓v(𝑧, 𝜂0, 𝑣) is nonnegative when 𝑉p(𝑧, 𝜂0) = 𝑣 ̸= 0. This

ensures 𝑣̇ ≥ 0 when 𝑣 = 0 is already on the boundary of R≥0. One important

property of 𝑓v is that it is nonnegative for 𝑣 = 0, ensuring that 𝑓v(𝑧, 𝜂0, 0) ∈ 𝑇𝒱(0):

𝑓v(𝑧, 𝜂0, 0) ≥ 0 ∀(𝑧, 𝜂0) ∈ ℰp,0. (4.28)

For the closed-loop system, we want to ensure that (𝑧, 𝜂0) → 𝒜p and 𝑣 → 0,

which is to say that 𝑥 converges to the set

𝒜 := 𝒜p × ℰ1 × {0} × {0, 1} ⊂ 𝒳 .

To this end, we define a Lyapunov function candidate 𝑉 of 𝒜. Let 𝑉 : 𝒳 → R≥0 be

defined for all 𝑥 = (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 by

𝑉 (𝑥) := max{𝑉p(𝑧, 𝜂0), 𝑣}. (4.29)

The following results establish properties on 𝑉 that are required by Corollary 1.1

so that we can apply that result to prove that 𝒜 is UGpAS. In Lemma B.1, we

assert that 𝑉 is a Lyapunov function candidate with respect to 𝒜 for ℋ. We then

construct a function 𝜎 in (4.30) that is LSC and positive definite on 𝐶 with respect to

𝒜 (Lemma 4.6) such that −𝜎(𝑥) is an upper bound on the rate of change of 𝑉 along

flows in ℋ (Lemma 4.7). In Lemma 4.8, we show that 𝑉 is nondecreasing across

jumps for solutions to ℋ. Altogether, these results give us that 𝑉 is nondecreasing

at jumps and strictly decreasing during flows outside of 𝒜. To show use these results

63

to prove 𝒜 is UGpAS, we must show that jumps do not occur too often, so the

strict decrease during flows has sufficient time to produce convergence. Establishing

a bound on the frequency of jumps is left until Section 4.1.3.

Assumption 4.6 (UGAS Supervisor). The supervisor ℋs satisfies 𝛾 ∈ (0, 1], 𝜇 > 0,

and 𝛿 is continuous and strictly positive. ◇

Let 𝑥 ↦→ 𝜎(𝑥) be defined for all 𝑥 ∈ 𝒳 by

𝜎(𝑥) :=

{︃
𝜎0(𝑧, 𝜂0) if 𝑉p(𝑧, 𝜂0) > 𝑣

−𝑓v(𝑧, 𝜂0, 𝑣) if 𝑉p(𝑧, 𝜂0) ≤ 𝑣.
(4.30)

We will show that 𝜎 is LSC, positive definite with respect to 𝒜, and

supℒ𝐹 (𝑥) ≤ −𝜎(𝑥).

Lemma 4.6. Suppose that 𝒜p and ℋp×0 satisfy Assumptions 4.5 and 4.6. Then, 𝜎

is LSC and positive definite with respect to 𝒜 on 𝐶.

Proof. Since 𝜎0 and 𝑓v are continuous, the only points where 𝜎 can discontinuities is

where 𝑉p(𝑧, 𝜂0) = 𝑣. Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 such that 𝑉p(𝑧, 𝜂0) = 𝑣. We

have that

𝜎(𝑥) = −𝑓v(𝑧, 𝜂0, 𝑣) = 𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0) ≤ 𝜎0(𝑧, 𝜂0),

where the inequality holds because 0 ≤ 𝛾 tanh(𝑣) < 1 for each 𝑣 ≥ 0 because

𝛾 ∈ (0, 1] and tanh(𝑣) ∈ [0, 1). Thus, lim inf𝑥′→𝑥 𝜎(𝑥
′) = 𝜎(𝑥), so 𝜎 is LSC at 𝑥 and

since this holds for all 𝑥, we have that 𝜎 is LSC everywhere.

Next we prove the positive definiteness of 𝜎. Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶.

If 𝑥 ∈ 𝒜, then 𝑉p(𝑧, 𝜂0) = 0 and 𝑣 = 0, so, by construction of 𝑓v in (4.26),

𝜎(𝑥) = −𝑓v(𝑧, 𝜂0, 𝑣) = 0.

Thus, 𝜎(𝑥) = 0.

Alternatively, suppose 𝑥 ̸∈ 𝒜 and consider the following cases.

Case 1. Suppose 𝑉p(𝑧, 𝜂0) > 𝑣. Since 𝑉p is assumed to be positive definite with

respect to 𝒜p, we have (𝑧, 𝜂0) ̸∈ 𝒜p. Thus, 𝜎(𝑥) = 𝜎0(𝑧, 𝜂0) > 0, since 𝜎0 is positive

definite with respect to 𝒜p.

64

Case 2. Suppose 𝑉p(𝑧, 𝜂0) < 𝑣. Then,

𝜎(𝑥) = −𝑓v(𝑧, 𝜂0, 𝑣) = 𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0) + 𝜇
(︀
𝑣 − 𝑉p(𝑧, 𝜂0)

)︀
.

The first term, 𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0) is nonnegative, whereas 𝜇
(︀
𝑣 − 𝑉p

)︀
> 0. Thus,

𝜎(𝑥) > 0.

Case 3. Suppose 𝑉p(𝑧, 𝜂0) = 𝑣. Since 𝑥 ̸∈ 𝒜, we must have 𝑉p(𝑧, 𝜂0) = 𝑣 > 0, so

(𝑧, 𝜂0) ̸∈ 𝒜p and 𝜎0(𝑧, 𝜂0) > 0, by positive definiteness. Thus, 𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0) > 0

and 𝜇
(︀
𝑣 − 𝑉p(𝑧, 𝜂0)

)︀
= 0.

Therefore, 𝜎 is positive definite with respect to 𝒜 on 𝐶.

The next result establishes that for each solution 𝜙 to pℋ, the function (𝑡, 𝑗) ↦→
𝑉p(𝜙(𝑡, 𝑗)) decreases along each interval of flow in dom(𝜙) while 𝜙 is outside 𝒜.

Lemma 4.7. Suppose that 𝒜p and ℋp×0 satisfy Assumptions 4.5 and 4.6. Then,

the Lyapunov function candidate 𝑉 in (4.29) and the regularized flow map p𝐹 defined

in Section 4.1.1 satisfy

supℒ
p𝐹∩𝑇𝐶

𝑉 (𝑥) ≤ −𝜎(𝑥) ∀𝑥 ∈ 𝐶. (4.31)

Proof. Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶. If p𝐹 (𝑥) ∩ 𝑇𝐶(𝑥) is empty, then

ℒ
p𝐹∩𝑇𝐶

𝑉 (𝑥) = −∞,

so (4.31) holds. Suppose, instead, that p𝐹 (𝑥) ∩ 𝑇𝐶(𝑥) ̸= ∅. We want to show that

⟨𝜁, 𝑓⟩ ≤ −𝜎(𝑥) for each 𝜁 ∈ 𝜕∘𝑉 (𝑥) and each 𝑓 ∈ p𝐹 (𝑥) ∩ 𝑇𝐶(𝑥). Take any such 𝜁

and 𝑓 . We write the components of 𝑓 as 𝑓 := (𝑓𝑧, 𝑓𝜂0 , 𝑓𝜂1 , 𝑓𝑣, 0), where

𝑓𝑧 ∈ y𝐹 cl
p (𝑥), 𝑓𝜂0 ∈ y𝐹 cl

k0
(𝑥) = 𝐹k0(𝑧, 𝜂0), 𝑓𝜂1 ∈ y𝐹 cl

k1
(𝑥), and 𝑓𝑣 := 𝑓v(𝑧, 𝜂0, 𝑣).

Evaluating the generalized gradient of 𝑉 , we find

𝜕∘𝑉 (𝑥)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{︁[︀
0⊤𝑛p

0⊤𝑛0
0⊤𝑛1

1 0
]︀⊤}︁

if 𝑉p(𝑧,𝜂0)<𝑣

conv
{︁[︀

0⊤𝑛p
0⊤𝑛0

0⊤𝑛1
1 0

]︀⊤
,
[︀
∇𝑉 ⊤

p (𝑧,𝜂0) 0⊤𝑛1
0 0

]︀⊤}︁
if 𝑉p(𝑧,𝜂0)=𝑣{︁[︀

∇𝑉 ⊤
p (𝑧,𝜂0) 0⊤𝑛1

0 0
]︀⊤}︁

if 𝑉p(𝑧,𝜂0)>𝑣.

(4.32)

(The gradient ∇𝑉p exists because 𝑉p is assumed to be 𝒞1.)

Consider the following three cases.

65

Case 1. Suppose 𝑉p(𝑧, 𝜂0) < 𝑣. Then, 𝜁 =
[︁
0⊤𝑛p

0⊤𝑛0
0⊤𝑛1

1 0
]︁⊤

is the unique

element of 𝜕∘𝑉 (𝑥), so

⟨𝜁, 𝑓⟩ = ⟨1, 𝑓v(𝑧, 𝜂0, 𝑣)⟩ = 𝑓v(𝑧, 𝜂0, 𝑣).

Since 𝑉p(𝑧, 𝜂0) < 𝑣, we have that 𝑓v(𝑧, 𝜂0, 𝑣) = −𝜎(𝑥), per the definition of 𝜎

in (4.30).

Case 2. Suppose 𝑉p(𝑧, 𝜂0) > 𝑣. Thus, 𝜁 =
[︁
∇𝑉 ⊤

p (𝑧, 𝜂0) 0⊤𝑛1
0 0

]︁⊤
is the unique

element of 𝜕∘𝑉 (𝑥) and

⟨𝜁, 𝑓⟩ = ⟨∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)⟩.

We have that 𝑉p(𝑧, 𝜂0) > 𝑣, so 𝑥 ̸∈ 𝐶1 (recall 𝐶1 = {𝑥 | 𝑉p(𝑧, 𝜂0) ≤ 𝑣}). Since

𝑥 ∈ 𝐶s ⊂ 𝐶, we must have 𝑥 ∈ 𝐶0 and 𝑞 = 0. Thus, y𝐹 cl
p (𝑥) = 𝐹p(𝑧, 𝜅0(𝑧, 𝜂0)), so

𝑓p×0 := (𝑓𝑧, 𝑓𝜂0) ∈ 𝐹p×0(𝑧, 𝜂0) and (𝑧, 𝜂0) ∈ 𝐶p×0. From the definition of ℒ𝐹p×0𝑉p,⟨︀
∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)

⟩︀
∈ ℒ𝐹p×0𝑉p(𝑧, 𝜂0).

By the continuous-time Lyapunov condition (L4) in Assumption 4.5,

supℒ𝐹p×0𝑉p(𝑧, 𝜂0) ≤ −𝜎0(𝑧, 𝜂0).

Finally, since 𝜎(𝑥) = 𝜎0(𝑧, 𝜂0) for 𝑉p(𝑧, 𝜂0) > 𝑣, we arrive at the desired inequality:

⟨𝑓, 𝜁⟩ ≤ supℒ𝐹p×0𝑉p(𝑧, 𝜂0) ≤ −𝜎0(𝑧, 𝜂0) = −𝜎(𝑥).

Case 3. Suppose 𝑉p(𝑧, 𝜂0) = 𝑣. This case is more difficult because 𝜕∘𝑉 (𝑥) is not a

singleton. We have that

𝜁 ∈ 𝜕∘𝑉 (𝑥) = conv
{︁[︀

0⊤𝑛p
0⊤𝑛0

0⊤𝑛1
1 0

]︀⊤
,
[︀
∇𝑉 ⊤

p (𝑧, 𝜂0) 0⊤𝑛1
0 0

]︀⊤}︁
. (4.33)

Since ⟨𝜁, 𝑓⟩ is linear in 𝜁, the maximum value of ⟨𝜁, 𝑓⟩ is attained at one of the

endpoints of the convex hull in (4.33):

⟨𝜁, 𝑓⟩ ≤ max
{︁⟨[︀

0⊤𝑛p
0⊤𝑛0

0⊤𝑛1
1 0

]︀⊤
, 𝑓
⟩
,
⟨[︀

∇𝑉 ⊤
p (𝑧, 𝜂0) 0⊤𝑛1

0 0
]︀⊤
, 𝑓
⟩}︁

= max
{︁⟨︀

1, 𝑓v(𝑧, 𝜂0, 𝑣)
⟩︀
,
⟨︀
∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)

⟩︀}︁
. (4.34)

From the definition of 𝜎, we see

⟨1, 𝑓v(𝑧, 𝜂0, 𝑣)⟩ = 𝑓v(𝑧, 𝜂0, 𝑣) = −𝜎(𝑥).

66

To show ⟨∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)⟩ ≤ −𝜎(𝑥), we will consider 𝑞 = 0 and 𝑞 = 1 separately.

Suppose 𝑞 = 0. Then, (𝑓𝑧, 𝑓𝜂0) ∈ 𝐹p×0(𝑧, 𝜂0), so by (L4),

⟨︀
∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)

⟩︀
≤ −𝜎0(𝑧, 𝜂0) ≤ 𝑓v(𝑧, 𝜂0, 𝑣) = −𝜎(𝑥),

since −𝑓v(𝑧, 𝜂0, 𝑣) = 𝛾 tanh(𝑣)𝜎0(𝑧, 𝜂0) ≤ 𝜎0(𝑧, 𝜂0).

Suppose 𝑞 = 1. For this case, we must use the fact that 𝑓 ∈ 𝑇𝐶(𝑥). Calculating 𝑇𝐶(𝑥)

directly is difficult but unnecessary. Instead, we find the tangent cone to 𝐶s, which

contains 𝑇𝐶(𝑥) because 𝐶(𝑥) ⊂ 𝐶s. Since 𝑞 = 1, we have 𝑥 ∈ 𝐶1. Furthermore, since

𝐶0 and 𝐶1 are separate components of 𝐶s (i.e., separated by a positive distance), we

have that 𝑇𝐶s(𝑥) = 𝑇𝐶1(𝑥).

The set 𝐶1 can be written as

𝐶1 = {(𝑧, 𝜂0, 𝜂1, 𝑣) | 𝑉p(𝑧, 𝜂0)− 𝑣 ≤ 0} × {1}.

Thus, for every 𝑤 := (𝑤𝑧, 𝑤𝜂0 , 𝑤𝜂1 , 𝑤𝑣, 0) ∈ 𝑇𝐶1(𝑥),

⟨∇𝑥(𝑉p(𝑧, 𝜂0)− 𝑣), 𝑤⟩ = ⟨(∇𝑉p(𝑧, 𝜂0), 0,−1, 0), 𝑤⟩ ≤ 0. (4.35)

Rewriting (4.35) as separate inner products, we get

⟨∇𝑉p(𝑧, 𝜂0), (𝑤𝑧, 𝑤𝜂0)⟩ − ⟨1, 𝑤𝑣⟩ = ⟨∇𝑉p(𝑧, 𝜂0), (𝑤𝑧, 𝑤𝜂0)⟩ − 𝑤𝑣 ≤ 0. (4.36)

Since 𝑓 ∈ 𝑇𝐶1(𝑥), we can pick 𝑤𝑧 := 𝑓𝑧, 𝑤𝜂0 := 𝑓𝜂0 , and 𝑤𝑣 := 𝑓v(𝑧, 𝜂0, 𝑣) and

substitute in (4.36),

⟨∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)⟩ − 𝑓v(𝑧, 𝜂0, 𝑣) ≤ 0.

Rearranging the prior equation, we find

⟨∇𝑉p(𝑧, 𝜂0), (𝑓𝑧, 𝑓𝜂0)⟩ ≤ 𝑓v(𝑧, 𝜂0, 𝑣) = −𝜎(𝑥).

Thus, ⟨𝜁, 𝑓⟩ ≤ −𝜎(𝑥), completing the proof.

Next, we prove an analogous result for jumps, namely that 𝑉 (𝑥) is nonincreasing

at jumps.

67

Lemma 4.8. Suppose that 𝒜p and ℋp×0 satisfy Assumptions 4.5 and 4.6. Then, the

Lyapunov function candidate 𝑉 in (4.29) and the regularized jump map p𝐺 defined

in Section 4.1.1 satisfy

𝑉 (𝑔) ≤ 𝑉 (𝑥) ∀𝑥 ∈ 𝐷, ∀𝑔 ∈ p𝐺(𝑥)

Proof. By Lemma B.1, 𝑉 is a Lyapunov function candidate with respect to 𝒜 for

ℋ. Take any 𝑥 = (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐷 and 𝑔 := (𝑔𝑧, 𝑔𝜂0 , 𝑔𝜂1 , 𝑔v, 𝑔𝑞) ∈ p𝐺(𝑥). We want

to show 𝑉 (𝑔) ≤ 𝑉 (𝑥). Since 𝑔 ∈ p𝐺(𝑥), we must have that 𝑥 ∈ 𝐷cl
⋆ and 𝑔 ∈ y𝐺cl

⋆ (𝑥)

for some ⋆ ∈ {p,k0,k1, s}. Thus, we consider, individually, each of the four cases

given by ⋆ ∈ {p,k0,k1, s}.
Case 1. Suppose 𝑥 ∈ 𝐷cl

p and 𝑔 ∈ y𝐺cl
p (𝑥). From the definitions of 𝐷cl

p and y𝐺cl
p , we

have that 𝑔𝑧 ∈ 𝐺p(𝑧, 𝑢) for some (𝑧, 𝑢) ∈ 𝐷p. By (L5),

𝑉p(𝑔𝑧, 𝜂0) ≤ 𝑉p(𝑧, 𝜂0).

Since 𝑔𝜂0 and 𝑣 are constant when 𝑧 jumps (i.e., 𝑔𝜂0 = 𝜂0 and 𝑔v = 𝑣), we have that

𝑉 (𝑔) = max{𝑉p(𝑔𝑧, 𝑔𝜂0), 𝑔v} = max{𝑉p(𝑔𝑧, 𝜂0), 𝑣} ≤ max{𝑉p(𝑧, 𝜂0), 𝑣} = 𝑉 (𝑥).

Case 2. Suppose 𝑥 ∈ 𝐷cl
k0

and 𝑔 ∈ y𝐺cl
k0
(𝑥). From the definitions of 𝐷cl

k0
and y𝐺cl

k0
,

we have (𝑧, 𝜂0) ∈ 𝐷k0 , 𝑔𝑧 = 𝑧, 𝑔𝜂0 ∈ 𝐺k0(𝑧, 𝜂0), 𝑔𝜂1 = 𝜂1, and 𝑔v = 𝑣. By (L5),

𝑉p(𝑧, 𝑔𝜂0) ≤ 𝑉p(𝑧, 𝜂0). Thus,

𝑉 (𝑔) = min{𝑉p(𝑔𝑧, 𝑔𝜂0), 𝑔v} = min{𝑉p(𝑧, 𝑔𝜂0), 𝑣} ≤ min{𝑉p(𝑧, 𝜂0), 𝑣} = 𝑉 (𝑥).

Case 3. Suppose 𝑥 ∈ 𝐷cl
k1

and 𝑔 ∈ y𝐺cl
k1
(𝑥). From the definitions, we have 𝑥 ∈ 𝐷k0 ,

𝑔𝑧 = 𝑧, 𝑔𝜂0 = 𝜂0, and 𝑔v = 𝑣. Thus, 𝑉 (𝑔) = 𝑉 (𝑥), since 𝑉 only depends on 𝑧, 𝜂0,

and 𝑣, which are not changed.

Case 4. Suppose 𝑥 ∈ 𝐷s and 𝑔 ∈ y𝐺cl
s (𝑥). Then,

𝑔𝑧 = 𝑧, 𝑔𝜂0 = 𝜂0, and 𝑔v = max{𝑉p(𝑧, 𝜂0), 𝑣}.

By substitution, we find

𝑉 (𝑔) = max{𝑉p(𝑔𝑧, 𝑔𝜂0), 𝑔v}

= max
{︀
𝑉p(𝑧, 𝜂0), max{𝑉p(𝑧, 𝜂0), 𝑣}

}︀
= max{𝑉p(𝑧, 𝜂0), 𝑣}

= 𝑉 (𝑥).

68

Therefore, 𝑉 (𝑔) ≤ 𝑉 (𝑥).

Combining the prior results, we can prove 𝒜 is UGAS for pℋ, which immediately

implies that 𝒜 is UGAS for ℋ, since every solution to pℋ is a solution to ℋ.

Theorem 4.1 (UGAS). Suppose thatℋp,ℋk0 ,ℋk1 , andℋs satisfy Assumptions 4.1–

4.4, and that 𝐷s ∩𝐺cl
s (𝐷s) = ∅ and ℰ1 is compact and nonempty. Suppose, fur-

thermore, that 𝒜p and ℋp×0 satisfy Assumptions 4.5 and 4.6. Then, the set 𝒜 is

UGAS for pℋ.

Proof. The set 𝒜 is compact and nonempty because 𝒜p and ℰ1 are compact and

nonempty by assumption Assumption 4.6. By Lemmas B.1, B.3, and 4.6–4.8, we

have that 𝑉 in (4.29) is a Lyapunov function candidate with respect to 𝒜 for ℋ;

the function 𝜎 in (4.30) is LSC and positive definite on 𝐶 with respect to 𝒜; the

function 𝛼 in (B.1) is class-𝒦∞; and conditions (1.8a)–(1.8c) in Theorem 5.1 are

satisfied. A bound on jump frequency as required by (1.9) in Theorem 5.1 remains

to be shown.

Take any 𝑟 > 0. We want to show that there exists Δ𝑇 > 0 and Δ𝐽 > 0 such

that for each solution 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ≤ 𝑟, and for all (𝑡0, 𝑗0) and (𝑡1, 𝑗1) in

dom(𝜙) such that |𝑡1 − 𝑡0| ≤ Δ𝑇 , we have that |𝑗1 − 𝑗0| ≤ Δ𝐽 . To apply Lemma 4.5,

we must construct a compact set 𝐾 ⊂ 𝒳 such that 𝐾 is forward pre-invariant for ℋ
and 𝒜+ 𝑟B ⊂ 𝐾. Consider

𝐾 :=
{︀
𝑥 ∈ 𝒳

⃒⃒
𝑉 (𝑥) ≤ sup𝑉 (𝒜+ 𝑟B)

}︀
, (4.37)

where 𝑉 (𝒜+ 𝑟B) is a set in R, so sup𝑉 (𝒜+ 𝑟B) is the supremum of that set. The

set 𝒜 + 𝑟B is compact because 𝒜 is compact. Let 𝑉 * := sup𝑉 (𝒜 + 𝑟B). Since 𝑉

is continuous, 𝑉 (𝒜 + 𝑟B) is bounded, so 𝑉 * is finite. Thus, 𝐾 is the 𝑉 *-sublevel

set of 𝑉 . The sublevel set of a continuous function is closed, so 𝐾 is closed. Every

sublevel set of 𝑉 is forward pre-invariant, as a consequence of (1.8b) and (1.8c)

(which imply that 𝑉 is nonincreasing along flows and jumps, respectively), so 𝐾

is forward pre-invariant (Proposition 5.7). Finally, to show that 𝐾 is bounded, we

use (1.8a) which gives that for all 𝑥 ∈ 𝐾,

𝛼(|𝑥|𝒜) ≤ 𝑉 (𝑥) ≤ 𝑉 *.

69

Then, using the fact that 𝛼 is invertible and 𝛼−1 is strictly increasing, we have

that |𝑥|𝒜 ≤ 𝛼−1(𝑉 *). In other words, 𝐾 is contained within the compact set

𝒜+ 𝛼−1(𝑉 *)B and (as shown earlier) is closed, so 𝐾 is compact.

Per Lemma 4.5, there exists Δ𝑇 > 0 such that for each solution 𝜙 with 𝜙(0, 0) ∈
𝐾 and each (𝑡1, 𝑗2) ∈ dom(𝜙) and (𝑡2, 𝑗2) ∈ dom(𝜙),

|𝑡2 − 𝑡1| ≤ Δ𝑇 =⇒ |𝑗2 − 𝑗1| ≤ Δ𝐽 := 4.

Then, it follows from Proposition 5.5 that (5.18) in Theorem 5.1 holds. Therefore,

by Theorem 5.1, the set 𝒜 is UGpAS for ℋ.

To move from UGpAS to UGAS, we will show that all maximal solutions are

complete by applying Lemma 4.4. We need to show that no solutions to (p𝐹 ,𝐶) have

a finite escape time, but this follows immediately from the fact that 𝒜 is compact

and UGpAS. Therefore, by Lemma 4.4, every maximal solution to ℋ is complete

and 𝒜 is UGAS for pℋ.

70

Chapter 5

Relaxed Lyapunov Conditions for

Hybrid Systems

During the development of the results in Chapters 3 and 4, we found that

existing Lyapunov theorems for hybrid systems were insufficient for our needs. In

particular, we tried to use [3, Thm.3.19(b)] to prove that our uniting feedback

strategies rendered 𝒜p to be UGAS. For our purposes, however, [3, Thm.3.19(b)]

was difficult to apply, however, because it required the construction of a continuous,

positive definite function 𝜌 such that −𝜌(|𝑥|𝒜) is an upper bound on supℒ𝐹𝑉 (𝑥).

In particular, we found that our analysis would be benefit by relaxing the continuity

assumption to merely lower semicontinuity and by writing the bound as a function

𝑥 directly, instead of |𝑥|𝒜 the distance from 𝑥 to 𝒜. To alleviate these difficulties,

we developed the results presented in this chapter, which have also been published

in [16].

5.1 Introduction

In several Lyapunov-like theorems found in the control theory literature, as-

sumptions are imposed on a function ℎ : R𝑛 → R in the form

ℎ(𝑥) ≤ −𝜌(|𝑥|𝒜) ∀𝑥 ∈ R𝑛, (5.1)

where |𝑥|𝒜 is the distance from 𝑥 ∈ R𝑛 to a set 𝒜, and 𝜌 : [0,∞) → [0,∞) is continu-

ous and positive definite. E.g., for a system 𝑥̇ = 𝑓(𝑥) with a differentiable Lyapunov

function 𝑉 , we would use ℎ := 𝑉̇ , where 𝑉̇ (𝑥) := ⟨∇𝑉 (𝑥), 𝑓(𝑥)⟩. Examples of as-

sumptions in the form (5.1) include the hybrid Lyapunov theorem [3, Thm. 3.19(3)],

71

(robust) control Lyapunov functions [3, Defs. 10.2 and 10.14], and input-to-state sta-

bility (ISS) Lyapunov functions [17], [18]. In some results, such as Theorems 4.1

and 4.9 in [19], assumptions are given without using the distance function in the

form

ℎ(𝑥) ≤ −𝜎(𝑥) ∀𝑥 ∈ R𝑛, (5.2)

where 𝜎 : R𝑛 → [0,∞) is continuous and positive definite with respect to 𝒜, but

such existing results assume 𝒜 = {0}.
In this chapter, we relax the assumptions on Lyapunov functions for the

case where 𝒜 is compact. This work builds upon the hybrid Lyapunov theorems

[4, Thm. 3.18] and [3, Thm. 3.19]. In particular, [3, Thm. 3.19] asserts that a given

set 𝒜 is uniformly globally asymptotically stable with respect to a given hybrid

system ℋ under given assumptions. In this chapter, we relax the assumptions of

[3, Thm. 3.19] by i) relaxing bounds on the rate of change of 𝑉 that are given as a

function of the distance from 𝒜, as in (5.1), to only a function of the state, as in (5.2),

ii) allowing for bounds to be lower semicontinuous instead of continuous, iii) relaxing

the typical 𝒦∞ upper-bound on 𝑉 , and iv) simplifying conditions on hybrid time

domains when 𝑉 is merely nondecreasing during flows or across jumps. We prove our

results in the context of hybrid dynamical systems, with the results for discrete-time

and continuous-time systems following as special cases. Along the way, we also prove

several auxiliary results relating to finding lower bounds for positive definite lower

semi-continuous functions that may be useful in other contexts. Throughout this

chapter, we use the notation “𝜌” to denote positive definite functions on R≥0 and “𝜎”

to denote positive definite functions on R𝑛 with respect to 𝒜 (i.e., 𝜌 ∈ 𝒫𝒟(0) and

𝜎 ∈ 𝒫𝒟(𝒜)).

The remainder of this chapter is structured as follows. Section 5.2 contains

insertion theorems that assert the existence of functions between constraints. Sec-

tion 5.3 presents our main result, a Lyapunov theorem to show that compact sets are

UGAS for hybrid systems, which relaxes results in [3], [4]. In Section 5.3.1, simplified

conditions are provided for establishing bounds on the amount of flow versus the

number of jumps in a hybrid time domain. Section 5.3.3 presents corollaries of our

hybrid Lyapunov theorem for the special cases of continuous-time and discrete-time

systems. Section 5.3.2 provides results for establishing bounds on solutions via

sublevel sets of Lyapunov functions.

72

5.2 Insertion Theorems

In the field of topology, an insertion theorem asserts the ability to insert a

function between two other functions. An example is the Katětov–Tong insertion

theorem [20], which allows for the insertion of a continuous function between any

USC function ℓ : R → R and LSC function 𝑢 : R → R such that ℓ ≤ 𝑢. In this section,

we introduce results for inserting positive definite functions between zero and another

positive definite function. These results are used, in Section 5.3, to relax conditions

such as (5.1) and (5.2).

5.2.1 Insertion Theorems for Positive Definite Functions

Our first result shows that given any LSC function 𝜎lsc ∈ 𝒫𝒟(𝒜), we can

construct a Lipschitz continuous function 𝜎c ∈ 𝒫𝒟(𝒜) such that 𝜎c ≤ 𝜎lsc.

Proposition 5.1. Consider a closed set 𝒳 ⊂ R𝑛, a compact set 𝒜 ⊂ 𝒳 , a function

𝜎lsc : 𝒳 → R≥0, and any ℓ > 0. Let 𝜎c : 𝒳 → R≥0 be defined by

𝜎c(𝑥) := inf
𝑥*∈𝒳

(︀
ℓ|𝑥* − 𝑥|+ 𝜎lsc(𝑥

*)
)︀

∀𝑥 ∈ 𝒳 . (5.3)

If 𝜎lsc is in 𝒫𝒟(𝒜) and LSC, then 𝜎c is in 𝒫𝒟(𝒜), ℓ–Lipschitz continuous, and

𝜎c(𝑥) ≤ 𝜎lsc(𝑥) ∀𝑥 ∈ 𝒳 . (5.4)

Proof. First, we will establish that for each 𝑥 ∈ 𝒳 , the objective function 𝑥* ↦→
ℓ|𝑥* − 𝑥| + 𝜎lsc(𝑥

) attains a minimum for some 𝑥 ∈ 𝒳 and that the minimum

point is within a ball with radius 𝜎lsc(𝑥0) centered at 𝑥0. Take any 𝑥0 ∈ 𝒳 and let

𝐾 := 𝑥0 + 𝜎lsc(𝑥0)B, which is compact, and take any 𝑥1 ∈ 𝒳 ∖𝐾. Since 𝑥1 is not

in 𝐾,

ℓ|𝑥1 − 𝑥0| > 𝜎lsc(𝑥0).

Using the fact that 𝜎lsc(𝑥1) ≥ 0, we find

ℓ|𝑥1 − 𝑥0|+ 𝜎lsc(𝑥1) ≥ ℓ|𝑥1 − 𝑥0| > 𝜎lsc(𝑥0).

Thus, for all 𝑥0 ∈ 𝒳 and 𝑥1 ∈ 𝒳 ∖𝐾,

ℓ|𝑥1 − 𝑥0|+ 𝜎lsc(𝑥1) > 𝜎lsc(𝑥0),

73

so excluding all such points 𝑥1 from the domain of the infimum does not change the

value of the infimum. In other words, restricting the domain of the infimum to 𝐾

does not change the value of 𝜎c(𝑥0):

𝜎c(𝑥0) = inf
𝑥*∈𝒳

(︀
ℓ|𝑥0 − 𝑥*|+ 𝜎lsc(𝑥

*)
)︀
= inf

𝑥*∈𝒳∩𝐾

(︀
ℓ|𝑥0 − 𝑥*|+ 𝜎lsc(𝑥

*)
)︀
.

An LSC function restricted to a compact set always attains a minimum, so there

exists 𝑥* ∈ 𝒳 ∩𝐾 such that

𝜎c(𝑥0) = ℓ|𝑥0 − 𝑥*|+ 𝜎lsc(𝑥
*). (5.5)

Furthermore, since 𝑥* is a minimum point, the objective function cannot be

smaller at 𝑥0, so we establish that (5.4) holds:

𝜎c(𝑥0) = ℓ|𝑥0 − 𝑥*|+ 𝜎lsc(𝑥
*) ≤

(︀
ℓ|𝑥0 − 𝑥0|+ 𝜎lsc(𝑥0)

)︀
= 𝜎lsc(𝑥0).

Next we establish that 𝜎c is positive definite with respect to 𝒜. If 𝑥0 ∈ 𝒜, then

𝜎c(𝑥0) = 𝜎lsc(𝑥0) = 0. Suppose, instead, that 𝑥0 ∈ 𝒜. Then, 𝑥* in (5.5) must either

be 𝑥0 or not 𝑥0. If 𝑥* = 𝑥0, then

𝜎c(𝑥0) = ℓ|𝑥0 − 𝑥*|⏟ ⏞
=0

+𝜎lsc(𝑥
*)⏟ ⏞

>0

> 0.

If 𝑥* ̸= 𝑥0, then

𝜎c(𝑥0) = ℓ|𝑥0 − 𝑥*|⏟ ⏞
>0

+𝜎lsc(𝑥
*)⏟ ⏞

≥0

> 0.

Therefore, 𝜎c(𝑥0) > 0 for all 𝑥0 ̸∈ 𝒜, thereby proving 𝜎c is positive definite with

respect to 𝒜.

Next, we will prove 𝜎c is ℓ–Lipschitz. Take any 𝑥0 ∈ 𝒳 and 𝑥1 ∈ 𝒳 . Because

the minimum is attained on 𝒳 ∩𝐾, there exists 𝑥*0 ∈ 𝒳 ∩𝐾 such that

𝜎c(𝑥0) = ℓ|𝑥*0 − 𝑥0|+ 𝜎lsc(𝑥
*
0).

Additionally,

𝜎c(𝑥1) ≤ ℓ|𝑥*0 − 𝑥1|+ 𝜎lsc(𝑥
*
0).

Therefore,

𝜎c(𝑥1)−𝜎c(𝑥0)≤ ℓ|𝑥*0−𝑥1|+𝜎lsc(𝑥*0)−
(︀
ℓ|𝑥*0−𝑥0|+𝜎lsc(𝑥*0)

)︀
= ℓ|𝑥*0−𝑥1|−ℓ|𝑥*0−𝑥0|.

74

By the inverse triangle inequality

|𝑥*0 − 𝑥1| − |𝑥*0 − 𝑥0| ≤
⃒⃒
|𝑥*0 − 𝑥1| − |𝑥*0 − 𝑥0|

⃒⃒
≤
⃒⃒
(𝑥*0 − 𝑥1)− (𝑥*0 − 𝑥0)

⃒⃒
= |𝑥1 − 𝑥0|.

Therefore,

𝜎c(𝑥1)− 𝜎c(𝑥0) ≤ ℓ|𝑥1 − 𝑥0|.

The values 𝑥0 and 𝑥1 were arbitrarily chosen from 𝒳 , so we can switch them,

producing

𝜎c(𝑥0)− 𝜎c(𝑥1) = −(𝜎c(𝑥1)− 𝜎c(𝑥0)) ≤ ℓ|𝑥0 − 𝑥1| = ℓ|𝑥1 − 𝑥0|.

Therefore, we have established that 𝜎c is Lipschitz continuous with Lipschitz con-

stant ℓ, since

|𝜎c(𝑥1)− 𝜎c(𝑥0)| ≤ ℓ|𝑥1 − 𝑥0| ∀𝑥0, 𝑥1 ∈ 𝒳 .

Example 5.1. To see why 𝜎lsc is assumed to be LSC in Proposition 5.1, consider

𝜎 : R≥0 → R≥0 defined for all 𝑥 ≥ 0 by

𝜎(𝑥) :=

{︃
𝑥(1− 𝑥) if 𝑥 ∈ [0, 1)

1 if 𝑥 ≥ 1.

Although 𝜎 is positive definite with respect to 𝒜 := {0}, it cannot be lower bound

by a continuous function in 𝒫𝒟(𝒜) because 𝜎 is not LSC at 𝑥 = 1 and

lim inf
𝑥→1

𝜎(𝑥) = 0.

In particular, for any continuous function 𝜎c : R≥0 → R≥0 such that 𝜎c(𝑥) ≤ 𝜎(𝑥),

it must be that 𝜎c(1) = 0 because 𝜎c is squeezed to zero by 𝜎 as 𝑥 approaches 1

from the left. ◇

The next result allows us to weaken assumptions in the form of (5.1), with 𝜌

continuous, into an inequality in the form of (5.2) with 𝜎 LSC.

Lemma 5.1. Consider a continuous function 𝜎c : R𝑛 → R≥0 and a compact set

𝒜 ⊂ R𝑛. If 𝜎c ∈ 𝒫𝒟(𝒜), then

𝑟 ↦→ 𝜌lsc(𝑟) := inf
{︀
𝜎c(𝑥) : |𝑥|𝒜 = 𝑟

}︀
∀𝑟 ≥ 0 (5.6)

is LSC, positive definite, and satisfies

𝜌lsc(|𝑥|𝒜) ≤ 𝜎c(𝑥) ∀𝑥 ∈ R𝑛. (5.7)

75

Proof. Let 𝒟 : R≥0 ⇒ R𝑛 be defined by

𝑟 ↦→ 𝒟(𝑟) :=
{︀
𝑥 ∈ R𝑛 : |𝑥|𝒜 = 𝑟

}︀
∀𝑟 ≥ 0.

Since 𝒜 is compact, the set 𝒟(𝑟) is nonempty and compact for all 𝑟 ≥ 0.1 Further-

more, since 𝜎c is continuous and 𝒟 has compact values for each 𝑟 ≥ 0, the restriction

of 𝜎c to 𝒟(𝑟) attains a minimum value, therefore

𝜌lsc(𝑟) = min
𝑥∈𝒟(𝑟)

𝜎c(𝑥) ∀𝑟 ≥ 0.

Next, we prove 𝜌lsc is positive definite and satisfies (5.7). Take any 𝑟 ≥ 0. If

𝑟 = 0, then |𝑥|𝒜 = 𝑟 implies 𝑥 ∈ 𝒜, so 𝜌lsc(0) = min{𝜎c(𝑥) | 𝑥 ∈ 𝒜} = 0, since 𝜎c

is identically zero on 𝒜. Suppose, instead 𝑟 > 0. Since 𝜎c is positive outside 𝒜 and

𝒟(𝑟) is disjoint from 𝒜, we have that 𝜌lsc(𝑟) > 0. Therefore, 𝜌lsc is positive definite.

Take any 𝑥 ∈ R𝑛. Then, we find 𝜌lsc satisfies (5.7):

𝜌lsc(|𝑥|𝒜) = min
𝑥′∈𝒟(|𝑥|𝒜)

𝜎c(𝑥
′) ≤ 𝜎c(𝑥) ∀𝑥 ∈ R𝑛. (5.8)

Next, we prove 𝜌lsc is LSC. For all 𝑟 ≥ 0, let

ℳ(𝑟) = {𝑥min ∈ 𝒟(𝑟) | 𝜎c(𝑥min) = 𝜌lsc(𝑟)},

which is the (nonempty) set of points that minimize 𝜎c in 𝒟(𝑟).

To prove lower semicontinuity at each 𝑟1 ≥ 0, we want to show that for all 𝜀 > 0,

there exists 𝛿 > 0 such that for all 𝑟2 ∈ R≥0,

|𝑟1 − 𝑟2| ≤ 𝛿 =⇒ 𝜌lsc(𝑟2) ≥ 𝜌lsc(𝑟1)− 𝜀.

Take any 𝑟1 ≥ 0 and let 𝐾𝑟 := 𝒜 + (𝑟1 + 42)B ⊂ R𝑛. Since 𝜎c is continuous

and 𝐾𝑟 is compact, the restriction of 𝜎c to 𝐾𝑟 is uniformly continuous. From the

definition of uniform continuity, for all 𝜀 > 0, there exists 𝛿 > 0 such that for all

𝑥1, 𝑥2 ∈ 𝐾𝑟,

|𝑥1 − 𝑥2| ≤ 𝛿 =⇒ |𝜎c(𝑥1)− 𝜎c(𝑥2)| ≤ 𝜀.

Without loss of generality, suppose 𝛿 < 42 (so that 𝒟(𝑟1) + 𝛿B ⊂ 𝐾𝑟). Take any

𝑟2 ≥ 0 such that |𝑟1 − 𝑟2| ≤ 𝛿. We will show 𝜌lsc(𝑟2) ≥ 𝜌lsc(𝑟1)− 𝜀.

1To see why compactness is important, consider that if 𝒜 := R𝑛, then 𝒟(1) = ∅.

76

Take any 𝑥min ∈ ℳ(𝑟1) and 𝑥𝑟 ∈ 𝒟(𝑟1). From the definition of ℳ(𝑟1) and (5.8),

𝜎c(𝑥min) = 𝜌lsc(|𝑥min|𝒜) = 𝜌lsc(|𝑥𝑟|𝒜) ≤ 𝜎c(𝑥𝑟).

Consider 𝒟(𝑟2). Since |𝑟1 − 𝑟2| ≤ 𝛿,

𝒟(𝑟2) ⊂ 𝒟(𝑟1) + 𝛿B.

Take any 𝑥2 ∈ 𝒟(𝑟2). Because of the uniform continuity of 𝜎c on 𝒟(𝑟2) ⊂ 𝒟(𝑟1) +

𝛿B ⊂ 𝐾𝑟, and because min𝑥∈𝒟(𝑟1) 𝜎c(𝑥) = 𝜌lsc(𝑟1),

𝜎c(𝑥2) ≥ 𝜌lsc(𝑟1)− 𝜀.

Since this holds for all 𝑥2 ∈ 𝒟(𝑟2), we have that

𝜌lsc(𝑟2) = min
𝑥2∈𝒟(𝑟2)

𝜎c(𝑥2) ≥ 𝜌lsc(𝑟1)− 𝜀.

Therefore, 𝜌lsc is LSC.

Remark 5.1. One may suspect that we can relax that assumption in Lemma 5.1 that

𝜎c is continuous to merely lower semicontinuous. This remains an open question,

however. The proof approach we have used necessitates continuity of 𝜎c because

we use the fact that continuity on a compact set implies uniform continuity. The

analogous claim for lower semicontinuity on a compact set is false.

The next example shows a case where the function 𝜌lsc in Lemma 5.1 is merely

LSC—not continuous.

Example 5.2. Consider 𝒜 := {−1, 1} ⊂ R, and let 𝜎c(𝑥) := |𝑥2 − 1| for all 𝑥 ∈ R.

Then, for all 𝑟 ≥ 0,

𝜌lsc(𝑟) =
{︀
|𝑥2 − 1| : |𝑥|𝒜 = 𝑟

}︀
=

{︃
𝑟(2− 𝑟) if 𝑟 ≤ 1

𝑟(2 + 𝑟) if 𝑟 > 1,

so 𝜌lsc jumps from 𝜌lsc(1) = 1 to 𝜌lsc(1.001) > 2. ◇

The following result asserts that for every LSC function 𝜎lsc ∈ 𝒫𝒟(𝒜) with 𝒜
compact, we can construct a continuous function 𝜌c ∈ 𝒫𝒟(0) that—when composed

with the distance from 𝒜, as in (5.1)—is a lower bound on 𝜎lsc.

77

https://math.stackexchange.com/q/1877/364370

Proposition 5.2. Consider a compact set 𝒜 ⊂ R𝑛. For each LSC function 𝜎lsc :

R𝑛 → R≥0 in 𝒫𝒟(𝒜) and each ℓ > 0, there exists an ℓ-Lipschitz continuous and

positive definite function 𝜌c : R≥0 → R≥0 such that

𝜌c(|𝑥|𝒜) ≤ 𝜎lsc(𝑥) ∀𝑥 ∈ R𝑛. (5.9)

Proof. Suppose 𝜎lsc ∈ 𝒫𝒟(𝒜) is LSC. By Proposition 5.1, there exists a continuous

function 𝜎c ∈ 𝒫𝒟(𝒜) such that

𝜎c(𝑥) ≤ 𝜎lsc(𝑥) ∀𝑥 ∈ R𝑛.

By Lemma 5.1, there exists an LSC and positive definite function 𝜌lsc ∈ 𝒫𝒟(0) such

that

𝜌lsc(|𝑥|𝒜) ≤ 𝜎c(𝑥) ∀𝑥 ∈ R𝑛.

Again, by Proposition 5.1, for any ℓ > 0 there exists an ℓ-Lipschitz continuous

function 𝜌c ∈ 𝒫𝒟(0) such that

𝜌c(𝑟) ≤ 𝜌lsc(𝑟) ∀𝑟 ≥ 0.

Thus, for all 𝑥 ∈ R𝑛,

𝜌c(|𝑥|𝒜) ≤ 𝜌lsc(|𝑥|𝒜) ≤ 𝜎c(𝑥) ≤ 𝜎lsc(𝑥).

5.2.2 Insertion Theorems for Class 𝒦∞ Functions

This section shows that for any nonempty compact set 𝒜 and continuous func-

tion 𝑉 : R𝑛 → R≥0, there exists 𝛼 ∈ 𝒦∞ such that

𝑉 (𝑥) ≤ 𝛼(|𝑥|𝒜) ∀𝑥 ∈ dom(𝑉). (5.10)

The following lemma establishes that any continuous function 𝜌c on R with 𝜌c(0) = 0

can be upper bounded by a class-𝒦∞ function.

Lemma 5.2. Consider a continuous function 𝜌c : R≥0 → R≥0. If 𝜌c(0)=0, then

there exists a smooth function 𝛼 ∈ 𝒦∞ such that

𝜌c(𝑟) ≤ 𝛼(𝑟) ∀𝑟 ≥ 0. (5.11)

78

Proof. We define 𝛼 : R≥0 → R≥0 for each 𝑟 ≥ 0 by

𝛼(𝑟) := sup
𝑟′∈[0,𝑟]

|𝑟 − 𝑟′|+ 𝜌c(𝑟
′).

The function 𝛼 is continuous by [21, Prop. 2.9] because 𝑟′ ↦→ |𝑟 − 𝑟′|+ 𝜌c(𝑟
′) is

(single-valued) continuous and 𝑟 ↦→ [0, 𝑟] is (set-valued) continuous.

At zero, 𝛼(0) = 𝜌c(0) = 0. To see that 𝛼 is strictly increasing, take any 𝑟0 ≥ 0

and 𝑟1 > 𝑟0. Then, since |𝑟1 − 𝑟0| > 0,

𝛼(𝑟1) ≥ |𝑟1 − 𝑟0|+ 𝜌c(𝑟0) > 𝛼(𝑟0).

Finally, we see that lim𝑟→∞ 𝛼(𝑟) = ∞ because for all 𝑟 ≥ 0,

𝛼(𝑟) ≥ |𝑟 − 0|+ 𝜌c(0) = 𝑟.

Therefore, 𝛼 is a class–𝒦∞ function.

Lemma 5.2 leads naturally to the following lemma that we use to eliminate the

𝒦∞ upper bound in Lyapunov theorems, such as [3, Thm. 3.19], when 𝒜 is compact.

Lemma 5.3. Consider a closed and nonempty set 𝒳 ⊂ R𝑛, a compact and nonempty

set 𝒜 ⊂ 𝒳 , and a continuous function 𝑉 : 𝒳 → R≥0. If 𝑉 (𝑥) = 0 for all 𝑥 ∈ 𝒜, then

there exists 𝛼 ∈ 𝒦∞ such that 𝑉 (𝑥) ≤ 𝛼(|𝑥|𝒜) for all 𝑥 ∈ 𝒳 .

To see why the conclusion in Lemma 5.3 does not generally hold if 𝒜 is un-

bounded, consider 𝒜 := R× {0} and (𝑥1, 𝑥2) ↦→ 𝑉 (𝑥1, 𝑥2) = (|𝑥1|+ 1)|𝑥2|.

5.3 Lyapunov Theorems for Compact Sets

In this section, we present a Lyapunov theorem with relaxed assumptions for

showing that a compact set is UGpAS for a hybrid system. The following definition

establishes the class of functions permissible as Lyapunov functions.

Definition 5.1 ([3, Def. 3.17]). Consider a hybrid system ℋ = (𝐶,𝐹,𝐷,𝐺) on R𝑛

and a set 𝒜 ⊂ R𝑛. A function 𝑉 : dom(𝑉) ⊂ R𝑛 → R is a Lyapunov function candi-

date with respect to 𝒜 for ℋ if 𝐶 ∪𝐷 ∪𝐺(𝐷) ⊂ dom(𝑉), 𝑉 is positive definite on

𝐶 ∪𝐷 ∪𝐺(𝐷) with respect to 𝒜, 𝑉 is continuous, and 𝑉 is locally Lipschitz on an

open neighborhood of 𝐶. ◇

79

A key part of any Lyapunov-like theorem is establishing an upper bound on

the change in a Lyapunov function candidate 𝑉 . For hybrid systems, the following

functions provide upper bounds on the rate of 𝑉 during flows and across jumps.

Definition 5.2. Consider a hybrid system ℋ = (𝐶,𝐹,𝐷,𝐺) on R𝑛, a nonempty set

𝒜 ⊂ R𝑛, and a Lyapunov function candidate 𝑉 with respect to 𝒜 for ℋ. Recall that

𝑇𝐶(𝑥) is the contingent cone of 𝐶 at 𝑥. We define

𝑢c(𝑥) := sup
𝑓∈𝐹 (𝑥)∩𝑇𝐶(𝑥)

𝑉 ∘(𝑥, 𝑓) ∀𝑥 ∈ 𝐶 (5.12)

𝑢d(𝑥) := sup
𝑔∈𝐺(𝑥)

𝑉 (𝑔)− 𝑉 (𝑥) ∀𝑥 ∈ 𝐷. (5.13)

The suprema are defined as−∞ if the domains are empty (that is, if 𝐹 (𝑥) ∩ 𝑇𝐶(𝑥) = ∅,

then 𝑢c(𝑥) = −∞). ◇

For any solution 𝜙 to ℋ and all (𝑡1, 𝑗1), (𝑡2, 𝑗2) ∈ dom(𝜙),

𝑉
(︀
𝜙(𝑡2, 𝑗2)

)︀
− 𝑉

(︀
𝜙(𝑡1, 𝑗1)

)︀
≤
∫︁ 𝑡2

𝑡1

𝑢c
(︀
𝜙(𝑡, 𝑗(𝑡))

)︀
𝑑𝑡+

𝑗2−1∑︁
𝑗=𝑗1

𝑢d
(︀
𝜙(𝑡(𝑗), 𝑗)

)︀
,

where 𝑗 and 𝑡 are defined for all (𝑡, 𝑗) ∈ dom(𝜙) by

𝑗 ↦→ 𝑡(𝑗) := min
{︀
𝑡′
⃒⃒
(𝑡′, 𝑗) ∈ dom(𝜙)

}︀
and 𝑡 ↦→ 𝑗(𝑡) := min

{︀
𝑗′
⃒⃒
(𝑡, 𝑗′) ∈ dom(𝜙)

}︀
.

The main result of this chapter, which follows the structure of [3, Thm. 3.19(3)],

is presented next. In particular, Theorem 5.1 provides sufficient conditions for a

compact set to be UGpAS.

Theorem 5.1. Consider a hybrid system ℋ = (𝐶,𝐹,𝐷,𝐺) on R𝑛, a nonempty

compact set 𝒜 ⊂ R𝑛, and a Lyapunov function candidate 𝑉 with respect to 𝒜 for ℋ.

Suppose there exists 𝛼1 ∈ 𝒦∞ such that

𝛼1(|𝑥|𝒜) ≤ 𝑉 (𝑥) ∀𝑥 ∈ 𝐶 ∪𝐷 ∪𝐺(𝐷). (5.14)

Then, the set 𝒜 is UGpAS for ℋ if any of the following conditions hold:

(a) Strict decrease during flows and jumps: There exist LSC functions 𝜎𝑐, 𝜎𝑑 ∈
𝒫𝒟(𝒜) such that

𝑢c(𝑥) ≤ −𝜎𝑐(𝑥) ∀𝑥 ∈ 𝐶 (5.15)

𝑢d(𝑥) ≤ −𝜎𝑑(𝑥) ∀𝑥 ∈ 𝐷. (5.16)

80

(b) Strict decrease during flows, nonincreasing at jumps: There exists an LSC

function 𝜎𝑐 ∈ 𝒫𝒟(𝒜) such that

𝑢c(𝑥) ≤ −𝜎𝑐(𝑥) ∀𝑥 ∈ 𝐶 (*5.15)

𝑢d(𝑥) ≤ 0 ∀𝑥 ∈ 𝐷, (5.17)

and, for each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for each solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

𝑡 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟 (𝑡, 𝑗) ∈ dom(𝜙). (5.18)

(c) Strict decrease at jumps, nonincreasing during flows: There exists an LSC

function 𝜎𝑑 ∈ 𝒫𝒟(𝒜) such that

𝑢c(𝑥) ≤ 0 ∀𝑥 ∈ 𝐶 (5.19)

𝑢d(𝑥) ≤ −𝜎𝑑(𝑥) ∀𝑥 ∈ 𝐷, (*5.16)

and, for each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for each solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

𝑗 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟 ∀(𝑡, 𝑗) ∈ dom(𝜙). (5.20)

(d) This item is skipped to keep the enumeration consistent with [3, Thm. 3.19].

(e) Bounded flow time: There exist 𝜆 ∈ R and an LSC function 𝜎𝑑 ∈ 𝒫𝒟(𝒜) such

that

𝑢c(𝑥) ≤ 𝜆𝑉 (𝑥) ∀𝑥 ∈ 𝐶 (5.21)

𝑢d(𝑥) ≤ −𝜎𝑑(𝑥) ∀𝑥 ∈ 𝐷, (*5.16)

and, for each 𝑟 > 0, there exists 𝑇𝑟 ≥ 0 such that for each solution 𝜙 to ℋ with

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

dom(𝜙) ⊂ [0, 𝑇𝑟]× N. (5.22)

(f) Finite number of jumps: There exist an LSC function 𝜎𝑐 ∈ 𝒫𝒟(𝒜) and a

continuous function 𝜆 : R≥0 → R≥0 with 𝜆(0) = 0 such that

𝑢c(𝑥) ≤ −𝜎𝑐(𝑥) ∀𝑥 ∈ 𝐶 (*5.15)

𝑉 (𝑔) ≤ 𝜆(𝑉 (𝑥)) ∀𝑥 ∈ 𝐷, ∀𝑔 ∈ 𝐺(𝑥), (5.23)

and, for each 𝑟 ≥ 0, there exists 𝐽𝑟 ∈ N such that for every solution 𝜙 to ℋ,

dom(𝜙) ⊂ R× {0, 1, . . . , 𝐽𝑟}. (5.24)

81

Proof. We will apply [3, Thm. 3.19(3)] to prove each case. By assumption and

Lemma 5.3 with 𝒰 := 𝐶 ∪𝐷∪𝐺(𝐷), there exist 𝛼1, 𝛼2 ∈ 𝒦∞ satisfying [3, Eq. 3.26]:

𝛼1(|𝑥|𝒜) ≤ 𝑉 (𝑥) ≤ 𝛼2(|𝑥|𝒜) ∀𝑥 ∈ 𝐶 ∪𝐷 ∪𝐺(𝐷).

Suppose that there exists an LSC function 𝜎𝑐 ∈ 𝒫𝒟(𝒜) that satisfies (5.15). By

Proposition 5.2, there exist a Lipschitz continuous function 𝜌𝑐 ∈ 𝒫𝒟(0) such that

𝜌𝑐(|𝑥|𝒜) ≤ 𝜎𝑐(𝑥) for all 𝑥 ∈ R𝑛. Therefore, under the assumption that there exists

an LSC function 𝜎𝑐 ∈ 𝒫𝒟(𝒜) such that (5.15) holds, then there exists a continuous

function 𝜌𝑐 ∈ 𝒫𝒟(0) such that [3, Eq. 3.27] holds:

𝑢c(𝑥) ≤ −𝜎𝑐(𝑥) ≤ −𝜌𝑐(|𝑥|𝒜) ∀𝑥 ∈ 𝐶. (5.25)

By a similar process, we find if there exists 𝜎𝑑 ∈ 𝒫𝒟(𝒜) such that (5.16) holds,

then there exists a continuous function 𝜌𝑑 ∈ 𝒫𝒟(0) such that [3, Eq. 3.28] holds.

(a) By assumption, there exist LSC functions 𝜎𝑐, 𝜎𝑑 ∈ 𝒫𝒟(𝒜) such that (5.15)

and (5.16) hold. Then, as shown above, there exist continuous 𝜌𝑐, 𝜌𝑑 ∈ 𝒫𝒟(0)

such that [3, Eqs. 3.27-3.28] hold. Therefore, by [3, Thm. 3.19(3a)], the set 𝒜
is UGpAS.

(b) By assumption, there exists an LSC function 𝜎𝑐 ∈ 𝒫𝒟(𝒜) such that (5.15)

holds. Then, as in part (a), there exists 𝜌𝑐 ∈ 𝒫𝒟(0) such that [3, Eq. 3.27]

holds. By assumption, [3, Eq. 3.28] holds with 𝜌𝑐 ≡ 0.

Additionally, by assumption, for each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0

such that for each solution 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟], and for all (𝑡, 𝑗) ∈
dom(𝜙), 𝑡 ≥ 𝛾𝑟(𝑡+ 𝑗) −𝑁𝑟. By Lemma B.7 (in Section B.2.1), for all 𝑇 ≥ 0

and (𝑡, 𝑗) ∈ dom(𝜙) with 𝑡+ 𝑗 ≥ 𝑇 ,

𝑡 ≥ 𝛾𝑟(𝑇)−𝑁𝑟.

Therefore, by [3, Thm. 3.19(3b)], the set 𝒜 is UGpAS.

(c) By assumption, there exists a lower semicontinuous function 𝜎𝑑 ∈ 𝒫𝒟(𝒜) such

that (5.16) holds. Then, as in part (a), there exists 𝜌𝑑 ∈ 𝒫𝒟(0) such that

[3, Eq. 3.28] holds. By assumption, [3, Eq. 3.27] holds with 𝜌𝑐 ≡ 0.

Additionally, by assumption, for each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0

such that for each solution 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟], and for all (𝑡, 𝑗) ∈

82

dom(𝜙), 𝑗 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟. By Lemma B.8 (in Section B.2.1), for all 𝐽 ≥ 0

and (𝑡, 𝑗) ∈ dom(𝜙) with 𝑡+ 𝑗 ≥ 𝐽 ,

𝑗 ≥ 𝛾𝑟(𝐽)−𝑁𝑟.

Therefore, by [3, Thm. 3.19(3c)], the set 𝒜 is UGpAS.

(d) This case is omitted.

(e) The inequality [3, Eqs. 3.28] is satisfied, as shown above in (a). Equation (5.21)

is satisfied by assumption. Take any 𝑟 > 0 and take 𝑇𝑟 ≥ 0 such that for each

solution 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

dom(𝜙) ⊂ [0, 𝑇𝑟]× N.

Thus, for every solution 𝜙 to ℋ,

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟], (𝑡, 𝑗) ∈ dom(𝜙) =⇒ 𝑡 ≤ 𝑇𝑟,

thereby satisfying all of the assumptions of [3, Thm. 3.19(3e)].

(f) The rate inequalities in this case are either true by assumption or can be shown

via the methods above. By Lemma B.9 in Section B.2.1, the given assumption

on 𝐽𝑟 is equivalent to the assumption on the existence of 𝛾 ∈ 𝒦 and 𝐽 ≥ 0 in

[3, Thm. 3.19(3f)]. Therefore, 𝒜 is UGpAS for ℋ per [3, Thm. 3.19(3f)].

The next example Theorem 5.1 can be applied to prove that a set is UGpAS

without needing to construct a bound on 𝑢c in the form of (5.1).

Example 5.3 (Bouncing Ball). Consider a bouncing ball modeled as in [4, Ex. 3.19]

with height 𝑥1 ≥ 0 and vertical velocity 𝑥2 ∈ R. The bouncing ball is modeled as

the hybrid system ℋ := (𝐶,𝐹,𝐷,𝐺) with state 𝑥 := (𝑥1, 𝑥2) ∈ R2 and dynamics

given by

𝐹 (𝑥) :=

⎡⎣ 𝑥2
−𝛾

⎤⎦ ∀𝑥 ∈ 𝐶 :=
{︀
𝑥 ∈ R2

⃒⃒
𝑥1 > 0

}︀

𝐺(𝑥) :=

⎡⎣ 0

−𝜆𝑥2

⎤⎦ ∀𝑥 ∈ 𝐷 :=
{︀
𝑥 ∈ R2

⃒⃒
𝑥1 = 0, 𝑥2 < 0

}︀
,

83

where 𝛾 > 0 is acceleration due to gravity and 𝜆 ∈ [0, 1) is the coefficient of restitution

when the ball hits the floor. The sets 𝐶 and 𝐷 are not closed, so (A1) of the hybrid

basic conditions is violated. To show that 𝒜 := {(0, 0)} is UGpAS, we take the

Lyapunov function candidate

𝑥 ↦→ 𝑉 (𝑥1, 𝑥2) :=
(︀
1 + 𝜃 atan(𝑥2)

)︀(︀
𝑥22/2 + 𝛾𝑥1

)︀
where 𝜃 :=

(︀
1− 𝜆2

)︀⧸︀(︀
2 + 2𝜆2

)︀
. Equation (5.14) holds with

𝑠 ↦→ 𝛼1(𝑠) :=
1

1−𝜃 min
{︀
𝑠2/4, 𝛾𝑠/

√
2
}︀
.

Since 𝑉 is continuously differentiable and 𝐹 is single valued, we have that for

all 𝑥 := (𝑥1, 𝑥2) ∈ 𝐶,

𝑢c(𝑥) = ⟨∇𝑉 (𝑥), 𝐹 (𝑥)⟩ = −𝛾𝜃
(︀
𝑥22/2 + 𝛾𝑥1

)︀⧸︀(︀
1 + 𝑥22

)︀
.

Thus, 𝑢c is continuous and negative definite with respect to 𝒜, and 𝜎𝑐 := −𝑢c
satisfies (5.15). For each 𝑥 := (0, 𝑥2) ∈ 𝐷,

𝑢d(𝑥) =
[︁
𝜆2 − 1− 𝜃

(︀
atan(𝜆𝑥2)𝜆

2 + atan(𝑥2)
)︀]︁𝑥22

2
,

which is continuous. For any 𝑥 ∈ 𝐷 ∖ 𝒜, we have

𝜃
(︀
atan(−𝜆𝑥2)𝜆2 − atan(𝑥2)

)︀
≤ 𝜃(𝜆2 + 1) < 𝜆2 − 1 < 0,

so 𝑢d is negative definite. Thus, 𝜎𝑑 := −𝑢d satisfies (5.16). Therefore, by Theo-

rem 5.1, (0, 0) is UGpAS for ℋ. ◇

As we saw in Examples 5.3 and 5.4, if 𝑢c and 𝑢d are negative definite and USC,

then we can simply use the functions 𝜎c ≡ −𝑢c and 𝜎c ≡ −𝑢d for the assumptions

in Theorem 5.1. This approach holds in general if we introduce additional (weak)

assumptions on 𝐹 and 𝐺, which are a subset of the hybrid basic conditions. In

particular, 𝐹 is assumed to be locally bounded and OSC, as in (A2), but not

assumed to have convex values. The assumptions on 𝐺 match (A3).

Proposition 5.3. Consider a hybrid system ℋ = (𝐶,𝐹,𝐷,𝐺) on R𝑛, a compact set

𝒜 ⊂ R𝑛, and a Lyapunov function candidate 𝑉 with respect to 𝒜 forℋ. Suppose 𝐹 is

OSC and locally bounded, and 𝑢c is negative definite with respect to 𝒜. Then, 𝜎𝑐 ≡
−𝑢c is LSC and satisfies (5.15), and there exists a continuous function 𝜌 ∈ 𝒫𝒟(0)

such that 𝑢c(𝑥) ≤ −𝜌(|𝑥|𝒜) for all 𝑥 ∈ R𝑛.

84

Proof. First, we will show 𝑢c is (single valued) USC. By [22, Prop. 2.1.5], the Clarke

generalized gradient 𝜕∘𝑉 is USC, and, since it has closed values, it is OSC. The

function 𝐹 is (set-valued) USC because it is OSC and locally bounded. From the

definition of 𝑢c, the value of 𝑢c(𝑥) is the maximum of a continuous function (the

inner product) over USC set-valued maps. Additionally, 𝐹 and 𝜕∘𝑉 have compact

values. Therefore, 𝑢c is USC [21, Prop. 2.9].

Let 𝜌lsc := −𝑢c, which is positive definite and LSC. By Proposition 5.2, there

exists 𝜎 : R𝑛 → R≥0 that is continuous and positive definite such that

𝜌c(|𝑥|𝒜) ≤ −𝑢c(𝑥) ∀𝑥 ∈ R𝑛.

Therefore, flipping the signs, we find

𝑢c(𝑥) ≤ −𝜌c(|𝑥|𝒜) ∀𝑥 ∈ R𝑛.

Proposition 5.4. Consider a hybrid system ℋ = (𝐶,𝐹,𝐷,𝐺) on R𝑛, a compact set

𝒜 ⊂ R𝑛, and a Lyapunov function candidate 𝑉 with respect to 𝒜 for ℋ. Suppose

that 𝐺 is OSC and locally bounded, and 𝑢d is negative definite with respect to 𝒜.

Then, 𝜎𝑑 ≡ −𝑢d is LSC and satisfies (5.16), and there exists a continuous function

𝜌 ∈ 𝒫𝒟(0) such that 𝑢d(𝑥) ≤ −𝜌(|𝑥|𝒜) for all 𝑥 ∈ R𝑛.

5.3.1 Simplified Assumptions on Hybrid Time Domains

In Theorem 5.1, the conditions on the hybrid time domain of solutions given

in (5.18) of case (b) and (5.20) of case (c) are rather non-intuitive and are often

difficult to show. Thus, in Propositions 5.5 and 5.6, we provide sufficient conditions

for (5.18) and (5.20), respectively, that are easier to check while remaining general

enough to apply to most systems that satisfy (5.18) or (5.20).

Proposition 5.5. Consider a hybrid system ℋ and a nonempty closed set 𝒜. Sup-

pose that for each 𝑟 ≥ 0, there existΔ𝑇 > 0 andΔ𝐽 > 0 such that for every solution 𝜙

with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟] and for every (𝑡0, 𝑗0), (𝑡1, 𝑗1) ∈ dom(𝜙),

|𝑡1 − 𝑡0| ≤ Δ𝑇 =⇒ |𝑗1 − 𝑗0| ≤ Δ𝐽 . (5.26)

Then, for each 𝑟 ≥ 0, there exist 𝑁𝑟 ≥ 0 and 𝛾𝑟 ∈ 𝒦∞ such that for each solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

𝑡 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟 ∀(𝑡, 𝑗) ∈ dom(𝜙). (*5.18)

85

Informally, the assumptions of Proposition 5.5 state that for every solution that

starts within a given distance of 𝒜, there exists a bound Δ𝐽 on the number of jumps

that can occur during any time interval a given length Δ𝑇 .

Proof for Proposition 5.5. Take any 𝑟 ≥ 0. By assumption, there exists Δ𝑇 > 0 and

Δ𝐽 > 0 such that (5.26) holds for every solution 𝜙 with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟], and for

every (𝑡0, 𝑗0), (𝑡1, 𝑗1) ∈ dom(𝜙).

Take any solution 𝜙 to ℋ such that |𝜙(0, 0)|𝒜 ∈ (0, 𝑟]. We will show that

𝑗 ≤ Δ𝐽 +
Δ𝐽

Δ𝑇
𝑡 ∀(𝑡, 𝑗) ∈ dom(𝜙). (5.27)

Let 𝑇 := sup𝑡 dom(𝜙). If 𝑇 = 0, then (5.27) follows directly from (5.26) with

𝑡0 = 𝑡1 = 0. Suppose, instead, that 𝑇 > 0. For each 𝑖 ∈ N, let 𝜏𝑖 := 𝑖Δ𝑇 . Let ℐ ⊂ N

be the set of all 𝑖 ∈ N such that 𝜏𝑖 < 𝑇 . For each 𝑖 ∈ ℐ, let

𝚥𝑖 := sup{𝑗 | (𝑡, 𝑗) ∈ dom(𝜙), 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1]}. (5.28)

Let (𝑡0, 𝑗0) := (0, 0) ∈ dom(𝜙). By (5.26), |𝑗1 − 𝑗0| = 𝑗1 ≤ Δ𝐽 for all (𝑡1, 𝑗1) ∈
dom(𝜙) such that |𝑡1 − 𝑡0| ≤ 𝜏1 since 𝜏1 = 𝛿𝑇 . Thus, 𝚥0 ≤ Δ𝐽 . For each 𝑖 ∈ ℐ ∖ {0},
we have

𝚥𝑖−1 = max{𝑗 | (𝑡, 𝜏𝑖) ∈ dom(𝜙)},

since 𝑗 is nondecreasing relative to 𝑡 for (𝑡, 𝑗) ∈ dom(𝜙), and 𝜏𝑖 < 𝑇 (from the

definition of ℐ), so the supremum in (5.28) is over a compact set and a maximum is

attained with 𝑡 = 𝜏𝑖. Thus,

𝚥𝑖 − 𝚥𝑖−1 ≤ Δ𝐽 ∀𝑖 ∈ ℐ ∖ {0}. (5.29)

Combining 𝚥0 ≤ Δ𝐽 and (5.29), we find

𝚥𝑖 ≤ Δ𝐽 + 𝑖Δ𝐽 ∀𝑖 ∈ ℐ. (5.30)

For each 𝑖 ∈ ℐ and each 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1], substituting 𝑖𝛿𝑇 for 𝜏𝑖 leads to 𝑖 ≤ 𝑡/𝛿𝑇 .

Thus, from (5.30), we find

𝚥𝑖 ≤ Δ𝐽 +
Δ𝐽

Δ𝑇
𝑡 ∀𝑖 ∈ ℐ, ∀𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1]. (5.31)

For each 𝑖 ∈ ℐ and each (𝑡, 𝑗) ∈ dom(𝜙) such that 𝑡 ≤ 𝜏𝑖+1, the definition of 𝚥𝑖

in (5.28) gives us that 𝑗 ≤ 𝚥𝑖. Since, for every (𝑡, 𝑗) ∈ dom(𝜙) there exists 𝑖 ∈ ℐ such

that 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1], so 𝑗 ≤ 𝚥𝑖 ≤ Δ𝐽 + 𝑡Δ𝐽/Δ𝑇 , thereby proving (5.27).

86

Adding 𝑡 to both sides of (5.27) produces

𝑡+ 𝑗 ≤ 𝑡+Δ𝐽 +
Δ𝐽

Δ𝑇
𝑡 =

(︂
1 +

Δ𝐽

Δ𝑇

)︂
𝑡+Δ𝐽 ∀(𝑡, 𝑗) ∈ dom(𝜙).

Therefore, via algebra,

𝑡 ≥
(︂

Δ𝑇

Δ𝑇 +Δ𝐽

)︂
(𝑡+ 𝑗)− Δ𝑇Δ𝐽

Δ𝑇 +Δ𝐽
.

Therefore, (5.18) holds with 𝑁𝑟 := Δ𝑇Δ𝐽/(Δ𝑇 +Δ𝐽) and 𝛾𝑟 : R≥0 → R≥0 defined

by

𝑠 ↦→ 𝛾𝑟(𝑠) :=

(︂
Δ𝑇

Δ𝑇 +Δ𝐽

)︂
𝑠.

The function 𝛾𝑟 is linear with a positive coefficient (since Δ𝑇 > 0 and Δ𝐽 > 0), so

𝛾𝑟 ∈ 𝒦∞.

The analogous result with flows and jumps switched is presented next.

Proposition 5.6. Consider a hybrid system ℋ and a nonempty closed set 𝒜. Sup-

pose that for each 𝑟 ≥ 0, there exists Δ𝑇 > 0 and Δ𝐽 > 0 such that for every solu-

tion 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟] and for all (𝑡0, 𝑗0), (𝑡1, 𝑗1) ∈ dom(𝜙),

|𝑗1 − 𝑗0| ≤ Δ𝐽 =⇒ |𝑡1 − 𝑡0| ≤ Δ𝑇 . (5.32)

Then, for each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for each solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

𝑗 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟 ∀(𝑡, 𝑗) ∈ dom(𝜙). (*5.20)

Proof. Take any 𝑟 ≥ 0. By assumption, there exists Δ𝑇 > 0 and Δ𝐽 > 0 such

that (5.26) holds for every solution 𝜙 with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟], and for every (𝑡0, 𝑗0) ∈
dom(𝜙) and (𝑡1, 𝑗1) ∈ dom(𝜙).

Take any solution 𝜙 to ℋ such that |𝜙(0, 0)|𝒜 ∈ (0, 𝑟]. We will show that

𝑡 ≤ Δ𝑇 +
Δ𝑇

Δ𝐽
𝑗 ∀(𝑡, 𝑗) ∈ dom(𝜙). (5.33)

Let 𝐽 := sup𝑗 dom(𝜙). If 𝐽 = 0, then (5.33) follows directly from (5.32) with

𝑗0 = 𝑗1 = 0. Suppose, instead, that 𝐽 > 0. For each 𝑖 ∈ N, let 𝑚𝑖 := 𝑖Δ𝐽 . Let

ℐ ⊂ N be the set of all 𝑖 ∈ N such that 𝑚𝑖 < 𝐽 . For each 𝑖 ∈ ℐ, let

𝑡𝑖 := sup{𝑗 | (𝑡, 𝑗) ∈ dom(𝜙), 𝑡 ∈ [𝑚𝑖,𝑚𝑖+1]}. (5.34)

87

Let (𝑡0, 𝑗0) := (0, 0) ∈ dom(𝜙). By (5.32), |𝑡1 − 𝑡0| = 𝑡1 ≤ Δ𝑇 for all (𝑡1, 𝑗1) ∈
dom(𝜙) such that |𝑗1−𝑗0| ≤ 𝑚1 since𝑚1 = Δ𝐽 . Thus, 𝑡0 ≤ Δ𝑇 . For each 𝑖 ∈ ℐ∖{0},
we have

𝑡𝑖−1 = max{𝑡 | (𝑡,𝑚𝑖) ∈ dom(𝜙)},

since 𝑡 is nondecreasing relative to 𝑗 for (𝑡, 𝑗) ∈ dom(𝜙), and 𝑚𝑖 < 𝐽 (from the

definition of ℐ), so the supremum in (5.34) is over a compact set and a maximum is

attained with 𝑗 = 𝑚𝑖. Thus,

𝑡𝑖 − 𝑡𝑖−1 ≤ Δ𝐽 ∀𝑖 ∈ ℐ ∖ {0}. (5.35)

Combining 𝑡0 ≤ Δ𝑇 and (5.35), we find

𝑡𝑖 ≤ Δ𝑇 + 𝑖Δ𝑇 ∀𝑖 ∈ ℐ. (5.36)

For each 𝑖 ∈ ℐ and each 𝑗 ∈ [𝑚𝑖,𝑚𝑖+1], substituting 𝑖Δ𝐽 for 𝑚𝑖 leads to 𝑖 ≤
𝑗/Δ𝐽 . Thus, from (5.36), we find

𝑡𝑖 ≤ Δ𝑇 +
Δ𝑇

Δ𝐽
𝑗 ∀𝑖 ∈ ℐ, ∀𝑗 ∈ [𝑚𝑖,𝑚𝑖+1]. (5.37)

For each 𝑖 ∈ ℐ and each (𝑡, 𝑗) ∈ dom(𝜙) such that 𝑗 ≤ 𝑚𝑖+1, the definition of 𝑡𝑖

in (5.34) gives us that 𝑡 ≤ 𝑡𝑖. Since, for every (𝑡, 𝑗) ∈ dom(𝜙) there exists 𝑖 ∈ ℐ such

that 𝑗 ∈ [𝑚𝑖,𝑚𝑖+1], so 𝑡 ≤ 𝑡𝑖 ≤ Δ𝑇 + 𝑡Δ𝑇 /Δ𝐽 , thereby proving (5.33).

Adding 𝑗 to both sides of (5.33) produces

𝑡+ 𝑗 ≤ 𝑡+Δ𝐽 +
Δ𝐽

Δ𝑇
𝑡 =

(︂
1 +

Δ𝐽

Δ𝑇

)︂
𝑡+Δ𝐽 ∀(𝑡, 𝑗) ∈ dom(𝜙).

Therefore, via algebra,

𝑗 ≥
(︂

Δ𝐽

Δ𝑇 +Δ𝐽

)︂
(𝑡+ 𝑗)− Δ𝑇Δ𝐽

Δ𝑇 +Δ𝐽
.

Therefore, (5.18) holds with 𝑁𝑟 := Δ𝑇Δ𝐽/(Δ𝑇 +Δ𝐽) and 𝛾𝑟 : R≥0 → R≥0 defined

by

𝑠 ↦→ 𝛾𝑟(𝑠) :=

(︂
Δ𝐽

Δ𝑇 +Δ𝐽

)︂
𝑠.

The function 𝛾𝑟 is linear with a positive coefficient (since Δ𝑇 > 0 and Δ𝐽 > 0), so

𝛾𝑟 ∈ 𝒦∞.

88

5.3.2 Bounded Solutions from Lyapunov Functions

Prior to applying Theorem 5.1 (or other related results, like [3, Thm. 3.19]) to

establish uniform global pre-asymptotic stability, it is sometime useful to establish

bounds on solutions. In this section, Lemma 5.4 provides sufficient conditions for

the sublevel sets of a Lyapunov function candidate 𝑉 to be forward pre-invariant.

Lemma 5.4. Let ℋ := (𝐶,𝐹,𝐷,𝐺) be a hybrid system on R𝑛 with 𝐹 and 𝐺 set

valued. Suppose that ℋ satisfies the hybrid basic conditions (Definition 1.2) and

𝐺(𝐷) ⊂ 𝐶 ∪𝐷. Let 𝑉 : R𝑛 → R≥0 be a Lyapunov function candidate [3, Def. 3.17]

for a closed set 𝒜 ⊂ R𝑛 with respect to ℋ. Suppose that 𝑣c and 𝑢d defined in (5.12)

and (5.13) satisfy

𝑣c(𝑥) ≤ 0 and 𝑢d(𝑥) ≤ 0 ∀𝑥 ∈ R𝑛. (5.38)

Then, for each 𝑟 ≥ 0, the 𝑟-sublevel set of 𝑉 ,

𝐿𝑉 (𝑟) := {𝑥 ∈ dom(𝑉) | 𝑉 (𝑥) ≤ 𝑟}

is forward pre-invariant.

Proof. Take any 𝑟 ≥ 0. To show that 𝐿𝑉 (𝑟) is forward invariant, we will use

𝑥 ↦→ 𝐵𝑟(𝑥) := 𝑉 (𝑥)− 𝑟 ∀𝑥 ∈ R𝑛

as a barrier function of 𝐿𝑉 (𝑟) relative to ℋ allowing us to apply [5, Thm. 4] to

conclude 𝐿𝑉 (𝑟) is forward invariant. The function 𝐵𝑟 is a barrier function candidate

[5, Def. 3] for 𝐿𝑉 (𝑟) because 𝐿𝑉 (𝑟) = {𝑥 ∈ R𝑛 | 𝐵𝑟(𝑥) ≤ 0}.
We will show [5, Eq. 12] is satisfied. Take any 𝑥 ∈ 𝐷 ∩ 𝐿𝑉 (𝑟) and any 𝜂 ∈ 𝐺(𝑥).

By assumption, 𝑢d(𝑥) ≤ 0, so 𝑉 (𝜂)− 𝑉 (𝑥) ≤ 0. Using the fact that 𝑉 (𝑥) ≤ 𝑟 (be-

cause 𝑥 ∈ 𝐿𝑉 (𝑟)), we find 𝑉 (𝜂) ≤ 𝑉 (𝑥) ≤ 𝑟, so 𝐵𝑟(𝜂) = 𝑉 (𝜂)− 𝑟 ≤ 0. Therefore,

𝐵𝑟(𝜂) ≤ 0 ∀𝑥 ∈ 𝐷 ∩ 𝐿𝑉 (𝑟), ∀𝜂 ∈ 𝐺(𝑥).

Next, we will show [5, Eq. 28] is satisfied. Take any 𝑥 ∈ 𝐶. We want to show

max
𝜁∈𝜕∘𝐵(𝑥)

⟨𝜁, 𝜂⟩ ≤ 0 ∀𝜂 ∈ 𝐹𝑇 (𝑥) := 𝐹 (𝑥) ∩ 𝑇𝐶(𝑥). (5.39)

If 𝐹𝑇 (𝑥) is empty, then (5.39) is vacuously true. Suppose, instead, that 𝐹𝑇 (𝑥) ̸= ∅

and take any 𝜂 ∈ 𝐹𝑇 (𝑥). Since 𝑉 and 𝐵𝑟 differ by a constant, their generalized deriva-

tives are identically equal: 𝜕∘𝑉 ≡ 𝜕∘𝐵𝑟. Furthermore, 𝑣c(𝑥) ≤ 0 by assumption,

89

since 𝑥 ∈ 𝐶, so

max
𝜁∈𝜕∘𝐵𝑟(𝑥)

⟨𝜁, 𝜂⟩ = max
𝜁∈𝜕∘𝑉 (𝑥)

⟨𝜁, 𝜂⟩ ≤ 𝑣c(𝑥) ≤ 0.

Therefore, (5.39) and, consequently, [5, Eq. 28] are satisfied.

Equation 13 in [5] is satisfied by assumption. Therefore, by [5, Thm. 4], 𝐿𝑉 (𝑟)

is pre-forward invariant.

Although Lemma 5.4 asserts that sublevel sets of a Lyapunov function candidate

are forward pre-invariant, under the given assumptions, it can still be the case that

solutions are unbounded if𝒜 is unbounded. Under the assumption that 𝒜 is compact,

the following result establishes bounds on the growth of solutions that start within

each fixed distance from 𝒜.

Proposition 5.7. Let ℋ := (𝐶,𝐹,𝐷,𝐺) be a hybrid system on R𝑛 with 𝐹 and 𝐺 set-

valued maps. Suppose that ℋ satisfies the hybrid basic conditions (Definition 1.2)

and 𝐺(𝐷) ⊂ 𝐶 ∪ 𝐷. Let 𝑉 : R𝑛 → R≥0 be a Lyapunov function candidate [3,

Def. 3.17] for a compact set 𝒜 ⊂ R𝑛 with respect to ℋ. Suppose that 𝑣c and 𝑢d

defined in (5.12) and (5.13) satisfy

𝑣c(𝑥) ≤ 0 and 𝑢d(𝑥) ≤ 0 ∀𝑥 ∈ R𝑛. (5.40)

Then, for all 𝑟 ≥ 0, there exists 𝑀𝑟 ≥ 0 such that for every solution 𝜙 to ℋ with

|𝜙(0, 0)|𝒜 ≤ 𝑟,

|𝜙(𝑡, 𝑗)|𝒜 ≤𝑀𝑟 ∀(𝑡, 𝑗) ∈ dom(𝜙).

Proof. Take any 𝑟 ≥ 0. Let 𝑉𝑟 := max𝑉 (𝒜+ 𝑟B). The set 𝒜+ 𝑟B is compact and 𝑉

is continuous, so the maximum is well-defined. Let 𝐿𝑉 (𝑉𝑟) :=
{︀
𝑥 ∈ R𝑛

⃒⃒
𝑉 (𝑥) ≤ 𝑉𝑟

}︀
be the 𝑉𝑟-sublevel set of 𝑉 . For all 𝑥0 ∈ 𝒜+𝑟B, we have 𝑉 (𝑥0) ≤ 𝑉𝑟, so 𝑥0 ∈ 𝐿𝑉 (𝑉𝑟).

Therefore,

𝒜+ 𝑟B ⊂ 𝐿𝑉 (𝑉𝑟).

We will show that 𝐿𝑉 (𝑉𝑟) is bounded and forward pre-invariant relative toℋ, thereby

establishing our conclusion.

Let 𝑀𝑟 := 𝛼−1
1 (𝑉𝑟) and take any 𝑥l ∈ 𝐿𝑉 (𝑉𝑟). Thus, 𝑉 (𝑥l) ≤ 𝑉𝑟. Furthermore,

𝛼1(|𝑥l|𝒜) ≤ 𝑉 (𝑥l), so 𝛼1(|𝑥l|𝒜) ≤ 𝑉𝑟, which implies

|𝑥l|𝒜 ≤ 𝛼−1
1 (𝑉𝑟) =𝑀𝑟.

90

Since this holds for all 𝑥l ∈ 𝐿𝑉 (𝑉𝑟),

𝐿𝑉 (𝑉𝑟) ⊂
{︀
𝑥 : |𝑥|𝒜 ≤𝑀𝑟

}︀
= 𝒜+𝑀𝑟B.

This implies 𝐿𝑉 (𝑉𝑟) is bounded because 𝒜 is compact. The set 𝐿𝑉 (𝑉𝑟) is forward

invariant by Lemma 5.4.

Let 𝜙 be any solution to ℋ with |𝜙|𝒜 ≤ 𝑟. We have that 𝑉 (𝜙(0, 0)) ≤ 𝑉𝑟, so

𝜙(0, 0) ∈ 𝐿𝑉 (𝑉𝑟). By the pre-forward invariance of 𝐿𝑉 (𝑉𝑟), the solution 𝜙(𝑡, 𝑗) is

in 𝐿𝑉 (𝑉𝑟) for all (𝑡, 𝑗) ∈ dom(𝜙). Since 𝐿𝑉 (𝑉𝑟) ⊂ 𝒜+𝑀𝑟B,

|𝜙(𝑡, 𝑗)|𝒜 ≤𝑀𝑟 ∀(𝑡, 𝑗) ∈ dom(𝜙).

5.3.3 Continuous-Time and Discrete-Time Systems

The following corollaries are special cases of Theorem 5.1 for continuous- and

discrete-time systems.

Corollary 5.1 (Continuous-time Lyapunov Theorem). Consider compact set𝒜 ⊂ R𝑛,

a continuous-time system on 𝐶 ⊂ R𝑛

𝑥̇ ∈ 𝐹 (𝑥) 𝑥 ∈ 𝐶, (5.41)

and a Lyapunov function candidate 𝑉 with respect to 𝒜 for (5.41). Suppose there

exists 𝛼1 ∈ 𝒦∞ and an LSC function 𝜎𝑐 ∈ 𝒫𝒟(𝒜) such that

𝛼1(|𝑥|𝒜) ≤ 𝑉 (𝑥) and 𝑢c(𝑥) ≤ −𝜎𝑐(𝑥) ∀𝑥 ∈ 𝐶.

Then, 𝒜 is UGpAS for (5.41).

Corollary 5.2 (Discrete-time Lyapunov Theorem). Consider compact set 𝒜 ⊂ R𝑛,

a discrete-time system on 𝐷 ⊂ R𝑛

𝑥+ ∈ 𝐺(𝑥) 𝑥 ∈ 𝐷, (5.42)

and Lyapunov function candidate 𝑉 with respect to 𝒜 for (5.42). Suppose there

exists 𝛼1 ∈ 𝒦∞ and an LSC function 𝜎𝑑 ∈ 𝒫𝒟(𝒜) such that

𝛼1(|𝑥|𝒜) ≤ 𝑉 (𝑥) ∀𝑥 ∈ 𝐷 ∪𝐺(𝐷)

𝑢d(𝑥) ≤ −𝜎𝑑(𝑥) ∀𝑥 ∈ 𝐷.

Then, 𝒜 is UGpAS for (5.42).

91

The next example illustrates how Theorem 5.1 can be used to show that a

compact set is UGpAS for 𝑥̇ = 𝐹 (𝑥) with 𝐹 discontinuous.

Example 5.4. Consider the continuous-time system

𝑥̇ = 𝐹 (𝑥) := −⌊𝑥⌋ 𝑥 ∈ 𝐶 := R,

where ⌊𝑥⌋ is the largest integer 𝑚 such that 𝑚 ≤ 𝑥 and ⌈𝑥⌉ is the smallest integer

𝑛 such that 𝑛 ≥ 𝑥. The ⌊·⌋ function is USC and ⌈·⌉ is LSC. Let 𝒜 := [0, 1] and

consider 𝑥 ↦→ 𝑉 (𝑥) := |𝑥|2𝒜. We find that

𝑢c(𝑥) =

{︃
(−|𝑥|𝒜)⌊𝑥⌋ if 𝑥 ≥ 0

(|𝑥|𝒜)⌊𝑥⌋ if 𝑥 < 0,

which is neither LSC nor USC. Let

−𝜎𝑐(𝑥) :=
{︃
|𝑥|𝒜(1− ⌈𝑥⌉) if 𝑥 ≥ 0

(|𝑥|𝒜)⌊𝑥⌋ if 𝑥 < 0.

We see −𝜎𝑐 is USC, so 𝜎𝑐 is LSC. For 𝑥 ≤ 0, 𝑢c(𝑥) = −𝜎𝑐(𝑥), and for 𝑥 ≥ 0,

−⌊𝑥⌋ ≥ 1− ⌈𝑥⌉, so 𝑢c(𝑥) ≤ −𝜎𝑐(𝑥), thus (5.15) holds. It can be easily checked that

𝜎𝑐 ∈ 𝒫𝒟(𝒜). Therefore, 𝒜 is UGpAS for 𝑥̇ = 𝐹 (𝑥), by Corollary 5.1. ◇

92

Chapter 6

Conical Transition Graph (CTG)

In Section 4.2 and Chapter 3 we considered methods for using a Lyapunov-

certified controller as a backup controller, allowing one to safely deploy an uncertified

controller. The advantage of this approach is that it allows one to construct a

Lyapunov function once, perhaps for a simple, well understood controller and reuse

to provide guaranteed properties for other controllers. The downside of this approach

is that it still requires constructing one Lyapunov function, which can be difficult

even for simple systems. In fact, one is often unsure whether the construction of a

Lyapunov function is a futile endeavor, since it may be unclear whether the system

is stable in the first place. In this chapter, we introduce a method for algorithmically

checking stability and instability in a class of hybrid systems we call conical hybrid

systems [23].

6.1 Introduction

For continuous- and discrete-time systems, local asymptotic stability can be

determined by linearizing the system and checking the eigenvalues of the resulting

Jacobian matrix. For hybrid systems, however, the same ease is currently unavail-

able. In the conical approximation of a hybrid system, the flow and jumps sets are

approximated by tangent cones, and the flow and jump maps are approximated by

constant or linear approximations [4, Ch. 9]. It was shown in [24, Thm. 3.3] that

the conical approximation of a hybrid system can be used to determine if a point

is pre-asymptotically stable. Namely, if a point is pre-asymptotically stable with

respect to the conical approximation, then the center of the approximation in the

original hybrid system is locally pre-asymptotically stable. (The prefix “pre-” indi-

93

cates that some maximal solutions may terminate in finite time due to the solution

leaving the region of the state space where it is permitted to evolve.) The utility

of [24, Thm. 3.3] is currently limited, however, by the fact that it is still generally dif-

ficult to show that the origin of a conical approximation is pre-asymptotically stable.

The purpose of this chapter is to close this gap by introducing the conical transition

graph (CTG) as a tool to determine asymptotic stability in conical approximations.

Thereby, we can establish local asymptotic stability in non-conical hybrid systems.

A graph-based approach is used in [25] to determine Lyapunov and asymptotic

stability of a class of hybrid systems called piecewise constant derivatives (PCD).

In a PCD system, the state space is partitioned into polyhedral regions with a flow

vector field that is constant within each region but not necessarily continuous on

their boundaries. The class of systems considered in the present work is more general

in that the hybrid systems permit jumps in the value of the state and transitions

between modes.

While there are limited results for analyzing stability of hybrid systems via

conical approximations, there are numerous other approaches for stability analysis

in the literature [26, 27] and [4, Thm. 7.30]. Lyapunov functions are a powerful and

flexible tool for proving many types of stability properties, including stability of sets,

finite-time stability, Zeno stability, and input to state stability [15, 28]. For hybrid

systems where asymptotic stability of a limit cycle is of interest rather asymptotic

stability of an equilibrium point, Poincaré maps have been used in hybrid systems

to prove convergence of solutions to limit cycles [29, 30, 31]. Discrete graphs1 have

been used to evaluate stability of switched dynamical systems including discrete-

time linear systems [32], discrete-time nonlinear systems [33], and continuous-time

linear systems [34]. In contrast to the existing methods for switched systems, the

present work is (to the best of our knowledge) the first graph-theoretic approach

to analyze asymptotic stability in non-switched hybrid systems (i.e., systems where

components of the state vector may range over a continuum at jumps). In the

context of reachability analysis, [35] introduced conical abstractions as a graph-

based method to compute infinite-horizon reachable sets for linear hybrid automata.

The biggest drawback of the Lyapunov function method is that Lyapunov functions

1Throughout, we use graph in the sense of discrete graph—that is, a set of vertices connected

by edges or arrows.

94

are often difficult to construct. There have, however, been advances made for

algorithmically constructing Lyapunov functions. For hybrid systems defined by

polynomial functions, Lyapunov functions can be constructed numerically via sum-

of-squares (SOS) programming [7, 36, 37, 38, 39, 40]. Lyapunov functions can also

be generated for non-polynomial systems by modeling non-polynomial functions

as polynomials plus a disturbance, as done in [7] for barrier certificates, or by

transforming the system into a polynomial system as done in [38] for continuous-

time systems. The SOS approach to constructing Lyapunov functions is powerful

but suffers from two limitations. Firstly, SOS requires solving a semidefinite program

(SDP) that grows quickly as the dimension of the hybrid system and the degrees of

the polynomials increase. While there are efficient algorithms for solving SDP’s, the

size of the optimization problem can make them computationally expensive for high-

dimensional hybrid systems. Secondly, since SOS is a numerical approach, it requires

the hybrid system to be fully defined, numerically—it cannot have any unspecified

parameters. This inhibits using SOS to reason about parameters, limiting its utility

for, e.g., designing an asymptotically stabilizing feedback law.

An alternative algorithmic approach to determine stability-like properties is via

reachability analysis. The idea behind this approach is to use numerical reachability

tools for hybrid systems [35, 41, 42, 43] to approximate the reachable set for solutions

starting nearby an equilibrium and thereby assess stability numerically.

The conical transition graph is designed to simplify the analysis of asymptotic

stability of isolated equilibria by creating a simplified representation of ways that

solutions to a hybrid system can evolve continuously (called flows) or evolve discretely

(called jumps). Collectively, we refer to flows and jumps as transitions. In particular,

the CTG is a directed graph with set-valued weights assigned to each arrow. Each

vertex in the CTG represents either the origin 0𝑛 ∈ R𝑛 or a point in the unit sphere

S𝑛−1 ⊂ R𝑛, where each point 𝑣 ∈ S𝑛−1 acts as a representation of all the points

in the ray {𝑟𝑣|𝑟 > 0} spanned by 𝑣. In this way, we consider the projection of

R𝑛 onto S𝑛−1 ∪ {0𝑛}, as shown in Figure 6.1. Roughly speaking, each arrow in

the CTG represents the ways that solutions to a hybrid system, as projected onto

S𝑛−1∪{0𝑛}, can transition (flow or jump) between points in S𝑛−1∪{0𝑛}. The weight
of each arrow contains all possible relative changes in magnitude that a solution can

exhibit when it undergoes the transition. Asymptotic stability can be determined

95

from the products of walks through the CTG. Products converging to zero indicate

convergence of solutions to the origin.

This chapter extends the author’s previous work, [23], in two ways. First, this

chapter defines and analyzes conical hybrid systems with modes—allowing switching

between several regimes. To aid in analysis, we introduce in this chapter the concept

of a CTG-simulation of a solution to a hybrid system. By showing a correspondence

between solutions and CTG-simulations, we show that the CTG of a hybrid system

can be used to determine asymptotic stability. Beyond the results in this chapter,

CTG-simulations may be a useful theoretic tool in future work for using CTG’s in

reachability analysis.

Second, we describe how to reduce the size of a conical transition graph by

an “abstraction” that groups together sets of vertices. By applying this method to

conical transition graphs with large—possibly infinite—numbers of vertices, we can

reduce intractable computational problems into problems that are solvable.

The remainder of this chapter is organized as follows. Preliminary concepts and

notation are introduced in Section 6.2. In Section 6.2.1 we introduce conical hybrid

systems with modes, and in Section 6.2.2 we describe the important radial homo-

geneity property of conical hybrid systems. We briefly describe two applications of

conical hybrid systems in Section 6.3. Conical transition graphs are introduced in

Section 6.4. Our results, in Section 6.5, demonstrate how to use a conical transition

graph to determine pre-asymptotic stability in conical hybrid systems. Section 6.5.1

describes CTG-simulations, which is a useful tool in the subsequent theoretical devel-

opments. Our stability and pre-asymptotic stability results are found in Section 6.5.2.

Section 6.6 describes our approach to reducing the size of CTG’s by creating an

“abstract” CTG that groups together vertices.

6.2 Preliminaries

The unit sphere in R𝑛 is denoted by S𝑛−1 :=
{︀
𝑥 ∈ R𝑛 : |𝑥| = 1

}︀
, and the unit

sphere plus the origin is written as

S𝑛−1
0 := S𝑛−1 ∪ {0𝑛}. (6.1)

96

Start
0n

Flow

Jump

Start

S2

Flow
arrow

Jump arrow

Figure 6.1. The evolution of solutions to a hybrid system on R3 (left) are
reduced in the CTG (right) to discrete transitions on S2, which we label as
flow arrows and jump arrows. In the right image, solid blue curves indicate
continuous-time flows projected onto S2.

The normalized radial vector function nrv : R𝑛 → S𝑛−1
0 is defined for each 𝑣 ∈ R𝑛 as

nrv(𝑣) :=

{︃
𝑣/|𝑣| if 𝑣 ̸= 0𝑛

0𝑛 if 𝑣 = 0𝑛.
(6.2)

The following properties of the nrv function are used in this work.

∀𝑥 ∈ R𝑛 : 𝑥 = |𝑥| nrv(𝑥). (6.3)

∀𝑥 ∈ R𝑛 and 𝑟 > 0 : nrv(𝑟𝑥) = nrv(𝑥). (6.4)

∀𝑥 ∈ R𝑛 and 𝐴 ∈ R𝑛×𝑛 : nrv(𝐴𝑥) = nrv(nrv(𝐴𝑥)) = nrv(𝐴 nrv(𝑥)). (6.5)

Let 𝑆 ⊂ R𝑛 be nonempty and let 𝑥 ∈ 𝑆. The contingent cone 𝑇𝑆(𝑥) is the set of

all vectors 𝑣 ∈ R𝑛 such that there exist a sequence of positive real numbers ℎ𝑖 → 0+

and a sequence of vectors 𝑣𝑖 → 𝑣 such that 𝑥+ ℎ𝑖𝑣𝑖 ∈ 𝑆 for all 𝑖 ∈ N (see [1]). For

any 𝑆 ⊂ R𝑛 and 𝑥 ∈ 𝑆, the contingent cone of 𝑆 at 𝑥 is a cone, meaning that for all

𝑥 ∈ 𝑇𝑆(𝑥) and all 𝛼 > 0, we have that 𝛼𝑥 ∈ 𝑇𝑆(𝑥).

For any 𝑥 ∈ R𝑛, we write the open ray from the origin through 𝑥 as

ray(𝑥) := {𝛼𝑥 ∈ R𝑛 | 𝛼 > 0}

and the corresponding closed ray as

ray(𝑥) := {𝛼𝑥 ∈ R𝑛 | 𝛼 ≥ 0}.

Given a cone 𝐾 ⊂ R and any 𝑥 ∈ R𝑛,

𝑥 ∈ 𝐾 ⇐⇒ ray 𝑥 ⊂ 𝐾.

97

We write the conical hull of 𝑥1, 𝑥2, . . . , 𝑥𝑝 ∈ R𝑛 as

cone(𝑥1, 𝑥2, . . . , 𝑥𝑝) = {𝛼1𝑥1 + 𝛼2𝑥2 + · · ·+ 𝛼𝑝𝑥𝑝 | 𝛼𝑖 ≥ 0}.

Given a set 𝒮 ⊂ R𝑛 and linear map 𝐴 ∈ R𝑛×𝑛, then the transformation of 𝒮 by 𝐴

is defined as

𝐴𝒮 := {𝐴𝑥 ∈ R𝑛 | 𝑥 ∈ 𝒮}.

6.2.1 Conical Hybrid Systems

Definition 6.1 (Conical Hybrid System with Modes). Let 𝒬 := {1, 2, . . . , 𝑁q} be

a finite set of modes, let ℰ ⊂ 𝒬×𝒬 be directed edges (transitions) between modes.

Consider a hybrid system ℋ with state 𝑥 := (𝑞, 𝑧) ∈ 𝒬× R𝑛 in the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑥̇=𝑓(𝑞,𝑧):=

⎡⎣ 0

𝑓𝑞(𝑧)

⎤⎦ 𝑥∈𝐶 :=

⎧⎨⎩
⎡⎣𝑞
𝑧

⎤⎦∈𝒬×R𝑛

⃒⃒⃒⃒
⃒⃒𝑧∈𝐶𝑞

⎫⎬⎭
𝑥+∈𝐺(𝑞,𝑧):=

⎧⎨⎩
⎡⎣ 𝑞′

𝐴𝑒𝑧

⎤⎦⃒⃒⃒⃒⃒⃒∃𝑒:=(𝑞,𝑞′)∈ℰ

s.t. 𝑧∈𝐷𝑒

⎫⎬⎭ 𝑥∈𝐷:=

⎧⎨⎩
⎡⎣𝑞
𝑧

⎤⎦∈𝒬×R𝑛

⃒⃒⃒⃒
⃒⃒∃𝑞′∈𝒬
s.t. 𝑧∈𝐷(𝑞,𝑞′)

⎫⎬⎭,
(6.6)

where for each mode 𝑞 ∈ 𝒬 and edge 𝑒 := (𝑞, 𝑞′) ∈ ℰ , the function 𝑧 ↦→ 𝑓𝑞(𝑧) is linear

or constant, 𝐴𝑒 ∈ R𝑛×𝑛, the set 𝐶𝑞 ⊂ R𝑛 is a closed cone that defines the region

where 𝑧 is allowed to flow while in mode 𝑞, and for each 𝑞′ ∈ 𝒬, the set 𝐷𝑒 ⊂ R𝑛

is a closed cone that defines the region where 𝑧 is allowed to jump from mode 𝑞 to

mode 𝑞′. If (𝑞, 𝑞′) ̸∈ ℰ , then 𝐷𝑒 = ∅.

Since 𝑞 does not depend on 𝑡, we write it as a function of 𝑗 only when it occurs

as a component of hybrid arcs, that is, 𝑗 ↦→ 𝑞(𝑗). When mode 𝑞 has linear flows, we

write 𝑧̇ = 𝐴𝑞𝑧, where 𝐴𝑞 ∈ R𝑛×𝑛, whereas when mode 𝑞 has constant flows we write

𝑧̇ = 𝑓*𝑞 . ◇

A diagram of a conical hybrid system with two modes is shown in Figure 6.2.

Example 6.1 (Conical Hybrid System with Modes). As an example of a hybrid

system with modes, we consider a conical hybrid system ℋ in R2 with two modes,

98

Figure 6.2. A conical hybrid system with two modes. Mode 𝑞 = 0 (left) has
constant flows and mode 𝑞 = 1 (right) has linear flows.

𝒬 := {0, 1}, where mode 𝑞 = 0 has constant flows and mode 𝑞 = 1 has linear flow

modes. For mode 0, let flows be defined by 𝑧̇ = 𝑓*0 :=
[︀−1

0

]︀
and

𝐶0 :=
{︀
(𝑧1, 𝑧2) ∈ R2

⃒⃒
𝑧2 ≥ 𝑧1, 𝑧1 ≥ 0

}︀
,

and let

𝐷(0,0) := 𝐷(0,1) := {(𝑧1, 𝑧2) | 𝑧1 = 𝑧2, 𝑧1 ≥ 0}.

After a jump from 𝑞 = 0 to 𝑞 = 0, the value of 𝑧 is given by 𝑧+ = 𝐴(0,0)𝑧, and after

a jump from 𝑞 = 0 to 𝑞 = 1, it is given by 𝑧+ = 𝐴(0,1), where

𝐴(0,0) :=

⎡⎣ 0 0

𝜆0 0

⎤⎦ and 𝐴(0,1) :=

⎡⎣ 0 0

𝜆1 0

⎤⎦,
with 𝜆0 > 0, 𝜆1 > 0. Thus, at jumps, 𝑧 is mapped to the 𝑧2-axis.

For mode 𝑞 = 1, let 𝑧̇ = 𝐴1𝑧 where

𝐴1 :=

⎡⎣−2 4

−2 −1

⎤⎦,
and 𝐶1 := R2. The jump set is defined as the ray from the origin with an angle

𝜃(−𝜋/2, 𝜋/2) from the 𝑧1-axis, i.e., 𝐷(1,0) := ray
[︀
cos 𝜃
sin 𝜃

]︀
. The jump map from 𝑞 = 1

to 𝑞 = 0 is defined by

𝐴(1,0) =

⎡⎣sin 𝜃 − cos 𝜃

cos 𝜃 sin 𝜃

⎤⎦,
99

which takes any vector 𝑧 ∈ 𝐷(1,0) to 𝐴(1,0)𝑧 ∈ {0}×R≥0 (the 𝑧2-axis). The transitions

between modes are ℰ = {(0, 0), (0, 1), (1, 0)}. Based on the choices of parameters

𝜆0, 𝜆1, and 𝜃, the set 𝒪 := 𝒬 × {0𝑛} will be asymptotic stable or unstable. The

techniques introduced in this chapter reduces the problem of checking stability into

analyzing a discrete graph. ◇

6.2.2 Properties of Conical Hybrid Systems

An important property of conical hybrid systems, formalized in Proposition 6.1,

below, is that their dynamics are radially homogenous—that is, a conical hybrid

system behaves the same way at all distances from the origin, except for scaling

effects.

Proposition 6.1. Given a conical hybrid system with modes ℋ, let

(𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) :=
(︀
𝑞(𝑡, 𝑗), 𝑧(𝑡, 𝑗)

)︀
be a solution to ℋ. Then, for each 𝑟 > 0, the hybrid arc (𝑡, 𝑗) ↦→ 𝜓𝑟(𝑡, 𝑗) defined by

𝜓𝑟(𝑡, 𝑗) :=

⎡⎣ 𝑞(𝑗)

𝑟𝑧(𝛼𝑟(𝑡), 𝑗)

⎤⎦ ∀(𝛼𝑟(𝑡), 𝑗) ∈ dom(𝜙) (6.7)

is also a solution to ℋ, where 𝛼𝑟 is a class-𝒦 function defined, for all (𝑡, 𝑗) ∈ dom(𝜙),

by

𝛼𝑟(𝑡) =

∫︁ 𝑡

0
𝛿𝑟(𝚥(𝜏)) 𝑑𝜏, (6.8)

and

𝛿𝑟(𝑗) :=

{︃
1/𝑟 if 𝑞(𝑗) is a mode with constant flow

1 if 𝑞(𝑗) is a mode with linear flow.
(6.9)

The effect of 𝛿𝑟 in (6.8) is that in modes with linear flow, the time 𝜓𝑟 spends

traversing an interval of flow matches 𝜙, but in modes with constant flow, the time

is dilated by a factor 𝑟.

Proof. First, we show that 𝛼𝑟 is class-𝒦. From the definition, 𝛼𝑟(0) = 0 and 𝛼𝑟

is continuous. Since 𝛿𝑟 is strictly positive, 𝛼𝑟 is monotonically increasing, so 𝛼𝑟 is

class-𝒦.

Let 𝐽 := sup𝑗 dom(𝜙), and let 𝑡1, 𝑡2, . . ., 𝑡𝐽 be the jump times of 𝜙. For ease of

notation, let 𝑡0 := 0 and, if 𝐽 is finite, let 𝑡𝐽+1 := sup𝑡 dom(𝜙). For each jump time

100

𝑡𝑗 in dom(𝜙), the hybrid times (𝑡𝑗 , 𝑗−1) and (𝑡𝑗 , 𝑗) are in dom(𝜙), so (𝛼−1
𝑟 (𝑡𝑗), 𝑗−1)

and (𝛼−1
𝑟 (𝑡𝑗), 𝑗) are in dom(𝜓𝑟) (𝛼𝑟 is invertible because it is class-𝒦). Therefore,

𝑡′𝑗 := 𝛼−1
𝑟 (𝑡𝑗) is a jump time in dom(𝜓𝑟) for each 𝑗 ∈ {1, 2, . . . , 𝐽}.

Since 𝛼𝑟 (and 𝛼
−1
𝑟) is strictly increasing, [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜙)

if and only if [𝑡′𝑗 , 𝑡
′
𝑗+1] is an interval of flow in dom(𝜓𝑟). For each (𝑡, 𝑗) ∈ dom(𝜓𝑟), let

(𝑡, 𝑗) ↦→ 𝑧𝑟(𝑡, 𝑗) := 𝑟𝑧(𝛼𝑟(𝑡), 𝑗), so that 𝜓𝑟(𝑡, 𝑗) = (𝑞(𝑗), 𝑧𝑟(𝑡, 𝑗)). Since 𝑧(𝑡𝑗 , 𝑗 − 1) ∈
𝐷(𝑞(𝑗−1),𝑞(𝑗)) and 𝐷(𝑞(𝑗−1),𝑞(𝑗)) is a cone, we have that

𝑧𝑟(𝑡
′
𝑗 , 𝑗 − 1) = 𝑟𝑧

(︁
𝛼𝑟

(︀
𝛼

−1

𝑟 (𝑡𝑗)
)︀
, 𝑗 − 1

)︁
= 𝑟𝑧(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷(𝑞(𝑗−1),𝑞(𝑗)).

Therefore, 𝜓𝑟(𝑡
′
𝑗 , 𝑗 − 1) ∈ 𝐷, so 𝜓𝑟 satisfies (1.5a). Similarly, since 𝐶𝑞(𝑗) is a cone

and 𝑧(𝑡, 𝑗) ∈ 𝐶𝑞 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1), we have that 𝑧𝑟(𝑡, 𝑗) ∈ 𝐶𝑞 and thus 𝜓𝑟(𝑡, 𝑗) ∈ 𝐶

for all 𝑡 ∈ (𝑡′𝑗 , 𝑡
′
𝑗+1). Therefore, 𝜓𝑟 satisfies (1.6a).

Now that we have established the jump times and intervals of flows of 𝜓𝑟, we

want to show that 𝜓𝑟 satisfies the jump and flow conditions in (1.5) and (1.6). Take

any 𝑗 ∈ {1, 2, . . . , 𝐽}. By (1.5b),

𝜙(𝑡𝑗 , 𝑗) =

⎡⎣ 𝑞(𝑗)

𝑧(𝑡𝑗 , 𝑗)

⎤⎦ ∈ 𝐺(𝜙(𝑡𝑗 , 𝑗 − 1)),

so, from the definition of 𝐺 in (6.6), 𝑧(𝑡𝑗 , 𝑗) = 𝐴(𝑞(𝑗−1),𝑞(𝑗))𝑧(𝑡𝑗 , 𝑗 − 1). Thus, at

𝑡′𝑗 := 𝛼−1
𝑟 (𝑡𝑗),

𝜓𝑟(𝑡
′
𝑗 , 𝑗) =

⎡⎣ 𝑞(𝑗)

𝑟𝑧
(︀
𝛼𝑟(𝛼

−1
𝑟 (𝑡𝑗)), 𝑗

)︀
⎤⎦ =

⎡⎣ 𝑞(𝑗)

𝐴(𝑞(𝑗−1),𝑞(𝑗))

(︀
𝑟𝑧(𝑡𝑗 , 𝑗 − 1)

)︀
⎤⎦.

Since 𝐷(𝑞(𝑗−1),𝑞(𝑗)) is a cone and 𝑧(𝑡𝑗 , 𝑗 − 1) is in 𝐷(𝑞(𝑗−1),𝑞(𝑗)), then 𝑟𝑧(𝑡𝑗 , 𝑗 − 1) is

also in 𝐷(𝑞(𝑗−1),𝑞(𝑗)). Therefore, 𝜓𝑟(𝑡𝑗 , 𝑗) is in the set 𝐺
(︀
𝜓𝑟(𝑡

′
𝑗 , 𝑗 − 1)

)︀
as required

by (1.5b).

If 𝑡𝑗+1 > 𝑡𝑗 , then [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow for 𝜙, so for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑧̇(𝑡, 𝑗) = 𝑓𝑞(𝑧(𝑡, 𝑗)).

(Since 𝑓𝑞 is linear or constant, we have that if 𝑧̇ = 𝑓𝑞(𝑧) for almost all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1)

then it, in fact, satisfies the ODE for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1)). From Definition 6.1, the

mode 𝑞(𝑗) has either linear or constant flows. Suppose, first, that 𝑞(𝑗) has linear

flows. Then, for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑑

𝑑𝑡
(𝑧(𝑡, 𝑗)) = 𝐴𝑞(𝑗)𝑧(𝑡, 𝑗).

101

Applying the chain rule to 𝑡 ↦→ 𝑧𝑟(𝑡, 𝑗) = 𝑟𝑧(𝛼𝑟(𝑡), 𝑗), we find

𝑧̇𝑟(𝑡, 𝑗) =
𝑑

𝑑𝑡
(𝑟𝑧(𝛼𝑟(𝑡), 𝑗)) = 𝐴𝑞(𝑗)𝑟𝑧(𝛼𝑟(𝑡), 𝑗)

𝑑𝛼𝑟

𝑑𝑡
(𝑡) = 𝐴𝑞(𝑗)𝑧𝑟(𝑡, 𝑗),

since 𝑑𝛼𝑟/𝑑𝑡(𝑡) = 𝛿𝑟(𝑞(𝑗)) = 1 by applying the fundamental theorem of calculus

to (6.9). Thus, 𝜓𝑟 satisfies (1.6b) in the case of linear flows.

Suppose instead 𝑞(𝑗) has constant flows. Then, for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑑

𝑑𝑡
(𝑧(𝑡𝑗 , 𝑡𝑗+1)) = 𝑓𝑞(𝑗).

Applying the chain rule to 𝑡 ↦→ 𝑧(𝛼𝑟(𝑡), 𝑗), we find

𝑧̇𝑟(𝑡, 𝑗) =
𝑑

𝑑𝑡
(𝑟𝑧(𝛼𝑟(𝑡), 𝑗)) = 𝑟𝑓𝑞(𝑗)

𝑑𝛼𝑟

𝑑𝑡
(𝑡) =

𝑟𝑓𝑞(𝑗)

𝑟
= 𝑓𝑞(𝑗),

since 𝑑𝛼𝑟/𝑑𝑡(𝑡) = 𝛿𝑟(𝑞(𝑗)) = 1/𝑟. Thus, 𝜓𝑟 satisfies (1.6b) in the case of linear flows.

Therefore, 𝜓𝑟 is a solution to ℋ.

6.3 Applications of Conical Hybrid Systems

In this section, we introduce one application of conical hybrid systems.

6.3.1 Sampled Linear Systems

Example 6.2 (Linear System with Sampled Control). Conical hybrid systems can

be used to model and analyze linear control systems with sampled control updates.

Consider the linear control system

𝑧̇ = 𝐴𝑧 +𝐵𝑢,

with state 𝑧 ∈ R𝑛 and input 𝑢 ∈ R𝑚. Suppose 𝑢 is updated with period 𝑇 according

to 𝑢 := 𝐾𝑧, where 𝐾 ∈ R𝑚×𝑛. One way to model such as system as a hybrid system

is to use a timer variable 𝜏 ∈ [0, 𝑇] where 𝜏 = 1 and triggering events to update the

input when 𝜏 = 𝑇 , and resetting 𝜏+ = 0. Such an approach results in a non-conical

hybrid system, because the set of 𝜏 -values where jumps are triggered is non-conical.

As an alternative, we propose using a timer variable 𝜏 := (𝜏1, 𝜏2) ∈ R2 where 𝜏

evolves according to

𝜏 =𝑀𝜏, with 𝑀 :=

⎡⎣0 −𝜔
𝜔 0

⎤⎦,
102

where 𝜔 := 𝜋/𝑇 . When 𝜏 starts with 𝜏 ∈ (0,∞) × {0}, it takes time 𝑇 for 𝜏 to

reach (−∞, 0)× {0}. Thus, to achieve periodic sampling, we will update 𝑢+ = 𝐾𝑥

and 𝜏+ = −1
2𝜏 whenever 𝜏 ∈ (−∞, 0) × {0}. (The 1

2 causes 𝜏 to converge to 0𝑛,

which is convenient for showing the origin is asymptotically stable.) A representative

trajectory for 𝜏 is shown in Figure 6.3.

τ1

τ2

C

D
τ(t, j)

Figure 6.3. An example trajectory for the timer variable 𝜏 in Example 6.2.

The closed-loop system has state

𝑥 := (𝑧, 𝑢, 𝜏) ∈ 𝒳 := R𝑛 × R𝑚 × R2,

and can be written as a conical hybrid system (without modes):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎣
𝑧̇

𝑢̇

𝜏

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝐴𝑧 +𝐵𝑢

0

𝑀𝜏

⎤⎥⎥⎦ 𝑥 ∈ 𝐶 := {(𝑧, 𝑢, 𝜏1, 𝜏2) ∈ 𝒳 | 𝜏2 ≥ 0, 𝜏 ̸= (0, 0)}

⎡⎢⎢⎣
𝑧+

𝑢+

𝜏+

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑧

𝐾𝑢

−1
2𝜏

⎤⎥⎥⎦ 𝑥 ∈ 𝐷 := {(𝑧, 𝑢, 𝜏1, 𝜏2) ∈ 𝒳 | 𝜏1 < 0, 𝜏2 = 0}.

Various adjustments to this example could allow for modeling systems that have

nondeterministic delays between samples and switching between modes. ◇

6.3.2 Conical Approximations

One application of conical hybrid systems are as approximations of non-conical

hybrid systems. Such approximations are called conical approximations. The follow-

ing assumption is necessary for the conical approximation of a hybrid system ℋ to

be well-defined at a point 𝑥* ∈ R𝑛.

103

Assumption 6.1. For a given hybrid system ℋ := (𝐶, 𝑓,𝐷, 𝑔) and 𝑥* ∈ R𝑛, suppose

that the following conditions hold:

1. If 𝑥* ∈ 𝐷, then 𝑔(𝑥*) = 𝑥* and 𝑔 is continuously differentiable at 𝑥*.

2. If 𝑥* ∈ 𝐶, then 𝑓 is continuous at 𝑥*.

3. If 𝑥* ∈ 𝐶 and 𝑓(𝑥*) = 0𝑛, then 𝑓 is continuously differentiable at 𝑥*. ◇

Definition 6.2 ([4]). Given a hybrid system ℋ = (𝐶, 𝑓,𝐷, 𝑔) and a point 𝑥* ∈ R𝑛

that satisfy Assumption 6.1, the conical approximation of ℋ at 𝑥* is

qℋ :

⎧⎪⎪⎨⎪⎪⎩
𝑥̇ = 𝑓(𝑥) :=

{︃
𝑓(𝑥*), if 𝑓(𝑥*) ̸= 0

𝐴c(𝑥− 𝑥*), if 𝑓(𝑥*) = 0,
𝑥 ∈ q𝐶 := 𝑇𝐶(𝑥*),

𝑥+ = 𝑔(𝑥) := 𝐴d(𝑥− 𝑥*), 𝑥 ∈ q𝐷 := 𝑇𝐷(𝑥*),

(6.10)

where 𝐴c and 𝐴d denote the Jacobian matrices of 𝑔 and 𝑓 at 𝑥*, respectively:

𝐴c :=
𝜕𝑓

𝜕𝑥
(𝑥*) and 𝐴d :=

𝜕𝑔

𝜕𝑥
(𝑥*). ◇

The following result establishes local pre-asymptotic stability in a hybrid system

via pre-asymptotic stability in its conical approximation.

Theorem 6.1 ([24], Thm. 3.3). Suppose a hybrid system ℋ and a point 𝑥* ∈ R𝑛

satisfy Assumption 6.1. Let qℋ be the conical approximation of ℋ at 𝑥*. If 0𝑛 is pAS

for qℋ, then 𝑥* is locally pAS for ℋ.

6.4 Conical Transition Graph

This work relies on definitions from graph theory, provided in this section.

See [44] for details.

Directed Graph A directed graph 𝒢 = (𝒱,𝒜) consists of a set of vertices 𝒱 and

a set of arrows 𝒜. Each arrow in 𝒢 starts at some vertex 𝑣1 ∈ 𝒱 and ends at some

vertex 𝑣2 ∈ 𝒱. We write an arrow from 𝑣1 to 𝑣2 as 𝑣1 → 𝑣2. In a directed graph, an

arrow can have the same start and end point (𝑣1 = 𝑣2), in which case it is called a

loop.

104

We also allow for multiple arrows that have the same start and end points. To

distinguish between such arrows, we assign each arrow a label. An arrow with the

label “l” is written as al = 𝑣1 l−→ 𝑣2. In this work, we use only two labels: “f” and

“j,” which stand for “flow” and “jump.” Thus, for 𝑣1, 𝑣2 ∈ 𝒱, there can be at most

two distinct arrows 𝑣1 f−→ 𝑣2 and 𝑣1 j−→ 𝑣2. If the label is irrelevant for a particular

point of discussion, then it can be omitted.

A weighted directed graph 𝒢 = (𝒱,𝒜,𝒲) is a directed graph (𝒱,𝒜) that also

includes a weight function 𝒲 that defines a weight for each arrow in 𝒜. In a typical

weighted graph, the weight function assigns a real number to each arrow, but in

this work we use set-valued weights. Thus, the weight function is a set-valued map

𝒲 : 𝒜 ⇒ R that maps each arrow a in 𝒜 to a set of real numbers 𝒲(a) ⊂ R.

Given a graph 𝒢 = (𝒱,𝒜,𝒲), a walk 𝑤 through 𝒢 is a finite or infinite sequence

of arrows in 𝒜. A walk of length 𝐾 ∈ {1, 2, . . . } ∪ {∞} is written

𝑤 = (a0, a1, . . . , a𝐾−1) = 𝑣0 → 𝑣1 → 𝑣2 → · · · → 𝑣𝐾 ,

such that a𝑘 = 𝑣𝑘 → 𝑣𝑘+1 for each 𝑘 = 0, 1, . . . ,𝐾 − 1.

We define the weight of a walk 𝑤 as the cumulative Minkowski set product of the

arrows in 𝑤. For any sets 𝐴,𝐵 ⊂ R, the Minkowski set product of 𝐴 and 𝐵 is defined

in [45] as 𝐴𝐵 := {𝑎𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. For a finite-length walk 𝑤 = (a0, a2, . . . , a𝑁−1),

the set-valued weight of 𝑤 is

𝒲(𝑤) :=

⎧⎨⎩
𝑁−1∏︁
𝑘=0

𝑟𝑘

⃒⃒⃒⃒
⃒⃒ 𝑟𝑘 ∈ 𝒲(a𝑘)

∀𝑘 = 0, 1, . . . , 𝑁 − 1

⎫⎬⎭. (6.11)

If we let 𝐾 = ∞, then 𝒲(𝑤) may not be well-defined because the infinite product∏︀∞
𝑘=0 𝑟𝑘 in (6.11) may not converge. For this chapter, however, it is sufficient to

define 𝒲(𝑤) if and only if
∏︀∞

𝑘=0 𝑟𝑘 converges to 0 for every choice of {𝑟𝑘}. For an
infinite-length walk 𝑤 := (a0, a1, a2, . . .), we have that 𝒲(𝑤) = {0} if and only if

lim
𝑚→∞

𝑚∏︁
𝑘=0

𝑟𝑘 = 0 (6.12)

for every sequence {𝑟𝑘}∞𝑘=0 with 𝑟𝑘 ∈ 𝒲(a𝑘) for all 𝑘 ∈ N.

For an arrow a ∈ 𝒜, we have that 𝒲(a) is a set of real numbers, so we can write

the supremum weight of a as sup𝒲(a). Similarly, for a walk 𝑤, we define sup𝒲(𝑤)

is the supremum weight of 𝑤.

105

Remark 6.1. Given a walk 𝑤 := (a0, a1, . . . , a𝑁) through a graph with set-valued

weights, the supremum weight sup𝒲(𝑤) is not always equal to the product of the

supremum weights of the arrows. That is, in some cases

sup𝒲(𝑤) ̸=
(︀
sup𝒲(a0)

)︀(︀
sup𝒲(a1)

)︀
· · ·
(︀
sup𝒲(a𝑁)

)︀
.

For example, if 𝒲(a0) = {0} and 𝒲(a1) = (1,∞), then sup𝒲(𝑤) = 0 but the

product
(︀
sup𝒲(a0)

)︀(︀
sup𝒲(a1)

)︀
= 0 · ∞ is undefined. Thus, it is important that

the supremum is evaluated after computing the product.

The CTG is designed to be a simplified representation of a conical hybrid

system ℋ to facilitate the analysis of pre-asymptotic stability. To this end, we exploit

properties of conical hybrid systems, along with assumptions on the continuous

dynamics of the hybrid system, so that the CTG can be used to establish that the

origin of ℋ is pAS. In particular, we exploit two simplifications.

In a conical hybrid system, Proposition 6.1 asserts that the distance a solution

starts from the origin of does not affect the way it can evolve (aside from scaling

effects). Thus, if we consider any ray from the origin and allow every point in the

ray to evolve according to the dynamics of ℋ, then that ray is (in a sense) preserved.

Using this observation, the first simplification in the CTG comes from using the

nrv function to map R𝑛 to S𝑛−1
0 so that each single point 𝑝 ∈ S𝑛−1

0 represents every

point in ray(𝑝).

Mapping R𝑛 to S𝑛−1
0 reduces the dimension by one and—more importantly—

allows for recurrent walks through the CTG despite convergence of solutions (see

Figure 6.1). For example, suppose that for some 𝑣 ∈ S𝑛−1, a solution 𝜙 to ℋ
repeatedly enters ray(𝑣). That is, 𝜙(𝑡𝑘, 𝑗𝑘) ∈ ray(𝑣) for a sequence of hybrid times

{(𝑡𝑘, 𝑗𝑘)} in dom(𝜙). Then,

𝑣 = nrv(𝜙(𝑡1, 𝑗1)) = nrv(𝜙(𝑡2, 𝑗2)) = · · · .

Furthermore, the set of possible rays that 𝜙 can transition into from 𝜙(𝑡𝑘, 𝑗𝑘) ∈ ray(𝑣)

via a single jump or flow is the same at every hybrid time (𝑡𝑘, 𝑗𝑘) in the sequence.

Exploiting this information allows us to uncover patterns in the behavior of ℋ.

By collapsing R𝑛 to S𝑛−1
0 , however, we lose information about the magnitude

(norm) of solutions. Instead, the weight of each arrow in the CTG typically contains

every possible relative change of magnitude that a solution (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) can

106

exhibit as (𝑡, 𝑗) ↦→ nrv(𝜙(𝑡, 𝑗)) moves from the arrow’s start vertex to its end vertex

(both in S𝑛−1
0) via a single jump or a single interval of flow.

The second simplification arising from the CTG is that it allows us to partition

the analysis of pre-asymptotic stability by considering separately solutions that are

eventually continuous and solutions that are not eventually continuous. A hybrid

arc is called eventually continuous if it has an interval of flow after the last jump

time in its hybrid time domain. The aspects of eventually continuous solutions that

are relevant to pre-asymptotic stability in ℋ = (𝐶, 𝑓,𝐷, 𝑔) can be determined by

analyzing the continuous-time system (𝐶, 𝑓). In particular, our results assume that

0𝑛 is pAS for (𝐶, 𝑓)—which is necessary for 0𝑛 to be pAS for ℋ and can be verified

using methods from continuous-time system analysis. Thus, the CTG is a tool for

analyzing the behavior of solutions that are not eventually continuous.

Assuming that 0𝑛 is pAS (and thus stable) for (𝐶, 𝑓) has the added benefit

that if we can show that a given solution converges to 0𝑛 at jump times, then we

can establish asymptotic convergence without analyzing the trajectories of solutions

during intervals of flow. This is shown in the following lemma.

Lemma 6.1. Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid system with modes. Suppose

that 𝒪 := 𝒬 × {0𝑛} is stable for (𝐶, 𝑓) and let 𝜙 be any solution to ℋ with

sup𝑗 dom(𝜙) = ∞. Then,

lim
𝑗→∞

|𝜙(𝑡𝑗 , 𝑗)|𝒪 = 0 =⇒ lim
𝑡+𝑗→∞

|𝜙(𝑡, 𝑗)|𝒪 = 0,

where each 𝑡𝑗 is the 𝑗th jump time in dom(𝜙).

Proof. Let 𝜙 be any solution to ℋ with sup𝑗 dom(𝜙) = ∞. Let 𝑡1, 𝑡2, . . ., be the

jump times of 𝜙 and suppose that

lim
𝑗→∞

|𝜙(𝑡𝑗 , 𝑗)|𝒜 = 0.

Take any 𝜀 > 0. We want to show that there exists (𝑡′, 𝑗′) ∈ dom(𝜙) such that

|𝜙(𝑡, 𝑗)|𝒜 < 𝜀 for all (𝑡, 𝑗) ∈ dom(𝜙) such that 𝑡+ 𝑗 ≥ 𝑡′ + 𝑗′.

For each 𝑗 such that [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜙), the function

𝑡 ↦→ 𝜙(𝑡, 𝑗) is a solution to (𝐶, 𝑓) for all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. By the stability of 𝒪 for (𝐶, 𝑓),

there exists 𝛿 ∈ (0, 𝜀) such that

|𝜙(𝑡𝑗 , 𝑗)|𝒜 ≤ 𝛿 =⇒ |𝜙(𝑡, 𝑗)|𝒜 ≤ 𝜀 ∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. (6.13)

107

Since 𝑗 ↦→ 𝜙(𝑡𝑗 , 𝑗) converges to 𝒪, there exists 𝑗′ ∈ N such that |𝜙(𝑡𝑗 , 𝑗)|𝒜 ≤ 𝛿

for all 𝑗 ≥ 𝑗′. Let 𝑡′ := 𝑡𝑗′ . Thus, from (6.13), we have that |𝜙(𝑡, 𝑗)|𝒜 ≤ 𝜀 for all

(𝑡, 𝑗) ∈ dom(𝜙) such that 𝑡+ 𝑗 ≥ 𝑡′ + 𝑗′. Since 𝜀 > 0 was arbitrary, we can take

𝜀→ 0, thereby establishing that

lim
𝑡+𝑗→∞

|𝜙(𝑡, 𝑗)|𝒜 = 0.

As a consequence of Lemma 6.1, when determining whether persistently jumping

solutions converge to 𝒪 (e.g., to establish pre-asymptotic stability), we can ignore the

interior of intervals of flow and only focus on showing that the solution at jump times

converges. By doing so, we treat flows as discrete transitions that take solutions

from their values immediately after a jump to their values immediately before the

next jump. This effectively ignores the ordinary time required to traverse the flow

because it is irrelevant for determining pre-asymptotic stability. Based on this fact,

we generalize a flow that takes a solution 𝜙 from 𝑥(0) ∈ R𝑛 to 𝑥(f) ∈ R𝑛 in mode

𝑞 ∈ 𝒬 as a flow arrow (𝑞,nrv(𝑥(0))) f−→ (𝑞,nrv(𝑥(f))) in the CTG.

We design the CTG as a directed graph with set-valued weights with vertices

that live in 𝒬× S𝑛−1
0 . Each tuple 𝑣 := (𝑞, 𝑠) in 𝒬× S𝑛−1

0 is a vertex in the CTG if it

is possible for a solution to ℋ to jump from or to 𝑣 (i.e., if 𝑣 ∈ 𝐷 ∪ 𝑔(𝐷)). An arrow

points between vertices 𝑣1 := (𝑞1, 𝑠1) and 𝑣2 := (𝑞2, 𝑠2) in the CTG if a solution to ℋ
can move directly from 𝑠1 in mode 𝑞1 to ray(𝑣2) in mode 𝑞2 by a single jump or a

single interval of flow. Each arrow is labeled by the type of transition it represents

(either flow or jump). The weight of the arrow 𝑣1 → 𝑣2 typically stores the relative

change in the magnitude of a solution that starts at 𝑣1 and ends in ray(𝑣2) (except if

𝑠1 = 0𝑛, in which case the weight stores the absolute change—but the occurrence of

such cases is limited). By multiplying together the weights of all the arrows in each

walk through the CTG, we can analyze the relative change in distance of solutions

from the origin (see Proposition 6.5, below).

Definition 6.3 (Conical Transition Graph). Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid

system on R𝑛 with modes 𝒬. Let ℒ := {“j”, “f”} be a set of labels (j stands for jump

and f stands for flow). The CTG of ℋ is a weighted, directed graph 𝒢 = (𝒱,𝒜,𝒲)

where 𝒱 ⊂ 𝒬 × S𝑛−1
0 is a set of vertices, 𝒜 ⊂ 𝒱2 × ℒ is a set of arrows between

vertices, and 𝒲 : 𝒜 ⇒ R≥0 is a set-valued weight function that assigns a set of

108

S10n

v1

v2

j

f

j

Figure 6.4. Conical transition graph for ℋ in Example 6.3.

nonnegative weights to each arrow. The set of vertices is defined as

𝒱 :=
(︀
𝐷 ∪ 𝑔(𝐷)

)︀
∩
(︀
𝒬× S𝑛−1

0

)︀
. (6.14)

For each 𝑣⊖ := (𝑞⊖, 𝑠⊖) ∈ 𝒱 ∩𝐷, and each (𝑞⊕, 𝑧⊕) ∈ 𝑔(𝑣⊖), and for 𝑠⊕ := nrv(𝑧⊕);

a jump arrow aj = 𝑣⊖ j−→ 𝑣⊕ points from 𝑣⊖ to

𝑣⊕ :=
(︀
𝑞⊕, 𝑠⊕

)︀
=
(︀
𝑞⊕, nrv(𝐴𝑒𝑠

⊖)
)︀
, (6.15)

where 𝑒 := (𝑞⊖, 𝑞⊕). The weight of aj = 𝑣⊖ j−→ 𝑣⊕ is the (singleton) set

𝒲(aj) :=
{︀
|𝑧⊕|

}︀
=
{︀
|𝐴𝑒𝑠

⊖|
}︀
. (6.16)

There is a flow arrow af = 𝑣(0) f−→ 𝑣(f) from 𝑣(0) := (𝑞, 𝑠(0)) ∈ 𝒱 ∩ 𝑔(𝐷) to

𝑣(f) := (𝑞, 𝑠(f)) ∈ 𝒱 ∩𝐷 if for some 𝜏 > 0, there exists a function 𝜉 : [0, 𝜏] → R𝑛 such

that

𝜉(0) = 𝑠(0) (6.17a)

𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝜏) (6.17b)

𝜉(𝑡) ∈ 𝐶𝑞 ∀𝑡 ∈ (0, 𝜏) (6.17c)

nrv(𝜉(𝜏)) = 𝑠(f). (6.17d)

The weight of af is

𝒲(af) :=
{︀
|𝜉(𝜏)|

⃒⃒
𝜉 : [0, 𝜏] → R𝑛 satisfies (6.17) for some 𝜏 > 0

}︀
. (6.18)

That is, for each solution 𝜉 : [0, 𝜏] → R𝑛 of (6.17)—which has |𝜉(0)| = 1 (if |𝑠(0)| = 1)

or |𝜉(0)| = 0 (if |𝑠(0)| = 0)—the magnitude of 𝜉 at time 𝜏 is an element of the weight

set: |𝜉(𝜏)| ∈ 𝒲(af). ◇

Note that each vertex in a CTG is a tuple containing a mode 𝑞 ∈ 𝒬 and a vector

𝑣 ∈ R𝑛 with 𝑣 ∈ S𝑛−1
0 .

109

If an arrow a := 𝑣1 → 𝑣2 points from 𝑣1 := (𝑞1, 𝑠1) ∈ 𝒱 to 𝑣2 := (𝑞2, 𝑠2) ∈ 𝒱 with

𝑠1 ̸= 0𝑛, then the weight of a is the set of all of the possible relative changes in the

magnitude of a solution that transitions from ray(𝑠1) in mode 𝑞1 to ray(𝑠2) in mode

𝑞2 via a single jump or interval of flow (the mode can change only for jump arrows.

For a flow arrow, 𝑞1 = 𝑞2). On the other hand, if 𝑠1 = 0𝑛, then the weight of a is

the set of all of the possible absolute changes in magnitude for a transition from 0𝑛

to ray(𝑠2) via a single jump or interval of flow (the relative change of distance is

undefined because the initial distance 0 would be in the denominator).

In the following example, we consider a conical hybrid system with a single

mode, so we omit the logic variable. In particular, we will consider only mode 𝑞 = 0

from Example 6.1. To simplify the exposition, we will omit the mode variable “𝑞”

during this example.

Example 6.3. Consider the following conical hybrid system on R2
≥0 (the non-

negative quadrant of R2) with a single mode:

ℋ:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑓(𝑥) :=

⎡⎣1
0

⎤⎦ ∀𝑥 ∈ 𝐶 :=
{︀
𝑥 ∈ R2

≥0

⃒⃒
𝑥2 ≥ 𝑥1

}︀
,

𝑔(𝑥) :=

⎡⎣ 0

𝛾𝑥1

⎤⎦ ∀𝑥 ∈ 𝐷 := ray
[︀
1
1

]︀
=
{︀
𝑥 ∈ R2

≥0

⃒⃒
𝑥2 = 𝑥1

}︀
,

(6.19)

with 𝛾 > 0. We will construct the CTG for ℋ. Let 𝑣1 :=
[︀
0
1

]︀
and 𝑣2 :=

1√
2

[︀
1
1

]︀
, so

𝑔(𝐷) = ray 𝑣1 and 𝐷 = ray 𝑣2. Thus, the set of vertices is

𝒱 =
(︀
{0𝑛} ∪ ray 𝑣1 ∪ ray 𝑣2

)︀
∩ S𝑛−1

0 = {0𝑛, 𝑣1, 𝑣2}

and the set of arrows is

𝒜 = {0𝑛 j−→ 0𝑛, 𝑣2 j−→ 𝑣1⏟ ⏞
Jump arrows

, 𝑣1 f−→ 𝑣2⏟ ⏞
Flow arrow

}.

The CTG of ℋ is depicted in Figure 6.4. ◇

Example 6.4 (Example 6.1, cont.). Now, we will consider the full conical hybrid

system ℋ with modes from Example 6.1. By examining Figure 6.2 and the data of

the system, we find that the vertices in the CTG are(︀
0, 0𝑛

)︀
, 𝑣0 :=

(︀
0,
[︀
0
1

]︀)︀
, 𝑣1 :=

(︀
0, nrv

[︀
1
1

]︀)︀
,
(︀
1, 0𝑛

)︀
, 𝑣2 :=

(︀
1,
[︀
0
1

]︀)︀
, 𝑣3 :=

(︀
1,
[︀
cos 𝜃
sin 𝜃

]︀)︀
,

110

and the arrows are(︀
0, 0𝑛

)︀
j−→
(︀
0, 0𝑛

)︀
,
(︀
1, 0𝑛

)︀
j−→
(︀
1, 0𝑛

)︀
,
(︀
1, 0𝑛

)︀
f−→
(︀
1, 0𝑛

)︀
,(︀

0, 0𝑛
)︀

j−→
(︀
1, 0𝑛

)︀
,
(︀
1, 0𝑛

)︀
j−→
(︀
0, 0𝑛

)︀
, 𝑣0 f−→ 𝑣1,

𝑣1 j−→ 𝑣0, 𝑣1 j−→ 𝑣2, 𝑣2 f−→ 𝑣3,

𝑣3 j−→ 𝑣0.

(6.20)

There is not a flow arrow from 𝑣3 to 𝑣2 because flow arrows must start in 𝐺(𝐷), nor

is 𝑣2 f−→ 𝑣2 because flow arrows must end in 𝐷. ◇

The need for the weights to be set-valued comes from the fact that there may

be multiple solutions to (6.17) with different final magnitudes, |𝜉(𝑇)|, as in (6.18).

The following example presents a conical hybrid system with a flow arrow that has

a non-singleton weight.

Example 6.5. Consider the following conical hybrid system:

ℋ :

⎧⎨⎩𝑥̇ = 𝑓(𝑥) := −1 𝑥 ∈ 𝐶 := R≥0,

𝑥+ = 𝑔(𝑥) := 𝑥/2 𝑥 ∈ 𝐷 := R≥0.

Every maximal solution to ℋ evolves by a non-deterministic combination of flows

and jumps until it reaches 0𝑛, at which point it must jump from 0𝑛 to 0𝑛 forevermore.

Thus, 0𝑛 is pre-asymptotically stable for ℋ.

The vertex set of the CTG is 𝒱 = {0, 1} and the arrow set is

𝒜 =
{︀
0 j−→ 0, 1 j−→ 1, 1 f−→ 0, 1 f−→ 1

}︀
.

Consider, in particular, the arrow 1 f−→ 1. For all 𝑇 ∈ (0, 1), the function

𝜉 : [0, 𝑇] → R≥0

𝑡 ↦→ 𝜉(𝑡) := 1− 𝑡

satisfies (6.17) with 𝑣(0) := 1, 𝑣(f) := 1, and

|𝜉(𝑇)| = 1− 𝑇 ∈ (0, 1).

Thus, 1 f−→ 1 is a flow arrow in the CTG with set-valued weight 𝒲(1 f−→ 1) = (0, 1). ◇

111

Whereas non-singleton weights for conical hybrid systems with constant flows

are typically continuous intervals, such as (0, 1), for conical hybrid systems with

linear flows, non-singleton weights are infinite sets of discrete points, as shown in

the next example.

Example 6.6. Consider the conical hybrid ℋ = (𝐶, 𝑓,𝐷, 𝑔) on R2 with dynamics

given by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(𝑥) := 𝐴𝑥 ∀𝑥 ∈ 𝐶 := R2

𝑔(𝑥) :=

⎡⎣−𝑥1
0

⎤⎦ ∀𝑥 ∈ 𝐷 := ray
[︀
1
0

]︀
,

where 𝐴 :=
[︀ 𝛾 −1
1 𝛾

]︀
and 𝛾 ∈ R. The vertex set for the conical transition graph is

𝒱 = {0𝑛,
[︀
1
0

]︀
,
[︀−1

0

]︀
}. It can be shown that there are two jump arrows 0𝑛 j−→ 0𝑛 and[︀

1
0

]︀
j−→
[︀−1

0

]︀
, and one flow arrow

[︀−1
0

]︀
f−→
[︀
1
0

]︀
(recall that the start of a flow arrow

must be in 𝑔(𝐷) and the end must be in 𝐷). The weights for the jump arrows are

𝒲(0𝑛 j−→ 0𝑛) = {0} and 𝒲(
[︀
1
0

]︀
j−→
[︀−1

0

]︀
) = {1}.

Solutions to (6.17) for the flow arrow af :=
[︀
1
0

]︀
f−→
[︀−1

0

]︀
are given for each

𝑇 ∈ {𝜋, 3𝜋, 5𝜋, . . . } by

𝑡 ↦→ 𝜉(𝑡) := exp(𝛾𝑡)

⎡⎣ cos 𝑡

− sin 𝑡

⎤⎦ ∀𝑡 ∈ [0, 𝑇].

At 𝑡 = 𝑇 , the magnitude of 𝜉 is |𝜉(𝑇)| = exp(𝛾𝑇). Thus, the weight of a is

𝒲(af) = {exp(𝛾𝑇) | 𝑇 = 𝜋, 3𝜋, 5𝜋, . . .}. ◇

In addition to having a non-singleton weight, the flow arrow 1 f−→ 1 in Example 6.5

illustrates an exceptional case that we must consider. In Example 6.5, the origin

is pAS for ℋ, so we want every infinite-length walk through the CTG to have

weight {0} (see Theorem 6.2, below). But, the weight of 𝑤 := 1 f−→ 1 f−→ 1 f−→ · · ·
is actually 𝒲(𝑤) = [0, 1). To see 𝒲(𝑤) contains (0, 1), take any 𝑠 > 0 and let

𝑟𝑘 := exp(−𝑠/2𝑘+1), which is in 𝒲(1 f−→ 1) = (0, 1) for each 𝑘 ∈ N. Then, by

selecting {𝑟𝑘}∞𝑘=0 in (6.11), we compute

∞∏︁
𝑘=0

𝑟𝑘 = exp
(︀
−𝑠/2− 𝑠/4− 𝑠/8− · · ·

)︀
= 𝑒−𝑠 ∈ (0, 1).

112

Alternatively, selecting 𝑟𝑘 := 1/2 ∈ 𝒲(1 f−→ 1) results in
∏︀∞

𝑘=0 1/2 = 0. Hence,

𝒲(𝑤) = [0, 1). The crux of the problem is that by repeatedly traversing the loop

1 f−→ 1, the walk 𝑤 represents a solution that flows part of the way to the origin,

then flows a little more, and a little more, ad infinitum, without ever jumping. As

indicated by the weight 𝒲(𝑤), we can construct such as sequence of flows that will

converge to 0, but also sequences that converge to any value in [0, 1). Fortunately,

any finite sequence of consecutive flow arrows can be replaced by a single flow arrow,

whereas any infinite sequence of flow arrows represents a solution that never jumps,

so we analyze it using continuous-time methods instead of the CTG. Therefore, we

exclude walks with consecutive flow arrows from consideration.

Definition 6.4 (Well-formed Walk). We say that a walk 𝑤 through a conical tran-

sition graph 𝒢 is well-formed if no pair of consecutive arrows in 𝑤 are both flow

arrows. That is, 𝑤 = (a0, a1, . . . , a𝑁−1) is a well-formed walk through 𝒢 if for every

𝑖 ∈ {1, 2, . . . , 𝑁 − 1}, either a𝑖−1 or a𝑖 is a jump arrow. ◇

Remark 6.2. A well-formed walk may include consecutive jump arrows.

6.5 Establishing Pre-asymptotic Stability via the CTG

This section presents a result that allows for pre-asymptotic stability of 𝒪 :=

𝒬×{0𝑛} (the combined origins of all of the modes) to be established by analyzing the

CTG. For 𝒪 to be pre-asymptotically stable, 𝒪 must be forward invariant. Forward

invariance of 𝒪 can be easily checked for a conical hybrid system, as asserted by the

following result.

Proposition 6.2. The set 𝒪 := 𝒬× {0𝑛} is not forward invariant with respect to

conical hybrid system ℋ if and only if it has a mode 𝑞c ∈ 𝒬 with constant flows and

𝑓𝑞c ∈ 𝐶𝑞c ∖ {0𝑛}. Furthermore, if 𝒪 is not forward invariant, then there exists a

complete solution 𝜙 to ℋ such that

lim
𝑡+𝑗→∞

|𝜙(𝑡, 𝑗)|𝒪 = ∞.

Proof. Suppose 𝒪 is not forward invariant. From the definition of 𝑔 in (6.6), we

find 𝑔(𝒪) ⊂ 𝒪, so solutions to ℋ cannot leave the origin at jumps. Thus, for some

𝑞c ∈ 𝒬, solutions to ℋ can flow away from the origin. Flows in 𝑞c are either linear or

113

constant. In both cases, the flow map is Lipschitz continuous, so solutions are unique.

If flows are linear, then 𝑓𝑞c(0𝑛) = 0𝑛, so all solutions to that start in {𝑞c} × {0𝑛}
remain in {𝑞c}×{0𝑛}. Hence, flows cannot be linear. Similarly, if flows are constant

and 𝑓𝑞c = 0𝑛, then solutions cannot leave the origin, so we must have constant flows

with 𝑓𝑞c ̸= 0𝑛.

It remains to be shown that 𝑓𝑞c ∈ 𝐶. If 𝑓𝑞c ̸∈ 𝐶, then any solution to 𝑧̇ = 𝑓𝑞c

from 𝑧(0) = 0𝑛 immediately leaves 𝐶𝑞c , so solutions to ℋ cannot flow from the origin,

contradicting our assumption that the origin is not forward invariant. Therefore,

𝑓𝑞c ∈ 𝐶𝑞c ∖ {0𝑛}.
To prove the converse direction, suppose mode 𝑞c has constant flows and

𝑓𝑞c ∈ 𝐶𝑞c ∖ {0𝑛}. Then 𝜙 : R≥0 × {0} → R𝑛 defined by

𝜙(𝑡, 0) := (𝑞c, 𝑡𝑓𝑞c) ∀𝑡 ≥ 0

is a complete solution to ℋ. (Since 𝑓𝑞c ∈ 𝐶𝑞c and 𝐶𝑞c is a cone, 𝑡𝑓𝑞c is also in 𝐶𝑞c

for all 𝑡 ≥ 0.) Finally, since 𝑓𝑞c ≥ 0, we have that |𝜙(𝑡, 𝑗)|𝒪 → ∞.

For a simple illustration of Proposition 6.2, consider ℋ on R𝑛 with a single

mode 𝑞 that has constant flows 𝑧̇ = 𝑓*𝑞 and a flow set consisting of a single ray,

𝐶 := ray 𝑓*𝑞 , where 𝑓
*
𝑞 ∈ S𝑛−1. We have 𝑓*𝑞 ∈ 𝐶, so, by Proposition 6.2, the set 𝒪 is

not forward invariant for ℋ. The hybrid arc 𝜙 : R≥0 × {0} → {𝑞} × R𝑛 defined by

𝜙(𝑡, 𝑗) :=
(︀
𝑞, 𝑡𝑓*𝑞

)︀
for all (𝑡, 𝑗) ∈ dom(𝜙) is a complete solution to ℋ that leaves 0𝑛,

and lim𝑡+𝑗→∞|𝜙(𝑡, 𝑗)|𝒪 = ∞.

6.5.1 CTG Simulations

This section establishes a correspondence between solutions to a conical hybrid

system and walks through the CTG. For each solution, there is a unique walk

called the CTG-simulation of that solution (Definition 6.5). That a CTG-simulation

is, in fact, a walk through the CTG is asserted in Proposition 6.3. Conversely,

Proposition 6.4 asserts that for every well-formed nonempty walk through the CTG

of a hybrid system that starts and ends with a jump arrow, there exists a solution

that the walk simulates. This section is concluded with Proposition 6.5, which shows

that the relative change in the magnitude of a solution is an element in the set-valued

weight of the solutions CTG-simulation.

114

Definition 6.5 (CTG Simulation). Let ℋ be a conical hybrid system with modes 𝒬
and conical transition graph 𝒢. Consider any solution (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) :=

(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
to ℋ that jumps at least once. Let 𝐽 := sup𝑗 dom(𝜙) ∈ {1, 2, . . . ,∞}. Let 𝑡0 := 0

and let 𝑡𝑗 denote the 𝑗th jump time of 𝜙 for each 𝑗 ∈ {1, 2, . . . , 𝐽}. Let 𝐾0 := 0 and

for each finite 𝑗 ∈ {1, . . . , 𝐽}, let𝐾𝑗 be the cumulative number of jumps and intervals

of flow in 𝜙 between (𝑡1, 0) ∈ dom(𝜙) and (𝑡𝑗 , 𝑗) ∈ dom(𝜙). Let ℎ0 := (𝑡1, 0), and

for each 𝑘 ∈ {1, . . . ,𝐾𝐽}, let ℎ𝑘 be the first hybrid time among

(𝑡1, 1), (𝑡2, 1), (𝑡2, 2), . . . , (𝑡𝐽 , 𝐽 − 1), (𝑡𝐽 , 𝐽) (6.21)

that does not occur among ℎ0, ℎ1, . . ., ℎ𝑘−1. We denote the 𝑡-component of ℎ𝑘 as

𝜋t(ℎ𝑘) and the 𝑗-component as 𝜋j(ℎ𝑘), i.e., ℎ𝑘 = (𝜋t(ℎ𝑘), 𝜋j(ℎ𝑘)). Note that for

each 𝑘 ∈ {0, 1, . . . ,𝐾𝐽 − 1}, either 𝜋j(ℎ𝑘) = 𝜋j(ℎ𝑘+1) and 𝜋t(ℎ𝑘) < 𝜋t(ℎ𝑘+1), or

𝜋j(ℎ𝑘) < 𝜋j(ℎ𝑘+1) and 𝜋t(ℎ𝑘) = 𝜋t(ℎ𝑘+1).

We say that

𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ . . .
ℓ(𝐾𝐽−2)−−−−−→ 𝑣(𝐾𝐽−1)

ℓ(𝐾𝐽−1)−−−−−→ 𝑣𝐾𝐽
)

is the CTG simulation or the 𝒢-simulation of 𝜙, where {𝑣𝑘}𝐾𝐽
𝑘=0 is a sequence in

𝒬× S𝑛−1
0 defined as

𝑣𝑘 :=
(︀
𝑞(ℎ𝑘), nrv(𝑧(ℎ𝑘))

)︀
∀𝑘 ∈ {0, 1, . . . ,𝐾𝐽} (6.22)

and {ℓ𝑘}𝐾𝐽−1
𝑘=0 is a sequence of labels in ℒ defined by

ℓ𝑘 :=

{︃
j if 𝜋j(ℎ𝑘+1) > 𝜋j(ℎ𝑘)

f if 𝜋t(ℎ𝑘+1) > 𝜋t(ℎ𝑘)
∀𝑘 ∈ {0, 1, . . . ,𝐾𝐽 − 1}. (6.23)

◇
Remark 6.3. A CTG simulation of a solution 𝜙 is a representation of 𝜙 with “snap-

shots” of the solution projected onto S𝑛−1
0 by the nrv function before and after each

jump. Such a simulation does not say anything about how 𝜙 flows before the first

jump or after the last jump.

Lemma 6.2. Suppose ℋ := (𝐶, 𝑓,𝐷,𝐺) is a conical hybrid system with modes 𝒬
and transitions ℰ . For any (𝑞⊖, 𝑧⊖) ∈ 𝐷 and (𝑞⊕, 𝑧⊕) ∈ 𝐺(𝑞⊖, 𝑧⊖), let 𝑠⊖ := nrv(𝑧⊖)

and 𝑠⊕ := nrv(𝑧⊕). Then,

𝑣⊖ :=
(︀
𝑞⊖, 𝑠⊖

)︀
∈ 𝒱 ∩𝐷, 𝑣⊕ :=

(︀
𝑞⊕, 𝑠⊕

)︀
∈ 𝒱 ∩𝐺(𝐷),

and aj := 𝑣⊖ j−→ 𝑣⊕ is a jump arrow in the CTG of ℋ.

115

Furthermore, if (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
is a solution to ℋ, then for each

jump time 𝑡𝑗 in dom(𝜙),(︀
𝑞(𝑗 − 1), nrv(𝑧(𝑡𝑗 , 𝑗 − 1))

)︀
j−→
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
(6.24)

is a jump arrow in 𝒢.

Proof. Take any (𝑞⊖, 𝑧⊖) ∈ 𝐷 and (𝑞⊕, 𝑧⊕) ∈ 𝐺(𝑞⊖, 𝑧⊖). It follows immediately

from the definition of the jump set that 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ and 𝑧⊖ ∈ 𝐷𝑒. Since 𝐷𝑒 is

a cone, 𝑠⊖ := nrv(𝑧⊖) is also in 𝐷𝑒, so 𝑣
⊖ := (𝑞⊖, 𝑠⊖) ∈ 𝒱 ∩𝐷.

Next, we will show that 𝑣⊕ := (𝑞⊕, 𝑠⊕) is a vertex in 𝒱 ∩ 𝐺(𝐷) (specifically,

𝑣⊕ ∈ 𝒱 ∩𝐺(𝐷)), where 𝑠⊕ := nrv(𝑧⊕). Let

𝑧* :=

{︃
𝑠⊖/|𝐴𝑒𝑠

⊖| if 𝐴𝑒𝑠
⊖ ̸= 0𝑛

𝑠⊖ if 𝐴𝑒𝑠
⊖ = 0𝑛.

Since 𝑠⊖ ∈ 𝐷𝑒 and 𝐷𝑒 is a cone, we have that 𝑧* ∈ 𝐷𝑒, so (𝑞⊖, 𝑧*) ∈ 𝐷. Then,

𝐴𝑒𝑧
* = 𝑠⊕.

To see why, first suppose that 𝐴𝑒𝑠
⊖ ̸= 0𝑛. Then,

𝐴𝑒𝑧
* = 𝐴𝑒(𝑠

⊖/|𝐴𝑒𝑠
⊖|) = nrv(𝐴𝑒𝑠

⊖) = nrv(𝐴𝑒𝑧
⊖) = 𝑠⊕,

where the penultimate equality is a result of (6.5). On the other hand, if 𝐴𝑒𝑠
⊖ = 0𝑛,

then 𝐴𝑒𝑧
* = 0𝑛 = 𝑠⊕. Therefore, 𝑣⊕ ∈ 𝐺(𝑞⊖, 𝑧*), so 𝑣⊕ is in 𝐺(𝐷) and 𝒱.

To finish the proof, we must show that 𝑣⊖ j−→ 𝑣⊕ is a jump arrow in the CTG

of ℋ. Using the definitions of 𝑠⊕ and 𝑧⊕, we have that 𝑠⊕ = nrv(𝑧⊕) = nrv(𝐴𝑒𝑧
⊖).

By linearity, 𝐴𝑒𝑧
⊖ = |𝑧⊖|𝐴𝑒𝑠

⊖, so nrv(𝐴𝑒𝑧
⊖) = nrv(𝐴𝑒𝑠

⊖). Therefore, per (6.15),

𝑣⊖ → 𝑣⊕ is a jump arrow.

Finally, (6.24) is a jump arrow in 𝒢 since 𝜙(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷 at each jump time 𝑡𝑗 .

Lemma 6.3. Consider a conical hybrid system ℋ := (𝐶, 𝑓,𝐷,𝐺) with modes 𝒬
and transitions ℰ . Let (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) =

(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
be any solution to ℋ with

jump times 𝑡𝑗 and 𝐽 := sup𝑗 dom(𝜙). For each interval flow [𝑡𝑗 , 𝑡𝑗+1] in dom(𝜙), if

𝑗 ∈ {1, 2, . . . , 𝐽 − 1}, then(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
f−→
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗+1, 𝑗))

)︀
(6.25)

is a flow arrow in 𝒢.

116

Proof. Let (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
be a solution to ℋ. Without loss of

generality, suppose 𝐽 > 1 (otherwise the conclusion is vacuously true). Take any

𝑗 ∈ {1, 2, . . . , 𝐽 − 1}. Let 𝑧(0) := 𝑧(𝑡𝑗 , 𝑗), 𝑠
(0) := nrv(𝑧(0)), 𝑧(f) := 𝑧(𝑡𝑗+1, 𝑗), and

𝑠(f) := nrv(𝑧(f)).

Then, 𝜙(𝑡𝑗 , 𝑗) ∈ 𝐺(𝜙(𝑡𝑗 , 𝑗 − 1)), so 𝑣(0) := (𝑞(𝑗), 𝑠(0)) is a vertex in 𝒱. Similarly,

𝜙(𝑡𝑗+1, 𝑗) ∈ 𝐷, so 𝑣(f) := (𝑞(𝑗), 𝑠(f)) is in 𝒱.
To show that 𝑣(0) f−→ 𝑣(f) is a flow arrow, for 𝜏 := 𝑡𝑗+1 − 𝑡𝑗 , let 𝜉 : [0, 𝜏] → R𝑛 be

defined by

𝑡 ↦→ 𝜉(𝑡) :=

{︃
𝑧(𝑡+ 𝑡𝑗 , 𝑗)/|𝑧(0)| if |𝑧(0)| ≠ 0

𝑧(𝑡+ 𝑡𝑗 , 𝑗) if |𝑧(0)| = 0𝑛.

Since [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow, 𝜏 is positive. We will check each condition

in the flow arrow conditions (6.17). Equation (6.17a) is satisfied because 𝜉(0) =

nrv(𝑧(0)) = 𝑠(0). From the flow condition (1.6b) of hybrid solutions, we have that

𝑧̇(𝑡, 𝑗) = 𝑓𝑞(𝑧(𝑡, 𝑗)) for almost all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. Since 𝑓𝑞 is either constant or linear,

𝑡 ↦→ 𝑧(𝑗, 𝑡) is the unique solution to 𝑥̇ = 𝑓𝑞(𝑥) and 𝑧̇(𝑗, 𝑡) = 𝑓𝑞(𝑧(𝑗, 𝑡)) for all

𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1) (rather than merely almost all). Therefore, (6.17b) is satisfied:

𝑑𝜉

𝑑𝑡
(𝑡) =

𝑑𝑧

𝑑𝑡
(𝑡+ 𝑡𝑗) = 𝑓𝑞(𝑧(𝑡+ 𝑡𝑗)) = 𝑓𝑞(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝜏).

By (1.6a), 𝜙(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1), so 𝑧(𝑡, 𝑗) ∈ 𝐶𝑞 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1)

and

𝜉(𝑡) ∈ 𝐶𝑞 ∀𝑡 ∈ (0, 𝑇),

satisfying (6.17c).

Finally, (6.17d) is satisfied:

nrv(𝜉(𝑇)) =

{︃
nrv(𝑧(f)/|𝑧(0)|) if |𝑧(0)| ≠ 0

nrv(𝑧(f)) if |𝑧(0)| = 0

= nrv(𝑧(f)) = 𝑠(f).

Therefore, 𝑣(0) f−→ 𝑣(f) is a flow arrow in 𝒢.

Proposition 6.3. Consider a conical hybrid system ℋ with conical transition graph

𝒢. For any solution 𝜙 to ℋ, the 𝒢-simulation of 𝜙 is a well-formed walk through 𝒢.

Proof. Let 𝑤 be the 𝒢-simulation of 𝜙, and let {𝐾𝑗}𝐽𝑗=0, {𝑣𝑘}𝐾𝐽
𝑘=0, and {ℓ𝑘}𝐾𝐽−1

𝑘=0 be

defined as in Definition 6.5. We write the components of 𝜙 as 𝜙(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
.

117

To show that 𝑤 is a walk through 𝒢, we must show that each 𝑣𝑘 is a vertex in 𝒱,
and for each 𝑘 ∈ {0, 1, . . . ,𝐾𝑗} that 𝑣𝑘 → 𝑣𝑘+1 is an arrow in 𝒢. The values of

𝐾𝑗 always increment by +1 or +2, i.e., 𝐾(𝑗+1) ∈ {𝐾𝑗 + 1,𝐾𝑗 + 2}. Thus, for each
𝑗 ∈ {0, 1, . . . , 𝐽}, we need to show that 𝑣𝐾𝑗 ∈ 𝒱 and (if 𝑗 < 𝐽) that 𝑣𝐾𝑗+1 ∈ 𝒱.
Furthermore, we need to show 𝑣𝐾𝑗

ℓ𝐾𝑗−−→ 𝑣𝐾𝑗+1 is an arrow in 𝒜. If 𝐾(𝑗+1) = 𝐾𝑗 + 2,

we also need to show 𝑣𝐾𝑗+1
ℓ𝐾𝑗+1−−−−→ 𝑣𝐾𝑗+2 is an arrow in 𝒜. We will consider separately

the cases of 𝐾(𝑗+1) = 𝐾𝑗 + 1 and 𝐾(𝑗+1) = 𝐾𝑗 + 2.

Take any 𝑗 ∈ {0, 1, . . . , 𝐽}.

Case 1 (𝐾(𝑗+1) = 𝐾𝑗 + 1). Suppose 𝐾(𝑗+1) = 𝐾𝑗 + 1, which requires that either

𝑗 = 0 or 𝑡𝑗 = 𝑡𝑗+1. For the case where 𝑗 = 0, there is a jump arrow in 𝒢 from

𝑣0 =
(︀
𝑞(0), nrv(𝑧(𝑡1, 0))

)︀
to 𝑣1 =

(︀
𝑞(1), nrv(𝑡1, 1)

)︀
per Lemma 6.2, since 𝑡1 is

a jump time in dom(𝜙). Similarly, if 𝑡𝑗 = 𝑡𝑗+1, then(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
=
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗+1, 𝑗))

)︀
∈ 𝐷,

so, again by Lemma 6.2, there is a jump arrow in 𝒢 from

𝑣𝐾𝑗 =
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
to 𝑣𝐾(𝑗+1)

=
(︀
𝑞(𝑗 + 1), nrv(𝑡𝑗+1, 𝑗 + 1)

)︀
.

Case 2 (𝐾(𝑗+1) = 𝐾𝑗 + 2). Suppose 𝐾(𝑗+1) = 𝐾𝑗 +2. From the definition of 𝐾𝑗 , it

follows that 𝑗 ∈ {1, 2, . . . , 𝐽 − 1} and [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜙).

By Lemma 6.3, there is a flow arrow in 𝒢 from 𝑣𝐾𝑗 =
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
to

𝑣𝐾𝑗+1 =
(︀
𝑞(𝑗), 𝑧(𝑡𝑗+1, 𝑗)

)︀
. Additionally, because 𝑡𝑗+1 is a jump time, there is

a jump arrow in 𝒢 from

𝑣(𝐾𝑗+1) to 𝑣(𝐾𝑗+2) = 𝑣𝐾(𝑗+1)
=
(︀
𝑞(𝑗 + 1), nrv(𝑡𝑗+1, 𝑗 + 1)

)︀
,

per Lemma 6.2.

Therefore, we have shown that each 𝑣𝑘 is a vertex in 𝒱 and each step in 𝑤 is an

arrow in 𝒜, so 𝑤 is a walk through 𝒢. Furthermore, each flow arrow in 𝑤 is followed

by a jump arrow, as shown in Case 2, so 𝑤 is well-formed.

Proposition 6.4. Consider a conical hybrid system ℋ with modes 𝒬 and conical

transition graph 𝒢. For some 𝐾 ∈ {1, 2, . . . ,∞}, suppose that

𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · · ℓ(𝐾−1)−−−−→ 𝑣𝐾)

is a well-formed walk through 𝒢 with ℓ0 = j and if 𝐾 <∞, then ℓ(𝐾−1) = j. Then,

there exists a solution 𝜙 to ℋ such that 𝑤 is the 𝒢-simulation of 𝜙.

118

Proof. Let 𝐽 be the total number of jump arrows in 𝑤. For each finite 𝚥 ∈
{0, 1, . . . , 𝐽}, let 𝐾𝚥 be the index of the vertex in 𝑤 immediately after 𝚥-many

jump arrows. That is, 𝐾𝑗 ∈ N is the smallest number such that there are 𝚥 jump

labels in {ℓ0, ℓ1, . . . , ℓ𝐾𝚥}.
For each finite 𝑘 ∈ {0, 1, 2, . . . ,𝐾}, let (𝑞𝑘, 𝑠𝑘) := 𝑣𝑘. We will construct a

sequence {𝜙𝚥}𝐽𝚥=1 of hybrid arcs in the form

(𝑡, 𝑗) ↦→ 𝜙𝚥(𝑡, 𝑗) =
(︀
𝑝𝚥(𝑗), 𝑧𝚥(𝑡, 𝑗)

)︀
, (6.26)

where dom(𝜙𝚥) and 𝑧𝚥 are defined below, and 𝑗 ↦→ 𝑝𝚥(𝑗) := 𝑞𝐾𝑗 for each 𝑗 ∈
{0, 1, . . . , 𝚥}. By induction, we will show that for each 𝚥 ∈ {1, 2, . . . , 𝐽},

(S1) if 𝚥 > 1, then 𝜙𝚥 is an extension of 𝜙𝚥−1,

(S2) 𝜙𝚥 is a solution to ℋ that jumps 𝚥 times (i.e., sup𝑗 dom(𝜙𝚥) = 𝚥),

(S3) nrv
(︀
𝑧𝚥(𝑇𝚥, 𝚥)

)︀
= 𝑠𝐾𝚥 , where 𝑇𝚥 := sup𝑡 dom(𝜙𝚥) is finite (and 𝚥 = sup𝑗 dom(𝜙𝚥)),

(S4) 𝑤𝚥 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · ·
ℓ(𝐾𝚥−1)−−−−−→ 𝑣𝐾𝚥) is the 𝒢-simulation of 𝜙𝚥.

The following definition is used to construct 𝜙𝚥. For each 𝑘 ∈ {0, 1, . . . ,𝐾 − 1}
such that ℓ𝑘 = f, take 𝜏𝑘 > 0 and 𝜉𝑘 : [0, 𝜏𝑘] → R𝑛 that satisfy the flow arrow

conditions in (6.17).

For the base case (𝚥 = 1), let dom(𝜙1) := {(0, 0), (0, 1)}, 𝑧1(0, 0) := 𝑠0, and

𝑧1(0, 1) := 𝐴𝑒0𝑠0. Hence, 𝜙1(0, 0) = (𝑞0, 𝑠0) = 𝑣0 and 𝜙1(0, 1) =
(︀
𝑞1, 𝐴𝑒0𝑠0

)︀
. Condi-

tion (S1) is vacuously satisfied because 𝚥 = 1. Since 𝑣0 j−→ 𝑣1 is a jump arrow, 𝜙1(0, 0)

is in 𝐷. Thus, 𝜙1 is a solution to ℋ with one jump—satisfying (S2)—because

dom(𝜙1) has no intervals of flow and satisfies (1.5) at 𝑡1 = 0, the only jump time in

dom(𝜙1). Additionally, since (𝑞0, 𝑠0) j−→ (𝑞1, 𝑠1) is a jump arrow, (6.15) requires that

𝑠1 = nrv(𝐴𝑒0𝑠0). Thus, nrv(𝑧1(𝑇1, 𝐽1)) = nrv(𝑧1(0, 1)) = 𝑠1 = 𝑠𝐾1 , satisfying (S3).

The walk 𝑤1 = 𝑣0 j−→ 𝑣1 is the 𝒢-simulation of 𝜙1 with ℎ0 = (0, 0) and ℎ1 = (0, 1), as

defined in Definition 6.5, thus (S4) is satisfied, finishing the proof that the base case

satisfies (S1)–(S4).

For the inductive case, take any 𝚥 ∈ {1, 2, . . . , 𝐽 − 1} and suppose that 𝜙𝚥 is

a hybrid arc that satisfies (S1)–(S4). We define 𝜙𝚥+1 as an extension of 𝜙𝚥, i.e.,

dom(𝜙𝚥) ⊂ dom(𝜙𝚥+1) and 𝜙𝚥+1(𝑡, 𝑗) := 𝜙𝚥(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜙𝚥), so (S1)

holds by construction. We define 𝜙𝚥+1 beyond the domain of 𝜙𝚥 via three cases. In

119

each case, we will define 𝑘⊖ and 𝑘⊕ and, for Cases 2 and 3, we also define 𝑘(0) and

𝑘(f). For the given definitions of 𝑘⊖, 𝑘⊕, 𝑘(0), and 𝑘(f), let

𝑣⊛ := 𝑣𝑘⊛ , 𝑠
⊛ := 𝑠𝑘⊛ , and 𝑞

⊛ := 𝑞𝑘⊛ for each ⊛ ∈ {⊖,⊕, (0), (f)},

and 𝑒 := (𝑞𝑘⊖ , 𝑞𝑘⊕).

Case 1 (jump arrow). Suppose ℓ𝐾𝚥 is a jump label. There are, 𝚥-many jump

arrows from 𝑣0 to 𝑣𝐾𝚥 (by the definition of 𝐾𝚥) and it takes one additional

step 𝑣𝐾𝚥
j−→ 𝑣𝐾𝚥+1 for the walk 𝑤(𝚥+1) to contain 𝚥+ 1 jump arrows, because

ℓ𝐾𝚥 = j, so 𝐾(𝚥+1) = 𝐾𝚥 + 1. Let 𝑘⊖ := 𝐾𝚥 and 𝑘
⊕ := 𝐾(𝚥+1), We also define

𝑟0 := |𝑧𝚥(𝑇𝚥, 𝚥)| and 𝑟j := |𝐴𝑒𝑠
(0)| ∈ 𝒲(𝑣⊖ j−→ 𝑣⊕). Let

dom(𝜙𝚥+1) := dom(𝜙𝚥) ∪ ({𝑇𝚥} × {𝚥, 𝚥+ 1}),

and

𝑧𝚥+1(𝑇𝚥, 𝚥+ 1) := 𝑟0𝐴𝑒𝑠
⊖.

Since 𝑣⊖ j−→ 𝑣⊕ is a jump arrow in 𝒜, we have that (𝑞⊖, 𝑠⊖) ∈ 𝐷. By prop-

erty (6.3) of the nrv function and (S3) from the inductive hypothesis,

𝑧𝚥(𝑇𝚥, 𝚥) = |𝑧𝚥(𝑇𝚥, 𝚥)| nrv(𝑧𝚥(𝑇𝚥, 𝚥)) = 𝑟0𝑠
⊖.

Since 𝐷𝑒 is a cone containing 𝑠⊖, we have that 𝑧𝚥(𝑇𝚥, 𝚥) ∈ 𝐷𝑒 and thus 𝜙𝚥(𝑇𝚥, 𝚥)

is in 𝐷. Additionally,

𝜙𝚥+1(𝑇𝚥, 𝚥+ 1) =
(︀
𝑞⊕, 𝐴𝑒(𝑟0𝑠

⊖)
)︀
∈ 𝐺(𝜙𝚥+1(𝑇𝚥, 𝚥)).

Therefore, 𝜙𝚥+1 is a solution that jumps 𝚥+ 1 times, thereby satisfying (S2).

At the end of 𝜙𝚥+1, we have 𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) = 𝑟0𝐴𝑒𝑠
⊖. By the definition of

a jump arrow in (6.15), 𝑠⊕ = nrv(𝐴𝑒𝑠
⊖). Furthermore, 𝑠⊕ = nrv(𝑟0𝐴𝑒𝑠

⊖) =

nrv(𝑧𝚥+1(𝑇𝚥+1, 𝚥 + 1)) because 𝑟0 ≥ 0 with 𝑟0 = 0 if and only if 𝑠⊖ = 0𝑛, in

which case 𝐴𝑒𝑠
⊖ = 0𝑛, also. Thus, (S3) is satisfied.

By (S4) in the inductive hypothesis, 𝑤𝚥 is the CTG-simulation of 𝜙𝚥, so (6.22)

and (6.23) are satisfied up to 𝐾𝚥 and 𝐾𝚥 − 1, respectively. For 𝚥+ 1, the

hybrid times ℎ0, ℎ1, . . . , ℎ𝐾𝚥 defined in Definition 6.5 are the same as for 𝚥 and

ℎ𝐾𝚥+1 = (𝑇𝚥+1, 𝚥+ 1). Using (S3), we find that

𝑣⊕ =
(︀
𝑞⊕, 𝑠⊕

)︀
=
(︁
𝑝𝚥+1(𝚥+ 1), nrv

(︀
𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1)

)︀)︁
,

120

satisfying (6.22) for 𝑘 = 𝐾𝚥+1. Finally, 𝜋j
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋j

(︀
ℎ𝐾𝚥

)︀
, so (6.23) is

satisfied for 𝑘 = 𝐾𝚥+1 − 1. Therefore, 𝑤𝚥+1 is the CTG-simulation of 𝜙𝚥+1, as

required by (S4).

Case 2 (flow arrow in mode with linear flows). Suppose ℓ𝐾𝚥 = f and 𝑞𝐾𝚥 is

a mode with linear flows. Since ℓ𝐾𝚥 = f and 𝑤 is well-formed, ℓ𝐾𝚥+1 is a jump

label, so 𝐾(𝚥+1) = 𝐾𝚥 + 2. Let 𝑘(0) := 𝐾𝚥, 𝑘
(f) := 𝐾𝚥 + 1, 𝑘⊖ := 𝐾𝚥 + 1, and

𝑘⊕ := 𝐾𝚥+2. From the definition of flow arrows, take 𝜏 > 0 and 𝜉 : [0, 𝜏] → R𝑛

that satisfy (6.17) for 𝑣(0) f−→ 𝑣(f). We also define 𝑞 := 𝑞(0) = 𝑞(f), 𝑟0 := |𝑧𝚥(𝑇𝚥, 𝚥)|,
𝑟f := |𝜉(𝜏)| ∈ 𝒲(𝑣(0) f−→ 𝑣(f)), and 𝑟j := |𝐴𝑒𝑠

⊖| ∈ 𝒲(𝑣(0) j−→ 𝑣(f)). The extension

of dom(𝜙𝚥) is defined as

dom(𝜙𝚥+1) := dom(𝜙𝚥) ∪ ([𝑇𝚥, 𝑇𝚥 + 𝜏]× {𝚥, 𝚥+ 1}).

Thus, 𝑇𝚥+1 = 𝑇𝚥 + 𝜏 . The values of 𝑧𝚥+1 are defined for (𝑡, 𝑗) ∈ dom(𝜙𝚥+1) ∖
dom(𝜙𝚥) as

𝑧𝚥+1(𝑡, 𝚥) := 𝑟0𝜉(𝑡− 𝑇𝚥) ∀𝑡 ∈ [𝑇𝚥, 𝑇𝚥+1] (6.27a)

𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) := 𝑟0𝑟f𝐴𝑒𝑠
⊖. (6.27b)

Since 𝜉(𝑡) ∈ 𝐶𝑞 for all 𝑡 ∈ (0, 𝜏) and 𝐶𝑞 is a cone, 𝑧𝚥+1(𝑡, 𝚥) is also in 𝐶𝑞 for all

𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1), satisfying (1.6a). Furthermore, the hybrid arc 𝜙𝚥+1 satisfies the

flow condition (1.6b) for all 𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1):

𝑑𝑧𝚥+1

𝑑𝑡
(𝑡, 𝑗) =

𝑑

𝑑𝑡

(︀
𝑟0𝜉
(︀
𝑡− 𝑇𝚥

)︀)︀
= 𝑟0𝑓𝑞(𝜉(𝑡− 𝑇𝚥)) = 𝑟0𝐴𝑞𝜉(𝑡− 𝑇𝚥)

= 𝐴𝑞𝑟0𝜉(𝑡− 𝑇𝚥) = 𝑓𝑞(𝑧𝚥+1(𝑡, 𝑗)).

By the definition of flow arrows, namely (6.17d), nrv(𝜉(𝜏)) = 𝑠(f), so at the end

of the interval of flow (𝑇𝚥, 𝑇𝚥+1), we have 𝑧𝚥+1(𝑇𝚥+1, 𝚥) = 𝑟0𝜉(𝜏) ∈ 𝐷𝑒. Thus,

𝜙𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐷, satisfying (1.5a). Furthermore, (1.5b) is satisfied because

𝜙𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐺(𝜙𝚥+1(𝑇𝚥+1, 𝚥)) because

𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) = 𝑟0𝑟f𝐴𝑒𝑠
⊖ = 𝐴𝑒(𝑟0𝑟𝑓𝑠

⊖) = 𝐴𝑒(𝑟0|𝜉(𝜏)|nrv(𝜉(𝜏)))

= 𝐴𝑒(𝑟0𝜉(𝜏)) = 𝐴𝑒𝑧𝚥+1(𝑇𝚥+1, 𝚥). (6.28)

Therefore, 𝜙𝚥+1 is a solution to ℋ that jumps one more time than 𝜙𝚥, satisfy-

ing (S2).

121

Let 𝑧0 := 𝑧𝚥+1(𝑇𝚥, 𝐽𝚥) and 𝑧𝑓 := 𝑧𝚥+1(𝑇𝚥+1, 𝐽𝚥+1). We want to show nrv(𝑧𝑓) =

𝑠⊕ = 𝑠𝐾𝚥+1. By definition, in (6.28), 𝑧𝑓 = 𝑟0𝑟f𝐴𝑒𝑠
⊖. If 𝑟0𝑟f > 0, then we have

that nrv(𝑧𝑓) = 𝑠⊕, per (6.4), since 𝑠⊕ = nrv(𝐴𝑒𝑠
⊖).

On the other hand, if 𝑟0 = 0, then 𝑠(f) = 𝑠⊖ = 𝑧0 = 0𝑛 and, because mode 𝑞

has linear flows, solutions cannot flow away from the origin, so 𝑟f = 0, 𝑧𝑓 = 0𝑛,

and 𝑠(f) = 𝑠⊖ = 0𝑛, so 𝑠
⊕ = nrv(𝐴𝑒𝑠

⊖) = nrv(0𝑛) = 0𝑛. Thus, nrv(𝑧𝑓) = 𝑠⊕.

Finally, if 𝑟f = 0, then 𝑠(f) = 𝑠⊖ = 0𝑛, because |𝜉(𝜏)| = 0. Since 𝑠⊕ =

nrv(𝐴𝑒𝑠
⊖) = 0𝑛, we have that

nrv(𝑧𝑓) = 𝑠⊕ = 0𝑛.

Next, we want to show (S4), i.e., that 𝑤𝚥+1 is the 𝒢-simulation of 𝜙𝚥+1, which

requires showing (6.22) holds for 𝑘 ∈ {𝐾𝚥 + 1,𝐾𝚥 + 2}, and (6.23) holds for

𝑘 ∈ {𝐾𝚥,𝐾𝚥 + 1}. By assumption, 𝑤𝚥 is the 𝒢-simulation of 𝑧𝚥. For 𝑧𝚥+1,

the sequence ℎ0, ℎ1, . . . , ℎ𝐾(𝚥+1)
defined in Definition 6.5 has two more ele-

ments than the corresponding sequence for 𝑧𝚥, namely ℎ(𝐾𝚥+1) = (𝑇𝚥+1, 𝚥) and

ℎ(𝐾𝚥+2) = ℎ𝐾(𝚥+1)
= (𝑇𝚥+1, 𝚥+ 1).

First, we will show that 𝑤𝚥+1 satisfies (6.22) for 𝑘 = 𝐾𝚥 + 1. We have that

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑝𝚥+1(𝚥) = 𝑞𝐾𝚥

because 𝑝𝚥+1(𝑗) = 𝑞𝐾𝑗 by definition for each 𝑗 ∈ {0, 1, . . . , 𝚥+ 1}. But,

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑞𝐾𝚥+1,

because 𝑞 = 𝑞(0) = 𝑞𝐾𝚥 = 𝑞𝐾𝚥+1 = 𝑞(f), as required by (6.22) for 𝑘 = 𝐾𝚥 + 1.

For the 𝑧-component,

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥) = 𝑟0𝜉(𝜏).

Suppose, first, that 𝑟0 > 0. Then, by (6.4), Suppose, instead, that 𝑟0 = 0. In

this case, 𝜉 is identically zero because 𝑡 ↦→ 𝜉(𝑡) := 0𝑛 is the unique solution

to 𝑥̇ = 𝐴𝑞𝑥 from 𝑥0 = 0𝑛. Thus, nrv(𝑟0𝜉(𝜏)) = nrv(𝜉(𝜏)) = 0𝑛. By (6.17d),

nrv(𝜉(𝜏)) = 𝑠(f), so

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑠𝐾𝚥+1,

therefore (6.22) is satisfied for 𝑘 = 𝐾𝚥 + 1.

122

Next, we will show that 𝑤𝚥+1 satisfies (6.22) for 𝑘 = 𝐾𝚥+2 = 𝐾(𝚥+1). We have

that

𝑝𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑝𝚥+1(𝚥+ 1) = 𝑞𝐾(𝚥+1)

,

as required by (6.22) for 𝑘 = 𝐾𝚥 + 1. For the 𝑧-component,

𝑧𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1).

We have already shown that (S3) holds, so nrv(𝑧𝚥+1(ℎ𝐾(𝚥+1)
)) = 𝑠𝐾(𝚥+1)

. There-

fore, (6.22) holds for 𝑘 = 𝐾(𝚥+1).

Finally, (6.23) is satisfied for 𝑘 = 𝐾𝚥 because ℓ𝐾𝚥 = f and

𝜋t
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋t

(︀
ℎ𝐾𝚥

)︀
,

and is satisfied for 𝑘 = 𝐾𝚥 + 1 because ℓ𝐾𝚥+1 = j and

𝜋j
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋j

(︀
ℎ𝐾𝚥+1

)︀
.

Therefore, 𝑤𝚥+1 is the 𝒢-simulation of 𝜙𝚥+1, satisfying (S4).

Case 3 (flow arrow in mode with constant flows). Suppose ℓ𝐾𝚥 = f and 𝑞𝐾𝚥

is a mode with constant flows. Since 𝑤 is well-formed, ℓ𝐾𝚥+1 = j and 𝐾(𝚥+1) =

𝐾𝚥 + 2. Let 𝑘(0) := 𝐾𝚥, 𝑘
(f) := 𝐾𝚥 + 1, 𝑘⊖ := 𝐾𝚥 + 1, and 𝑘⊕ := 𝐾𝚥 + 2. From

the definition of flow arrows, take 𝜏 > 0 and 𝜉 : [0, 𝜏] → R𝑛 that satisfy (6.17)

for 𝑣(0) f−→ 𝑣(f). We also define 𝑞 := 𝑞(0) = 𝑞(f), 𝑟0 := |𝑧𝚥(𝑇𝚥, 𝚥)|, 𝑟f := |𝜉(𝜏)| ∈
𝒲(𝑣(0) f−→ 𝑣(f)), and 𝑟j := |𝐴𝑒𝑠

⊖| ∈ 𝒲(𝑣(0) j−→ 𝑣(f)). Let

dom(𝜙𝚥+1) := dom(𝜙𝚥) ∪
(︀
[𝑇𝚥, 𝑇𝚥+1]× {𝚥, 𝚥+ 1}

)︀
,

where

𝑇𝚥+1 := 𝑇𝚥 +

{︃
𝑟0𝜏 if 𝑟0 > 0

𝜏 if 𝑟0 = 0.

The value of 𝑧𝚥+1(𝑡, 𝑗) is defined for (𝑡, 𝑗) ∈ dom(𝜙𝚥+1) ∖ dom(𝜙𝚥) as

𝑧𝚥+1(𝑡, 𝚥) :=

{︃
𝑟0𝜉
(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀
if 𝑟0 > 0

𝜉
(︀
𝑡− 𝑇𝚥

)︀
if 𝑟0 = 0

∀𝑡 ∈ [𝑇𝚥, 𝑇𝚥+1] (6.29a)

𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) :=

{︃
𝑟0𝑟f𝐴𝑒𝑠

⊖ if 𝑟0 > 0

𝑟f𝐴𝑒𝑠
⊖ if 𝑟0 = 0.

(6.29b)

123

To show (S2), we will consider separately the cases 𝑟0 > 0 and 𝑟0 = 0. Suppose,

first, that 𝑟0 > 0. Then, 𝜙𝚥+1 satisfies the flow condition (1.6b) for all 𝑡 ∈
(𝑇𝚥, 𝑇𝚥+1):

𝑧̇𝚥+1(𝑡, 𝚥) =
𝑑

𝑑𝑡

(︀
𝑟0𝜉
(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀)︀
= 𝑟0𝑓𝑞

(︀
𝜉
(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀)︀ 𝑑
𝑑𝑡

(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀
= 𝑓𝑞(𝑧𝚥+1(𝑡, 𝚥)).

If, instead, 𝑟0 = 0, then,

𝑧̇𝚥+1(𝑡, 𝚥) =
𝑑

𝑑𝑡

(︀
𝜉
(︀
𝑡− 𝑇𝚥

)︀)︀
= 𝑓𝑞

(︀
𝑧𝚥+1(𝑡, 𝚥)

)︀
,

again satisfying (1.6b). In both cases, 𝑧𝚥+1(𝑡, 𝚥) ∈ 𝐶𝑞 for all 𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1),

satisfying (1.6a).

By (6.17d) in the definition of flow arrows, nrv(𝜉(𝜏)) = 𝑠(f) ∈ 𝐷𝑒, so

𝑧𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐷𝑒.

Thus, 𝜙𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐷, satisfying (1.5a). Furthermore, (1.5b) is satisfied at

the only jump time, 𝑇𝚥+1, in dom(𝜙𝚥+1) ∖ dom(𝜙𝚥) because 𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) =

𝐴𝑒𝑧𝚥+1(𝑇𝚥+1, 𝚥). Therefore, 𝜙𝚥+1 is a solution to ℋ that jumps one more time

than 𝜙𝚥, satisfying (S2).

Let 𝑧0 := 𝑧𝚥+1(𝑇𝚥, 𝐽𝚥) and 𝑧𝑓 := 𝑧𝚥+1(𝑇𝚥+1, 𝐽𝚥+1). To prove (S3) holds, we must

show nrv(𝑧𝑓) = 𝑠⊕ = 𝑠𝐾𝚥+1. From (6.29b), nrv(𝑧𝑓) = nrv(𝐴𝑒𝑠
⊖), which equals

𝑠⊕, satisfying (S3).

Next, we want to show (S4), i.e., that 𝑤𝚥+1 is the 𝒢-simulation of 𝜙𝚥+1, which

requires showing (6.22) holds for 𝑘 ∈ {𝐾𝚥 + 1,𝐾𝚥 + 2}, and (6.23) holds for

𝑘 ∈ {𝐾𝚥,𝐾𝚥 + 1}. By assumption, 𝑤𝚥 is the 𝒢-simulation of 𝑧𝚥. For 𝑧𝚥+1,

the sequence ℎ0, ℎ1, . . . , ℎ𝐾(𝚥+1)
defined in Definition 6.5 has two more ele-

ments than the corresponding sequence for 𝑧𝚥, namely ℎ(𝐾𝚥+1) = (𝑇𝚥+1, 𝚥) and

ℎ(𝐾𝚥+2) = ℎ𝐾(𝚥+1)
= (𝑇𝚥+1, 𝚥+ 1). First, we will show that 𝑤𝚥+1 satisfies (6.22)

for 𝑘 = 𝐾𝚥 + 1. We have that

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑝𝚥+1(𝚥) = 𝑞𝐾𝚥

124

because 𝑝𝚥+1(𝑗) = 𝑞𝐾𝑗 by definition for each 𝑗 ∈ {0, 1, . . . , 𝚥+ 1}. But,

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑞𝐾𝚥+1,

because 𝑞 = 𝑞(0) = 𝑞𝐾𝚥 = 𝑞𝐾𝚥+1 = 𝑞(f), thereby satisfying (6.22) for 𝑘 = 𝐾𝚥 + 1.

For the 𝑧-component,

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥) =

{︃
𝑟0𝜉(𝜏) if 𝑟0 > 0

𝜉(𝜏) if 𝑟0 = 0

Thus, nrv(𝑧𝚥+1) = nrv(𝜉(𝜏)). By (6.17d), nrv(𝜉(𝜏)) = 𝑠(f), so

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑠𝐾𝚥+1,

therefore (6.22) is satisfied for 𝑘 = 𝐾𝚥 + 1.

Next, we will show that 𝑤𝚥+1 satisfies (6.22) for 𝑘 = 𝐾𝚥+2 = 𝐾(𝚥+1). We have

that

𝑝𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑝𝚥+1(𝚥+ 1) = 𝑞𝐾(𝚥+1)

,

as required by (6.22) for 𝑘 = 𝐾𝚥 + 1. For the 𝑧-component,

𝑧𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1).

We have already shown that (S3) holds, so nrv(𝑧𝚥+1(ℎ𝐾(𝚥+1)
)) = 𝑠𝐾(𝚥+1)

. There-

fore, (6.22) holds for 𝑘 = 𝐾(𝚥+1).

Finally, (6.23) is satisfied for 𝑘 = 𝐾𝚥 because ℓ𝐾𝚥 = f and

𝜋t
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋t

(︀
ℎ𝐾𝚥

)︀
,

and is satisfied for 𝑘 = 𝐾𝚥 + 1 because ℓ𝐾𝚥+1 = j and

𝜋j
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋j

(︀
ℎ𝐾𝚥+1

)︀
.

Therefore, 𝑤𝚥+1 is the 𝒢-simulation of 𝜙𝚥+1, satisfying (S4).

Thus, for the inductive case, 𝜙𝚥+1 is a hybrid arc that satisfies (S1)–(S4). Therefore,

by induction, 𝑤𝐽 = 𝑤 is the 𝒢-simulation of 𝜙𝐽 = 𝜙.

The following result asserts that the weight of a solution 𝜙’s CTG-simulation

contains the relative change in the distance of 𝜙 from 𝒬 × {0𝑛}. In other words,

the weights of CTG-simulations tell us how solutions move toward or away from

𝒬× {0𝑛}.

125

Proposition 6.5. Consider a conical hybrid system ℋ with conical transition

graph 𝒢 and a solution

(𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
.

Suppose 𝜙 jumps at least once and let

𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · · ℓ(𝐾𝐽−1)−−−−−→ 𝑣𝐾𝐽
)

be the 𝒢-simulation of 𝜙, with 𝐽 := sup𝑗 dom(𝜙) and with 𝐾0,𝐾1, . . . ,𝐾𝐽 defined

as in Definition 6.5. Furthermore, let ℎ0, ℎ1, . . ., ℎ𝐾𝐽
be the hybrid times associated

with the 𝒢-simulation of 𝜙, as defined in Definition 6.5, and for each finite 𝑘 ∈
{0, 1, . . . ,𝐾𝐽}, let

𝑤𝑘 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · · ℓ(𝑘−1)−−−−→ 𝑣𝑘)

be the truncation of 𝑤 to the first 𝑘 arrows.

Suppose that there does not exist a flow arrow (𝑞, 0𝑛) f−→ (𝑞, 𝑠(f)) in 𝑤 such that

𝑠(f) ̸= 0𝑛. Then, for each finite 𝑘 ∈ {1, 2, . . . ,𝐾𝐽},

|𝑧(ℎ𝑘)| = 𝑟𝑘|𝑧(ℎ0)| for some 𝑟𝑘 ∈ 𝒲(𝑤𝑘). (6.30)

Proof. For each 𝑘 ∈ {0, 1, . . . ,𝐾𝐽}, let (𝑞𝑘, 𝑠𝑘) := 𝑣𝑘, and if ℓ𝑘 = j, then let 𝑒𝑘 :=

(𝑞𝑘, 𝑞𝑘+1). Let 𝑟0 := |𝑧(ℎ0)|.
We proceed by induction over 𝑘. For the base case, consider 𝑘 = 1. The first

arrow in a CTG-simulation is always a jump arrow. Let 𝑟1 := |𝐴𝑒0𝑠0| ∈ 𝒲(𝑣0 j−→ 𝑣1).

Since 𝑧(𝑡1, 1) = 𝐴𝑒0𝑧(ℎ0) and 𝑧(ℎ0) = 𝑟0𝑠0, we have

|𝑧(ℎ1)| = |𝐴𝑒0𝑟0𝑠0| = 𝑟0𝑟1 = 𝑟1|𝑧(ℎ0)|.

Therefore, (6.30) holds for 𝑘 = 1, proving the base case.

Now, suppose that (6.30) holds for 𝑘 ∈ {1, . . . ,𝐾𝐽 − 1}. That is, there exists

𝑟𝑘 ∈ 𝒲(𝑤𝑘) such that |𝑧(ℎ𝑘)| = 𝑟𝑘|𝑧(ℎ0)|.
Suppose, first, that ℓ𝑘 = j. Let 𝑟′𝑘+1 := |𝐴𝑒𝑘𝑠𝑘| ∈ 𝒲(𝑣𝑘

j−→ 𝑣𝑘+1). Thus, 𝑟𝑘+1 :=

𝑟𝑘𝑟
′
𝑘+1 ∈ 𝒲(𝑤𝑘+1). Furthermore, 𝑧(ℎ𝑘+1) = 𝐴𝑒𝑘𝑧(ℎ𝑘), so

|𝑧(ℎ𝑘+1)| = |𝐴𝑒𝑘𝑧(ℎ𝑘)| = |𝐴𝑒𝑘𝑟0𝑟𝑘𝑠𝑘| = 𝑟0𝑟𝑘|𝐴𝑒𝑘𝑠𝑘| = 𝑟0𝑟𝑘𝑟
′
𝑘+1 = 𝑟0𝑟𝑘+1.

Thus, |𝑧(ℎ𝑘+1)| = 𝑟𝑘+1|𝑧(ℎ0)| for 𝑟𝑘+1 ∈ 𝒲(𝑤𝑘+1).

126

Alternatively, suppose that ℓ𝑘 = f. Let 𝑞 := 𝑞𝑘 = 𝑞𝑘+1. If 𝑟𝑘 = 0, then 𝑠𝑘 = 0𝑛,

so 𝑠𝑘+1 = 0𝑛 also, by assumption, in which case 𝑓𝑞(0𝑛) = 0𝑛. Since 𝑓𝑞 is Lipschitz

continuous, solutions to 𝑧̇ = 𝑓𝑞(𝑧), 𝑧(0) = 0𝑛 are unique, namely 𝑡 ↦→ 𝜉(𝑡) := 0𝑛.

Thus, it must be the case that 𝑧(ℎ𝑘+1) = 0𝑛. From (6.18), we have that 0 ∈
𝒲(𝑣𝑘

f−→ 𝑣𝑘+1), so 𝑟𝑘+1 := 0 ∈ 𝒲(𝑤𝑘+1). Thus, (6.30) holds:

|𝑧(ℎ𝑘+1)| = 0 = 𝑟𝑘+1𝑟0 = 𝑟𝑘+1|𝑧(ℎ0)|.

Suppose, instead, that 𝑟𝑘 > 0, which also implies that 𝑟0 > 0 (if 𝑟0 = 0, then

𝑟1 = 𝑟2 = · · · = 𝑟𝑘 = 0). We will define 𝜏 > 0 and 𝜉 : [0, 𝜏] → R𝑛 to satisfy the flow

arrow conditions in (6.17) for 𝑣𝑘
f−→ 𝑣𝑘+1. Let 𝑗 := 𝜋j(ℎ𝑘) = 𝜋j(ℎ𝑘+1), 𝑡𝑘 := 𝜋t(ℎ𝑘),

and 𝑡𝑘+1 = 𝜋t(ℎ𝑘+1). We define

𝜏 :=

{︃
𝑡𝑘+1 − 𝑡𝑘 if 𝑞 has linear flows(︀
𝑡𝑘+1 − 𝑡𝑘

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has constant flows,

and for all 𝑡 ∈ [0, 𝜏], let

𝑡 ↦→ 𝜉(𝑡) :=

{︃
𝑧
(︀
𝑡𝑘 + 𝑡, 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has linear flows

𝑧
(︀
𝑡𝑘 + 𝑟0𝑟𝑘𝑡, 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has constant flows.

By the inductive hypothesis, 𝑟0𝑟𝑘 = |𝑧(ℎ𝑘)|, so we find that (6.17a) is satisfied:

𝜉(0) =
1

𝑟0𝑟𝑘
𝑧(𝑡𝑘, 𝑗) =

𝑧(ℎ𝑘)

|𝑧(ℎ𝑘)|
= nrv(𝑧(ℎ𝑘)) = 𝑠𝑘.

To check that 𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)), that is, (6.17b), we consider constant flows and

linear flows separately. If 𝑞 has linear flows, then for all 𝑡 ∈ (0, 𝜏),

𝜉(𝑡) =
𝑑

𝑑𝑡

(︀
𝑧(𝑡𝑘 + 𝑡, 𝑗)/𝑟0𝑟𝑘

)︀
=

1

𝑟0𝑟𝑘
𝑧̇(𝑡𝑘 + 𝑡, 𝑗)

=
1

𝑟0𝑟𝑘
𝑓𝑞(𝑧(𝑡𝑘 + 𝑡, 𝑗)) =

1

𝑟0𝑟𝑘
𝐴𝑞𝑧(𝑡𝑘 + 𝑡, 𝑗)

= 𝐴𝑞𝑧(𝑡𝑘 + 𝑡, 𝑗)/𝑟0𝑟𝑘 = 𝐴𝑞𝜉(𝑡)

= 𝑓𝑞(𝜉(𝑡)).

Alternatively, if 𝑞 has constant flows, then

𝜉(𝑡) =
𝑑

𝑑𝑡

(︂
1

𝑟0𝑟𝑘
𝑧(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

)︂
= 𝑧̇(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

= 𝑓𝑞
(︀
𝑧(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

)︀
.

127

Since 𝑓𝑞 is constant, i.e., 𝑓𝑞(𝑧) = 𝑓*𝑞 for all 𝑧 ∈ R𝑛,

𝑓𝑞
(︀
𝑧(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

)︀
= 𝑓*𝑞 = 𝑓𝑞(𝜉(𝑡)),

so 𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)). In both cases, (6.17b) is satisfied.

We have that 𝜉(𝑡) ∈ 𝐶𝑞 for all 𝑡 ∈ [0, 𝜏], 𝐶𝑞 is a cone, so 𝑧(𝑡, 𝑗) ∈ 𝐶𝑞 for all

𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1], satisfying (6.17c).

Checking the terminal flow arrow condition (6.17d), we find

𝜉(𝜏) =

{︃
𝜉
(︀
𝑡𝑘+1 − 𝑡𝑘

)︀
if 𝑞 has linear flows

𝜉
(︀
(𝑡𝑘+1 − 𝑡𝑘)/𝑟0𝑟𝑘

)︀
if 𝑞 has constant flows

=

{︃
𝑧
(︀
𝑡𝑘 + (𝑡𝑘+1 − 𝑡𝑘), 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has linear flows

𝑧
(︀
𝑡𝑘 + 𝑟0𝑟𝑘 (𝑡𝑘+1 − 𝑡𝑘)/𝑟0𝑟𝑘 , 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has constant flows

= 𝑧
(︀
𝑡𝑘+1, 𝑗

)︀⧸︀
𝑟0𝑟𝑘

= 𝑧
(︀
ℎ𝑘+1

)︀⧸︀
𝑟0𝑟𝑘 . (6.31)

Therefore, (6.17d) holds:

nrv(𝜉(𝜏)) = nrv
(︀
𝑧(ℎ𝑘+1)/𝑟𝑘𝑟0

)︀
= nrv(𝑧(ℎ𝑘+1)) = 𝑠𝑘+1.

Finally, let 𝑟′𝑘+1 := |𝜉(𝜏)| ∈ 𝒲(𝑣𝑘
f−→ 𝑣𝑘+1) and 𝑟𝑘+1 := 𝑟𝑘𝑟

′
𝑘+1𝒲(𝑤𝑘+1). Rewrit-

ing (6.31), we find

|𝑧(ℎ𝑘+1)| = 𝑟0𝑟𝑘|𝜉(𝜏)| = 𝑟0𝑟𝑘𝑟
′
𝑘+1 = 𝑟0𝑟𝑘+1 = 𝑟𝑘+1|𝑧(ℎ0)|.

Therefore, (6.30) holds for all 𝑘 ∈ {1, 2, . . . ,𝐾𝐽}, by induction.

6.5.2 Stability and Asymptotic Stability

By applying Propositions 6.3–6.5, we can use the CTG of ℋ to determine pre-

asymptotic stability of 𝒪. First, in Proposition 6.6, we use the CTG to establish

stability, which we use to establish pre-asymptotic stability in Theorem 6.2.

Proposition 6.6. Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) by a conical hybrid system with modes 𝒬
and conical transition graph 𝒢. Suppose that 𝒪 := 𝒬×{0𝑛} is stable for (𝐶, 𝑓) and

that there exists 𝑀 ≥ 1 such that sup𝒲(𝑤) ≤𝑀 for each walk 𝑤 through 𝒢. Then,
𝒪 is stable for ℋ.

128

Proof. Take any 𝜀 > 0. Since 𝒪 is stable for (𝐶, 𝑓), there exists 𝛿 ∈ (0, 𝜀) such that

for every solution 𝑡 ↦→ 𝜉(𝑡) to (𝐶, 𝑓) with |𝜉(0)| ≤ 𝛿,

|𝜉(𝑡)| ≤ 𝜀 ∀𝑡 ∈ dom(𝜉).

Let 𝜀′ := 𝛿/𝑀 . Then, again by the stability of 0𝑛, there exists 𝛿′ > 0 such that,

for every solution 𝑡 ↦→ 𝜉(𝑡) to (𝐶, 𝑓) with |𝜉(0)| ≤ 𝛿′,

|𝜉(𝑡)| ≤ 𝜀′ ∀𝑡 ∈ dom(𝜉).

Let (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) := (𝑞(𝑗), 𝑧(𝑡, 𝑗)) be any solution to ℋ with |𝑧(0, 0)| ≤ 𝛿′.

Thus, |𝑧(𝑡, 0)| ≤ 𝜀′ for all 𝑡 ∈ [0, 𝑡1], where 𝑡1 is the first jump time in dom(𝜙). In

particular, we will use the fact that

|𝑧(𝑡1, 0)| ≤ 𝜀′.

Since 𝒪 is stable for (𝐶, 𝑓), solutions to ℋ cannot leave 𝒪 by flowing. Furthermore,

from the definition of conical hybrid systems, 𝑔(𝒪) ⊂ 𝒪, so solutions to ℋ cannot

jump away from 𝒪. Therefore, 𝒪 is forward invariant for ℋ.

Let 𝑤 be the 𝒢-simulation of 𝜙 with 𝐾1, 𝐾2, . . ., 𝐾𝐽 and ℎ0, ℎ1, . . ., ℎ𝐾𝐽
defined

as in Definition 6.5, and let 𝑤𝑘 be the truncation of 𝑤 to the first 𝑘 > 0 steps. By

Proposition 6.5, for each jump time 𝑡𝑗 in dom(𝜙), there exists 𝑟𝑗 ∈ 𝒲(𝑤𝐾𝑗) such

that

|𝑧(𝑡𝑗 , 𝑗)| = 𝑟𝐾𝑗 |𝑧(𝑡1, 0)|.

Since the weight of every walk is bounded by 𝑀 and |𝑧(𝑡1, 0)| ≤ 𝜀′,

|𝑧(𝑡𝑗 , 𝑗)| = 𝑟𝐾𝑗 |𝑧(𝑡1, 0)| ≤𝑀𝜀′ = 𝛿.

Thus, every interval of flow [𝑡𝑗 , 𝑡𝑗+1] starts with |𝑧(𝑡𝑗 , 𝑗)| ≤ 𝛿, so |𝑧(𝑡, 𝑗)| ≤ 𝜀 for all

𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. Therefore, 𝒪 is stable for ℋ.

The next theorem is of central importance to this work as it allows one to

establish pre-asymptotic stability using the CTG.

Theorem 6.2. Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid system with modes 𝒬 and

conical transition graph 𝒢 = (𝒱,𝒜,𝒲). Suppose the following:

(P1) For each 𝑞 ∈ 𝒬, the origin 0𝑛 is pre-asymptotically stable for (𝐶𝑞, 𝑓𝑞).

129

(P2) There exists𝑀 > 0 such that every walk 𝑤 through 𝒢 satisfies sup𝒲(𝑤) ≤𝑀 .

(P3) Every well-formed infinite-length walk 𝑤 through 𝒢 satisfies 𝒲(𝑤) = {0}.

Then, the set 𝒪 := 𝒬× {0𝑛} is pAS with respect to ℋ.

Proof. Items (P1) and (P2) satisfy the assumptions of Proposition 6.6, which asserts

that the origin of ℋ is stable. By stability and the radial homogeneity property

of ℋ established in Proposition 6.1, every solution is bounded. Thus, we only need

to show that every complete solution to ℋ converges to 𝒪. As a consequence of

stability, 𝒪 is forward invariant and there does not exist any flow arrows in 𝒢 in the

form (𝑞, 0𝑛) f−→ (𝑞, 𝑠(f)), where 𝑠(f) ̸= 0𝑛.

Let (𝑡, 𝑗) ↦→ 𝜙(𝑡, 𝑗) = (𝑞(𝑗), 𝑧(𝑡, 𝑗)) be any solution to ℋ, let 𝐽 := sup𝑗 dom(𝜙)

and 𝑇 := sup𝑡 dom(𝜙), let 𝑡0 := 0, and for each 𝑗 ∈ {1, 2, . . . , 𝐽}, let 𝑡𝑗 denote the

𝑗th jump time of 𝜙. Showing that 𝜙 converges to 𝒪 is equivalent to showing 𝑧

converges to 0𝑛.

If 𝐽 <∞, then there are no jumps after 𝑡𝐽 , so the function 𝑡 ↦→ 𝜙(𝑡, 𝐽) is a

solution to (𝐶, 𝑓) for all 𝑡 ∈ [𝑡𝐽 , 𝑇). If 𝜙 is complete, then lim𝑡→∞ 𝑧(𝑡, 𝐽) = 0𝑛 due

to (P1).

Suppose, instead, that 𝐽 = ∞. Let 𝑤 be the 𝒢-simulation of 𝜙 with 𝐾1, 𝐾2, . . .,

𝐾𝐽 ; ℎ0, ℎ1, . . . , ℎ𝐾𝐽
; and 𝑤𝑘 defined as in Definition 6.5. Then, by Proposition 6.5,

for each finite 𝑘 ∈ {1, 2, . . . ,𝐾𝐽}, there exists 𝑟𝑘 ∈ 𝒲(𝑤𝑘) such that

|𝑧(ℎ𝑘)| = 𝑟𝑘|𝑧(𝑡1, 0)| ≤ sup𝒲(𝑤𝑘).

Per Proposition 6.3, the CTG-simulation of 𝜙 is a well-formed walk through 𝒢, so
by (P3), we have that 𝒲(𝑤) = {0}. Thus,

lim
𝑘→∞

sup𝒲(𝑤𝑘) = 0 and lim
𝑘→∞

|𝑧(𝑡𝑗 , 𝑗)| = 0.

It remains to be shown that the value of the solution during intervals of flow

between jump times also converges. By assumption, 𝒪 is stable for (𝐶, 𝑓), so the

assumptions of Lemma 6.1 are satisfied. Thus, by Lemma 6.1, we have that

lim
𝑡+𝑗→∞

𝑧(𝑡, 𝑗) = 0𝑛.

Therefore, since every complete solution to ℋ converges to 𝒪, we conclude that 𝒪
is pAS for ℋ.

130

Remark 6.4. If, additionally, qℋ is the conical approximation of a hybrid system

ℋ about 𝑥* ∈ R𝑛, then Theorem 6.1 asserts that 𝑥* is (locally) pre-asymptotically

stable for ℋ.

The assumptions in Theorem 6.2 can be simplified when 𝒢 is finite. When 𝒱
is finite, condition (P3) is satisfied if and only if sup𝒲(𝑤) < 1 for every elementary

cycle 𝑤 in 𝒢. A walk through a graph is called an elementary cycle if it starts and ends

at the same vertex and does not visit any other vertex more than once. To check (P3),

it is necessary to enumerate over all of the elementary cycles. One efficient algorithm

for this purpose is Johnson’s enumeration algorithm [46]. For a CTG with |𝒱| vertices,
|𝒜| arrows, and 𝑐 elementary circuits (not counting cyclic permutations), the worst-

case time complexity of Johnson’s algorithm is 𝑂
(︀
(|𝒱|+ |𝒜|)(𝑐+ 1)

)︀
. Furthermore,

if the weight of each arrow is bounded and 𝒱 is finite, then (P3) implies (P2).

6.6 Abstractions to Reduce the Graph Size

A problem that arises when applying CTG–based analysis is that the set of

vertices 𝒱 is often infinite. In this section, we introduce results that allow for

reducing an infinite CTG into a finite graph while preserving relevant properties

of the graph. Such a reduction is called an abstraction. Previous work has used

abstractions to reduce the infinite state space of timed processes [47] and timed

hybrid automatons [48] into a finite number of states, allowing for algorithmic

analysis.

Our general approach is to cover S𝑛−1
0 with a finite number of sets, which we

use as replacements for individual points as vertices in graphs. Given a set 𝑆, a

cover of 𝑆 is a collection of sets {𝑃 𝑖}𝑖∈ℐ indexed over ℐ ⊂ N such that 𝑃 𝑖 ⊂ 𝑆 for

each 𝑖 ∈ ℐ, and
𝑆 =

⋃︁
𝑖∈ℐ

𝑃 𝑖.

Given a conical hybrid system ℋ := (𝐶, 𝑓,𝐷,𝐺) with modes 𝒬, we consider a cover

of S𝑛−1
0 for each mode. That is, for each 𝑞 ∈ 𝒬, let 𝒫𝑞 := {𝑃 𝑖

𝑞}𝑖∈ℐ𝑞 be a cover

of S𝑛−1
0 with index set ℐ𝑞. We impose that 𝒫𝑞 is a finite collection of sets to allow

for computational tractability, we write index sets in the form ℐ𝑞 := {0, 1, . . . ,𝑚}

131

where 𝑚 ∈ N. For each 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ , let

ℐ⊖
𝑒 :=

{︁
𝑖 ∈ ℐ𝑒

⃒⃒⃒
𝑃 𝑖
𝑞⊖ ∩𝐷𝑒 ̸= ∅

}︁
and ℐ⊕

𝑒 :=
{︁
𝑖 ∈ ℐ𝑒

⃒⃒⃒
𝑃 𝑖
𝑞⊕ ∩ (𝐴𝑒𝐷𝑒) ̸= ∅

}︁
. (6.32)

Thus, 𝑧 ∈ 𝐷𝑒 and 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ ,

∃𝑖⊖ ∈ ℐ⊖
𝑒 : 𝑧 ∈ 𝑃 𝑖⊖

𝑞⊖ and ∃𝑖⊕ ∈ ℐ⊕
𝑒 : 𝐴𝑒𝑧 ∈ 𝑃 𝑖⊕

𝑞⊕ . (6.33)

In other words, for each 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ ,

𝐷𝑒 ⊂
⋃︁

𝑖⊖ ∈ℐ⊖
𝑒

𝑃 𝑖⊖

𝑞⊖ , and 𝐴𝑒𝐷𝑒 ⊂
⋃︁

𝑖⊕ ∈ℐ⊕
𝑒

𝑃 𝑖⊕

𝑞⊕ .

We then define abstract conical transition graphs as follows.

Definition 6.6 (Abstract Conical Transition Graph). Consider a conical hybrid

system ℋ on R𝑛 with modes 𝒬 and conical transition graph 𝒢 = (𝒱,𝒜,𝒲). For

each mode 𝑞 ∈ 𝒬, let 𝒫𝑞 = {𝑃 𝑖
𝑞}𝑖∈ℐ𝑞 be a cover of S𝑛−1

0 and for each 𝑒 ∈ ℰ , let ℐ⊖
𝑒 and

ℐ⊕
𝑒 be defined as in (6.32). The abstract conical transition graph (ACTG) defined

by the partitions 𝒫1,𝒫2, . . . ,𝒫|𝒬| is a directed graph ̃︀𝒢 = (̃︀𝒱, ̃︀𝒜,̃︁𝒲) with set-valued

weights. The vertex set ̃︀𝒱 := 𝒱⊖ ∪ 𝒱⊕ is defined by

𝒱⊖ :=
⋃︁

(𝑞⊖,𝑞⊕)∈ℰ
{𝑞⊖} × ℐ⊖

(𝑞⊖,𝑞⊕) 𝒱⊕ :=
⋃︁

(𝑞⊖,𝑞⊕)∈ℰ
{𝑞⊕} × ℐ⊕

(𝑞⊖,𝑞⊕)
. (6.34)

For each 𝑣⊖ := (𝑞⊖, 𝑖⊖) ∈ 𝒱⊖ and each 𝑣⊕ := (𝑞⊕, 𝑖⊕) ∈ 𝒱⊕, let

𝑒 := (𝑞⊖, 𝑞⊕), 𝑃⊖ := 𝑃 𝑖⊖

𝑞⊖ , and 𝑃⊕ := 𝑃 𝑖⊕

𝑞⊕ .

There is a jump arrow aj := 𝑣⊖ j−→ 𝑣⊕ in ̃︀𝒜 if (𝐴𝑒𝑃
⊖) ∩ 𝑃⊕ is nonempty. The

set-valued weight of aj is

̃︁𝒲(aj) :=
{︀
|𝐴𝑒𝑠

⊖|
⃒⃒
𝑠⊖ ∈ 𝑃⊖}︀. (6.35)

For each 𝑣(0) := (𝑞, 𝑖(0)) ∈ 𝒱⊕ and each 𝑣(f) := (𝑞, 𝑖(f)) ∈ 𝒱⊖, let 𝑃 (0) := 𝑃 𝑖(0)
𝑞 and

𝑃 (f) := 𝑃 𝑖(f)
𝑞 . There is a flow arrow af := (𝑣(0) f−→ 𝑣(f)) in ̃︀𝒜 if for some 𝜏 > 0, there

exists 𝜉 : [0, 𝜏] → R𝑛 such that

𝜉(0) ∈ 𝑃 (0) (6.36a)

𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝜏) (6.36b)

𝜉(𝑡) ∈ 𝐶𝑞 ∀𝑡 ∈ (0, 𝜏) (6.36c)

nrv(𝜉(𝜏)) ∈ 𝑃 (f). (6.36d)

132

The weight of each flow arrow af = (𝑞, 𝑖(0)) f−→ (𝑞, 𝑖(f)) is

𝒲(af) :=
{︀
|𝜉(𝜏)|

⃒⃒
𝜉 : [0, 𝜏] → R𝑛 satisfies (6.36) for some 𝜏 > 0

}︀
. (6.37)

◇
The following result establishes pre-asymptotic stability from ACTG’s, analo-

gously to Theorem 6.2 for CTG’s.

Theorem 6.3. Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid system with modes 𝒬 and

conical transition graph 𝒢 = (𝒱,𝒜,𝒲). For each mode 𝑞 ∈ 𝒬, let 𝒫𝑞 = {𝑃 𝑖
𝑞}𝑖∈ℐ𝑞

be a cover of S𝑛−1
0 with ℐ𝑞 finite, and let ̃︀𝒢 = (̃︀𝒱, ̃︀𝒜,̃︁𝒲) be the abstract conical

transition graph defined by 𝒫1,𝒫2, . . . ,𝒫|𝒬|. Suppose the following:

(R1) For each 𝑞 ∈ 𝒬, the origin 0𝑛 is pre-asymptotically stable for (𝐶𝑞, 𝑓𝑞).

(R2) For each arrow a ∈ ̃︀𝒜, the weight ̃︁𝒲(a) is bounded.

(R3) For each well-formed elementary cycle 𝑤 through ̃︀𝒢,
sup̃︁𝒲(𝑤) < 1.

Then, the set 𝒪 := 𝒬× {0𝑛} is pAS with respect to ℋ.

Proof. The proof proceeds by proving two facts.

Fact 1 There exists 𝑀 > 0 such that for every walk 𝑤̃ through ̃︀𝒢, we have that

sup̃︁𝒲(𝑤̃) ≤𝑀, (6.38)

and if 𝑤̃ is infinite, then ̃︁𝒲(𝑤̃) = {0}.

Fact 2 For every walk 𝑤 := (𝑣0 → 𝑣1 → · · · → 𝑣𝐾) through 𝒢 (for some 𝐾 ∈
{1, 2, . . . ,∞}), there exists a walk 𝑤̃ := (𝑣0 → 𝑣1 → · · · → 𝑣𝐾) through ̃︀𝒢
such that 𝒲(𝑤) ⊂ ̃︁𝒲(𝑤̃).

These two facts, along with (R1), imply assumptions (P1)–(P3) of Theorem 6.2, so

we can apply Theorem 6.2 to conclude 𝒪 is pAS.

To prove Fact 1, let 𝑤̃ be any walk through ̃︀𝒢. Since |̃︀𝒱| is finite, every walk

through ̃︀𝒢 returns to a vertex it has already visited every |̃︀𝒱|+ 1 or fewer steps (or

possibly never, if the length of 𝑤̃ is less than |̃︀𝒱|). As a result, 𝑤̃ must have the

following structure:

133

1. The walk starts with an acyclical portion consisting of between zero and |̃︀𝒱|-
many steps that do not repeat any vertices.

2. The acyclical portion of the walk is followed by any number of cycles (infinitely

many, if 𝑤̃ is infinite).

3. If the walk is finite, it ends with another acyclical portion of between zero and

|̃︀𝒱|-many steps.

Let 𝑤̃0 be the acyclical portion of 𝑤̃ before the first cycle, let 𝑤̃𝑓 be the acyclical

portion of 𝑤̃ after the last cycle, and let 𝑤̃𝑐 be the cyclical part in the middle. Let

𝜇 := sup
{︁
sup̃︁𝒲(a′)

⃒⃒⃒
a′ ∈ ̃︀𝒜}︁.

By (R2), every step in arrow in a′ has a bounded weight, so 𝜇 <∞. Thus,

sup𝒲(𝑤̃0) ≤
(︁
sup̃︁𝒲(𝑣0 → 𝑣1)

)︁(︁
sup̃︁𝒲(𝑣1 → 𝑣2)

)︁
· · · ≤ 𝜇|

̃︀𝒱|.
Similarly, sup𝒲(𝑤̃𝑓) ≤ 𝜇|̃︀𝒱|. For the cyclical portion 𝑤̃𝑐, we have, per (R3), that

sup̃︁𝒲(𝑤̃𝑐) < 1

because each cycle multiplies the weight by a value less than 1. Thus, the weight

of 𝑤̃ must satisfy

sup𝒲(𝑤̃) < 𝑀 := 𝜇2|
̃︀𝒱|,

proving Fact 1.

To show Fact 2, let 𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ . . .
ℓ𝐾−1−−−→ 𝑣𝐾) be any walk through 𝒢 with

𝐾 ∈ {1, 2, . . . ,∞}. Take any 𝑘 ∈ {0, 1, . . . ,𝐾 − 1}. Suppose ℓ𝑘 = j and let

𝑣⊖ := (𝑞⊖, 𝑠⊖) := 𝑣𝑘, 𝑣⊕ := (𝑞⊕, 𝑠⊕) := 𝑣𝑘+1, and 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ .

Per (6.15),

𝑠⊖ ∈ 𝐷𝑒 ∩ S𝑛−1
0 and 𝑠⊕ = nrv(𝐴(𝑞⊖,𝑞⊕)𝑠

⊖) ∈ 𝐴𝑒𝐷𝑒 ∩ S𝑛−1
0 .

Because {𝑃 𝑖⊖

𝑞⊖}𝑖⊖∈ℐ⊖
𝑒

covers 𝐷𝑒, there is some 𝑖⊖ ∈ ℐ⊖
𝑒 such that 𝑠⊖ ∈ 𝑃⊖ := 𝑃 𝑖⊖

𝑞⊖ .

Similarly, for some 𝑖⊕ ∈ ℐ⊕
𝑒 , we have 𝑠⊕ ∈ 𝑃⊕ := 𝑃 𝑖⊕

𝑞⊕ . Since 𝑠
⊕ ∈ 𝐴𝑒𝑃

⊖ ∩ 𝑃⊕, we

have that (𝑞⊖, 𝑖⊖) j−→ (𝑞⊕, 𝑖⊕) is an arrow in ̃︀𝒜. The weight of 𝑣⊖ j−→ 𝑣⊕ is {|𝐴𝑒𝑠
⊖|},

which is a subset of ̃︁𝒲(𝑣⊖ j−→ 𝑣⊕), per (6.35).

134

Alternatively, suppose ℓ𝑘 = f and let

𝑣(0) := (𝑞, 𝑠(0)) := 𝑣𝑘 and 𝑣(f) := (𝑞, 𝑠(f)) := 𝑣𝑘+1.

Take any 𝑟 ∈ 𝒲(𝑣(0) f−→ 𝑣(f)). Per (6.18), there exist 𝜏 > 0 and 𝜉 : [0, 𝜏] → R𝑛 that

satisfy (6.17) such that 𝑟 = |𝜉(𝜏)|. We have that 𝑣(0) ∈ 𝒱 ∩ 𝐺(𝐷), so there exists

𝑞⊖ ∈ 𝒬 such that 𝑒 := (𝑞⊖, 𝑞) ∈ ℰ , and 𝑠⊖ ∈ 𝐷𝑒 such that

𝑠(0) = 𝐴𝑒𝑠
⊖ ∈ 𝐴𝑒𝐷𝑒.

Thus, there exists 𝑖(0) ∈ ℐ⊕
𝑒 such that 𝑠(0) ∈ 𝑃 (0) := 𝑃 𝑖(0)

𝑞 . Similarly, 𝑣(f) ∈ 𝒱 ∩𝐷, so

there exists 𝑞⊕ ∈ 𝒬 such that 𝑒 := (𝑞, 𝑞⊕) ∈ ℰ and

𝑠(f) ∈ 𝐷𝑒.

Thus, there exists 𝑖(f) ∈ ℐ⊖
𝑒 such that 𝑠(f) ∈ 𝑃 (f) := 𝑃 𝑖(f)

𝑞 . We then have that 𝑣(0) :=

(𝑞, 𝑖(0)) ∈ 𝒱⊕ and 𝑣(f) = (𝑞, 𝑖(f)) ∈ 𝒱⊖, and

𝜉(0) = 𝑠(0) ∈ 𝑃 (0) and nrv(𝜉(𝜏))𝑠(f) ∈ 𝑃 (f),

satisfying (6.36). Therefore, 𝑣(0) f−→ 𝑣(f) is an arrow in ̃︀𝒜 and

𝑟 = |𝜉(𝜏)| ∈ ̃︁𝒲(𝑣(0) f−→ 𝑣(f)).

In the manner described above, we construct a walk

𝑤̃ := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ . . . ℓ𝐾−−→ 𝑣𝐾),

and since

𝒲(𝑣𝑘
ℓ𝑘−→ 𝑣𝑘+1) ⊂ ̃︁𝒲(𝑣𝑘

ℓ𝑘−→ 𝑣𝑘+1) ∀𝑘 ∈ {0, 1, . . . ,𝐾 − 1}

we have that

𝒲(𝑤) ⊂ ̃︁𝒲(𝑤̃),

completing the proof of Fact 2.

It follows from Facts 1 and 2 that (P2) and (R3) hold, so by Theorem 6.2, the

set 𝒪 is pAS for ℋ.

135

6.7 Numerical Example

In this section, we present an example where we construct an abstract CTG

for a hybrid system with modes and apply Theorem 6.3 to determine asymptotic

stability of the origin. In particular, we consider a hybrid system ℋ as in (6.6) in

R2 with two modes, 𝒬 := {0, 1}. The system has linear flows maps in each mode

𝑞 ∈ 𝒬 defined by 𝑧̇ = 𝐴𝑞𝑧 where,

𝐴0 =

⎡⎣ 2 2

−3 1

⎤⎦ 𝐴1 =

⎡⎣−1 1

−4 −2

⎤⎦.
The eigenvalues of 𝐴0 and 𝐴1 are complex, resulting in flows that spiral around

the origin, with the flows in mode 𝑞 = 0 spiraling outward and the flows in 𝑞 = 1

spiraling inward. The components of the flow set in each mode are

𝐶0 :=
{︀
(𝑥1, 𝑥2) ∈ R2

⃒⃒
𝑥1 ≤ 0

}︀
and 𝐶1 := R2,

where the choice of 𝐶0 ̸= R2 is important to ensure that the origin is stable for flows

in mode 0, since solutions spiral outward but can only flow for a finite amount of

time before reaching the boundary of 𝐶0.

In each mode, the system can jump within the same mode or jump to the other

mode, so the set of mode transition edges is

ℰ := {(0, 0), (0, 1), (1, 0), (1, 1)}.

The jump map for each transition 𝑒 ∈ ℰ is defined by a linear map 𝑧+ = 𝐴𝑒𝑧, where

𝐴(0,0) =

⎡⎣ 1 1/2

−2 2

⎤⎦, 𝐴(0,1) = 𝛾

⎡⎣1 1

0 1

⎤⎦,
𝐴(1,0) =

⎡⎣1 3

4 2

⎤⎦, 𝐴(1,1) =

⎡⎣0 1

0 −1

⎤⎦,
(6.39)

where 𝛾 > 0 is a parameter we discuss in Section 6.7.1. The jump sets to trigger a

jump along each transition are

𝐷(0,0) := cone
(︀[︀−1

0

]︀
,
[︀−4
−1

]︀)︀
, 𝐷(0,1) := cone

(︀[︀
0
1

]︀
,
[︀−1

2

]︀)︀
,

𝐷(1,0) := cone
(︀[︀−4

−1

]︀
,
[︀−1

0

]︀)︀
, 𝐷(1,1) := cone

(︀[︀
1
0

]︀
,
[︀

4
1

]︀)︀
.

136

Figure 6.5. The system ℋ from Section 6.7 overlaid by an ACTG. Mode 𝑞 = 0
is shown on the left and 𝑞 = 1 is on the right. For each 𝑞 ∈ 𝒬 and 𝑒 ∈ ℰ , the
set 𝐶𝑞 is blue, 𝐷𝑒 is red, and 𝐴𝑒𝐷𝑒 are yellow. Jump arrows are drawn as
red lines and flow arrows are blue.

A plot of the sets in ℋ is shown in Figure 6.5, overlaid with the arrows of the conical

transition graph.

The conical partition 𝒫0 and 𝒫1 are constructed using a method similarly to the

authors of [35], with additional partitions added as needed so that each boundary of

𝐶𝑞, 𝐷𝑒, and 𝐴𝑒𝐷𝑒 align with the boundaries of cones in the partition. As a result,

every cone in the partition is either entirely inside or entirely outside 𝐶𝑞, 𝐷𝑒, and

𝐴𝑒𝐷𝑒, respectively.

The construction of flow arrows requires determining reachability from each cone

in 𝐺(𝐷) to each cone in 𝐷 via flows in 𝐶. In each cone of the conical partition, we

find the adjacent cones (those that share a boundary), and determine the direction of

flow through the boundary. In R2, all convex cones are polyhedral, which we exploit

in our implementation. The find the full set of reachable points reachability analysis,

we over approximate the reachable set within a cone 𝐾 from a polyhedron set of

137

initial positions 𝑃0 ⊂ 𝐾 for flows along 𝑧̇ = 𝐴𝑞𝑧 using the fact that 𝐴𝑞𝑧 ∈ 𝐴𝑞𝐾 for

all 𝑥 ∈ 𝐾. Thus, the reachable set from 𝑃0 in 𝐾 is given by (𝑃0 + 𝐴𝑞𝐾) ∩𝐾. By

picking 𝑃0 ⊃ S𝑛, we can over approximate the change in magnitude of a solution as

it flows through a cone, allowing us to construct the weights of flow arrows. The

code for this example is available at github.com/pwintz/conical-transition-graph.

6.7.1 Results

In Figure 6.6, we present the maximum and minimum weights for cycles through

the ACTG for various choices of 𝛾 > 0, used to define 𝐴(0,1) in (6.39). We see that for

small values of 𝛾, the maximum weight is less than 1, satisfying (R3) in Theorem 6.3.

Furthermore, (R1) and (R2) can also be shown to hold. Therefore, by Theorem 6.3,

the set 𝒬 × {0𝑛} is pAS for ℋ. Increasing 𝛾 above 𝛾 ≈ 10−1, however, causes

the maximum cycle weight to become greater than 1, so Theorem 6.3 no longer

applies. Note, however, that this is insufficient to conclude that the system becomes

unstable—the test is indeterminate and the actual value of 𝛾 where instability occurs

is likely larger. Over approximations used in the construction of the ACTG cause

the maximum walk weight to be inflated. Examining Figure 6.6, we see that the

effect of modifying 𝛾 becomes saturated. As 𝛾 increases, the minimum cycle weight

increases up to a point. After 𝛾 = 100, increasing 𝛾 has no effect on the minimum

cycle weight. The cause of this is the presence of cycles in the graph that don’t pass

through the transition that depends on 𝛾. Similarly, as 𝛾 decreases toward zero, the

maximum cycle weight also saturates, as the cycle with the largest cycle becomes

one with no dependence on 𝛾.

6.8 Future Work

There are several avenues for future work on conical transition graphs. There

are some promising directions for expanding the generality of the proposed approach.

One could relax assumptions on the system to allow for more general types of

dynamics, such as allowing for higher order homogenous systems. In particular, the

approach is agnostic to how quickly the magnitude of the flow map grows along each

ray, so long as all the flows along each ray points in the same direction. In fact, that

requirement could also be relaxed to allow for systems with moderate nonlinearities

138

https://github.com/pwintz/conical-transition-graph

Figure 6.6. Maximum and minimum weights of cycles in the ACTG of the hybrid
system ℋ described in Section 6.7 for various values of 𝛾.

in the direction of flow. We are also interested in extending the CTG approach to

include a broader class of hybrid systems, in particular hybrid systems with set-

valued flow and jump maps as in [24, Thm. 3.16]. By extending the approach to

allow for set-valued dynamics, could over approximate nonlinear vector field as a

set-valued map that contains all the flow directions along a particular ray from the

origin, or within some cone.

139

Chapter 7

Simulator for Hardware Architecture

and Real-time Control (SHARC)

One use case for the uniting feedback schemes presented in Chapters 2 and 3

and Section 4.2 is to safely exploit advanced controllers that cannot be certified

due to unpredictable computational delays. By utilizing uniting feedback, one

can provide a fast, certified controller as a backup in case the advanced controller

fails due to computational delays. For safety critical applications, however, one

may wish to verify that the uniting feedback scheme will work as expected when

deployed on a physical system with computational delays. In many cases, deploying

on the real system, however, is expensive and risky, so it is preferable to perform

initial verification in simulations. In this chapter, we present the Simulator for

Hardware Architecture and Real-time Control (Sharc). We designed Sharc to

accurately co-simulate computational hardware and physical dynamics, incorporating

computational delays into control updates [49].

7.1 Introduction

Cyber-physical systems (CPSs) are engineered systems that incorporate digital

sensors, computers, and actuators interacting with physical processes. CPSs are

ubiquitous in modern critical infrastructure such as transportation systems, energy

delivery, and health care. Typically, a CPS has strong coupling between its compu-

tational hardware, physics, and control algorithms. CPU designers, however, usually

optimize for generic instruction sets—not for a specific algorithm—whereas control

designers typically do not design their algorithms for a particular hardware architec-

140

ture. Many properties of the physical system, including stability, safety, and liveness,

are affected by the latency of computing the next control input. The computational

delay depends on the underlying computational hardware on which the control algo-

rithm is run. Thus, to develop CPSs that satisfy demanding design specifications,

engineers must jointly consider the computing power and control methods. To ad-

dress this challenge, this chapter introduces a tool called the Simulator for Hardware

Architecture and Real-time Control (Sharc) that simulates the physical evolution

of a CPS and the execution of control algorithms on different computing platforms

to incorporate realistic controller delays in the closed-loop simulation. The ability

to incorporate accurate computation delays into simulations allows system designers

to gain a better understanding of how computational limitations affect the behavior

of the system, thereby informing better designs.

To allow for quick and easy installation of Sharc, a Dockerized version of

Sharc is provided. To aid in the development of Sharc and implementation of

controllers and dynamics using Sharc, the project is configured to support running

Docker images in a Dev-container. A suite of unit tests is included in the Sharc to

verify Sharc’s internal logic.

7.1.1 Problem Setting

Creating tools to analyze CPSs is challenging due to the interactions between

computational hardware, physics, and control software. There has been a trend

toward consolidating control software components onto shared multicore processors

to reduce size, weight, and power while improving performance. The adoption

of multicore hardware in practical CPSs, including automotive [50], avionics [51],

and medical systems [52], brings many benefits but also introduces a new host of

challenges for modeling and analysis. In a multicore processor, some resources, such

as the caches, memory bus, and random access memory (RAM), are shared between

cores, which affects the timing of the control software in complex ways, making the

timing difficult to model and predict.

Beyond traditional CPUs, specialized computing hardware is becoming preva-

lent in CPSs, including highly-parallelized processors (GPUs), configurable hardware

(e.g., field programmable gate arrays, or FPGAs), and domain-specific accelerators

(such as chips designed for self-driving autonomous driving). These components are

141

critical for the unique demands of real-time machine learning, computer vision, and

other applications. On the other hand, control software is also becoming increasingly

complex, with diverse and rapidly changing resource requirements and performance

goals [53]. Computation-aware control algorithms require detailed information about

the performance of the computational hardware via strong performance monitor-

ing capabilities in order to understand how to safely and effectively optimize the

hardware and control algorithms.

Creating tools that can assess and simulate complicated interactions between

hardware and software is critical for automotive, avionics, and other domains in

which computationally-intensive processes play a significant role at runtime. In

particular, it is important to ensure that advanced control algorithms can run on

the available computing hardware with high confidence. For example, automotive

Original Equipment Manufacturers need to evaluate whether updated software for

advanced controllers or perception algorithms can be safely deployed on vehicle

models of the previous year. To ensure that advanced control algorithms can run

on unsophisticated computing hardware, regression analysis of candidate controllers

should be concurrently tested in situ for deployed systems. Some algorithms for

achieving robust autonomy, such as model predictive control (MPC), have limited

deployment due to insufficient computing power. By using Sharc, however, to

simulate, analyze, and optimize controllers and hardware platforms, engineers can

design solutions that improve the use of onboard energy and computational sources,

allowing cheaper and more efficient implementations of advanced control schemes.

7.1.2 Literature Review

Prior research has investigated quantifying the computational demands of var-

ious control algorithms and mitigating the effects of computational delays. The

authors of [54], [55], [56], [57], [58] investigate the effects of the worst-case execution

time on the performance of several control algorithms, including linear quadratic

control (LQR), model predictive control (MPC), and state-dependent Riccati equa-

tion (SDRE) nonlinear control. In particular, linear and nonlinear MPC schemes

that preserve stability and performance under computational delays are presented

in [59], [60] with a brief introduction given in [59, Section 7.6]. However, none of

these schemes provides a tool or methodology that explicitly accounts for the effects

142

of many kinds of computational hardware, including hardware that has not yet been

fabricated. In contrast to these works, Sharc is able to analyze the effects of diverse

microarchitectures—including hypothetical configurations—on the performance of

the closed-loop system. This allows the user to conduct both microarchitecture

design exploration and control design optimization.

CPU manufacturers and computer architecture researchers rely on microarch-

itectural simulation to explore the hardware design space, prototype new hardware

ideas, and evaluate application performance on hypothetical hardware. Microarch-

itecture simulators model the internal hardware architecture of CPUs, including

branch predictors, instruction fetch and decode units, functional units, instruction

schedulers, and memory subsystems with multiple levels of caches. Some noteworthy

microarchitecture simulators are gem5 [61], ChampSim [62], ZSim [63], MARS [64],

and Sniper [65]. While these simulators enable accurate application simulation and

performance modeling, they are not designed to simulate controllers interacting in a

closed-loop with a physical system. In particular, they cannot be directly integrated

into a model where the controller interacts with a physics simulation since micro-

architecture simulators do not incorporate methods for synchronizing the passage of

time in dynamical simulations with the execution of the controller code inside the

microarchitecture simulator.

Prior works have proposed tools for testing control algorithms interacting

with physical systems via co-simulations and via hardware-in-the-loop (HIL). Co-

simulation tools [66], [67] provide simulations of the CPU capable of modeling

hardware events such as interrupts, but they do not provide a cycle-accurate timing

simulation, which is necessary to ensure the safe and reliable operation of control

algorithms under computational constraints. Hardware-in-the-loop simulation inte-

grates real-time hardware into a simulated environment, enabling realistic validation

of control algorithms. The system’s physics are simulated on a real-time platform,

interacting in a closed loop with actual hardware, such as an embedded controller.

HIL is widely used in automotive and aerospace applications to evaluate controllers

for autonomous vehicles, flight control systems, and industrial automation, ensuring

robust performance before deployment [68], [69]. However, traditional HIL setups

rely on fixed hardware, limiting flexibility in exploring different architectures or

optimizing control algorithms under varying constraints. Sharc overcomes these

143

limitations by using a reconfigurable cycle-accurate microarchitectural simulator in

a closed-loop with a simulation of the system’s physics.

The remainder of the paper is structured as follows. Section 7.2 introduces the

modeling framework for the physics and the computational hardware, as used by

Sharc. Section 7.3 describes the implementation and basic usage of the simulator,

with a serial execution mode described in Section 7.3.1 and a parallel mode described

in Section 7.3.2. Two examples are presented in Section 7.4. In particular, section

Section 7.4.1 contains an example of adaptive cruise control for longitudinal vehicle

control via linear MPC. Section 7.5 describes a number of future research directions

and gives conclusions.

7.2 Modeling

In this section, we introduce our modeling framework for the physics, controller,

and computational hardware of a CPS, and their interconnection.

7.2.1 Physics and Controller

A physical system controlled by a controller is often called a plant. The physics

of a plant are typically modeled as a differential equation, which we write as

𝑥̇ = 𝑓(𝑡, 𝑥, 𝑢, 𝑤), (7.1a)

𝑦 = ℎ(𝑥, 𝑢, 𝑤). (7.1b)

The plant has state 𝑥 ∈ R𝑛𝑥 , control input 𝑢 ∈ R𝑛𝑢 , output 𝑦 ∈ R𝑛𝑦 , and a dis-

turbance 𝑤 ∈ R𝑛𝑤 . The disturbance (or exogenous input) is given as a function

𝑡 ↦→ 𝑤(𝑡) ∈ R𝑛𝑤 for all 𝑡 ≥ 0. Although physical systems are nicely represented—

mathematically—by differential equations, most methods for numerically simulating

continuous-time systems use discretization. In Sharc, we use a discrete model on

an evenly-spaced time grid with period 𝑇 > 0, defined by 𝑡𝑘 := 𝑘𝑇 for each 𝑘 ∈ N.

We write the discrete dynamics of the plant as

𝑥𝑘+1 = 𝑓(𝑡𝑘, 𝑥𝑘, 𝑢𝑘, 𝑤(𝑡𝑘)), (7.2)

where 𝑓 is a discretization of the physics with sample time 𝑇 , and 𝑥𝑘 := 𝑥(𝑡𝑘),

𝑢𝑘 := 𝑢(𝑡𝑘), and 𝑦𝑘 := 𝑦(𝑡𝑘) for each 𝑘. Figure 7.1 illustrates the discretization of

the continuous-time physics in (7.1).

144

Discretized Physics Model:

Continuous-time

Model of Physics MeasurementsZero-Order Hold

Figure 7.1. Diagram showing how a continuous-time physics model in the
form (7.1) is discretized into form (7.2).

The control input 𝑢 is generated by a control algorithm that evaluates a control

function (𝑡, 𝑦) ↦→ 𝑔(𝑡, 𝑦) ∈ R𝑛𝑢 . We assume that control values can only change at

sample times. When discretizing (7.1), as shown in Figure 7.1, Sharc interpolates

the input between consecutive time steps 𝑡𝑘 and 𝑡𝑘+1 using zero-order hold. In

particular, 𝑢(𝑡) = 𝑢𝑘 for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑢𝑘 is the value of the control

input received from the controller at 𝑡𝑘. The output 𝑦𝑘 represents periodic sensor

measurements.

Sharc users can implement the physics in two ways. If they are starting with a

continuous-time system, they can provide 𝑓 to have Sharc automatically generate

and evaluate the discretization 𝑓 via numerical integration. Alternatively, users can

provide 𝑓 directly if they wish to implement other types of physical models, such as

hybrid systems or stochastic differential equations.

7.2.2 Interaction between Physics and Controller with Computa-

tion Delays

In an idealized system, the controller 𝑔 immediately provides the next control

value 𝑔(𝑡𝑘, 𝑦𝑘) at time 𝑡𝑘. In realistic systems, however, computing the control update

takes time, so the new control value is not available until after some computation

delay 𝜏𝑘 > 0. To capture the delay, we execute the controller code to calculate

𝑔(𝑡𝑘, 𝑦𝑘) and store the “pending” control value in a memory variable 𝑢̃𝑘+1 := 𝑔(𝑡𝑘, 𝑦𝑘)

until the next sample time after 𝑡𝑘+1 := 𝑡𝑘 + 𝜏𝑘. To determine the computation

delay 𝜏𝑘, Sharc simulates the execution of the controller code on a given processor

using a cycle-accurate microarchitectural simulator, as described in Section 7.2.3.

The system continues to use 𝑢 = 𝑢𝑘 until the next sample time after 𝑡𝑘, at which point

145

Figure 7.2. A feedback diagram of the closed-loop model of the physics with
a controller that has computational delays. After a control computation is
started but before its computation time has elapsed in the simulation, it is
stored as 𝑢̃𝑘. The values of 𝑢 and 𝑢̃ are held constant until the computation
is finished.

we set 𝑢 = 𝑢̃𝑘. Figure 7.2 shows the feedback diagram for the closed-loop system

using the discrete system physics model in (7.3) interconnected with a controller

that exhibits computational delays.

Thus, the model used by Sharc for the closed-loop dynamics of a CPS’s con-

trolled by a computationally delayed controller is

𝑥𝑘+1 = 𝑓
(︀
𝑡𝑘, 𝑥𝑘, 𝑢𝑘, 𝑤(𝑡𝑘)

)︀
(7.3a)

𝑦𝑘 = ℎ
(︀
𝑥𝑘, 𝑢𝑘, 𝑤(𝑡𝑘)

)︀
(7.3b)

If 𝑡𝑘+1 < 𝑡𝑘,
(Computation
in progress)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑘+1 = 𝑢𝑘

𝑢̃𝑘+1 = 𝑢̃𝑘

𝑡𝑘+1 = 𝑡𝑘

(7.3c)

If 𝑡𝑘+1 ≥ 𝑡𝑘,
(Computation

finished)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑘+1 = 𝑢̃𝑘

𝑢̃𝑘+1 = 𝑔(𝑡𝑘, 𝑦𝑘)

𝑡𝑘+1 = 𝑡𝑘 + 𝜏𝑘 for computing 𝑔(𝑡𝑘, 𝑦𝑘),

(7.3d)

where the initial state 𝑥0 ∈ R𝑛𝑥 and initial control value 𝑢0 ∈ R𝑛𝑢 are given, the

initial pending control value is 𝑢̃0 = 𝑔(𝑡0, 𝑦0), and 𝑡0 := 𝜏0 is the time required

to execute 𝑔(𝑡0, 𝑦0). In (7.3c), the memory variable 𝑢̃ and the end time 𝑡 of the

computation are held constant while the computation is in progress. When the

computation finishes, 𝑢 is set to 𝑢̃. Then 𝑢̃ and 𝑡 are updated to record a new

execution of the calculation of 𝑔(𝑡𝑘, 𝑦𝑘).

146

7.2.3 Computational Hardware Simulation

In this section we introduce how we model and simulate the computational

hardware. To calculate the computational delay of a given controller, we use a

microarchitectural simulator. Existing microarchitectural simulators can execute

accurate simulations of arbitrary computer programs on a given hardware platform.

We will discuss in Section 7.3 how Sharc jointly simulates the hardware execution

of a control algorithm and the physics of a system. In Sharc, the Scarab Microarch-

itectural Simulator [70], [71] is used to perform hardware simulation. To simulate the

execution time of a control algorithm, Scarab processes either compiled x86 binaries

or traces of x86 assembly instructions. The microarchitectural simulator is agnostic

to the programming language because it consumes compiled assembly code.

Although it is possible to measure application execution times on a physical

processor, simulating the controller executable with Scarab provides the following

advantages:

1. Scarab allows for arbitrary modification of hardware parameters, such as the

cache size, clock frequency, and the depth and width of the CPU pipeline, to

allow for analysis of hypothetical computing platforms without necessitating

fabrication. Thus, by using Scarab with Sharc, we can prototype new hard-

ware components and measure the resulting changes in a system’s dynamical

performance.

2. Scarab produces detailed statistics, making the internal hardware state observ-

able and thereby allowing for better performance analysis. This is in contrast

to physical CPUs, which only provide limited visibility through existing per-

formance monitoring unit (PMU) counters.

All these aspects are crucial for enabling optimal hardware-software co-design of

control systems.

The simulation of control algorithms in Scarab provides high precision and

fidelity because Scarab models both the architectural and microarchitectural states

of the CPU at the level of individual clock cycles. The architectural state includes all

registers, program counters (PC), and the memory of the processor as specified by the

instruction set architecture (ISA). The microarchitectural state comprises the tables

147

Figure 7.3. Scarab’s Architecture. Modern CPUs are comprised of the Frontend,
responsible for predicting future executed instructions (Branch Predictor),
buffering their instruction address (FTQ), fetching them from the instruction
cache (Fetch), and decoding their arithmetic operation (Decoder). Decoded
instructions are then forwarded to the Backend, which contains the instruction
schedulers (Reservation Stations) selecting ready instructions to be processed
by the functional units (Units 1 through N).

and internal meta-data utilized by the branch predictor [72], prefetchers, and cache

replacement mechanisms. In a microarchitectural simulator, each simulated assembly

instruction moves through a pipeline of various stages during its lifetime, including

the fetch, decode, execution, and retirement stages. At each stage, the instruction

triggers events along its path. Modern CPUs implement instruction pipelines that

are deep and wide, meaning that there can be hundreds of instructions in the pipeline

at the same time, each one triggering events in every cycle. The full pipeline of

instruction processing is accurately modeled by Scarab.

Furthermore, the modern CPU architecture, as emulated by the Scarab sim-

ulator, follows an out-of-order CPU design that can be divided into two parts, as

shown in Figure 7.3. The front-end identifies the next instructions to be fetched

from main memory, stores them into the fetch target queue (FTC) and instruction

cache, and decodes them. The front end is also responsible for handling control-flow

instructions, such as jumps and branches, utilizing a TAgged GEometric (TAGE)

history length branch predictor [72], branch target buffer (BTB), and return address

stack (RAS) predictor.

148

The back-end consumes the stream of instructions provided by the front-end and

executes them through different functional units based on the instruction type (e.g.,

loads, stores, Arithmetic Logic Unit (ALU), vector instruction queues) acting as

reservation stations [73]. The instruction scheduler picks instructions as soon as they

are ready (all source operands are available) and forwards them to the appropriate

functional units. The execution stage also detects mispredicted branch instructions

to trigger pipeline flushes ensuring correct execution. To emulate, serve, load, and

store instructions, the simulator models three cache levels and implements a detailed

Dynamic Random Access Memory (DRAM) model utilizing Ramulator [74].

The Scarab simulator provides observability of over a thousand low-level events,

including the number of executed CPU cycles, mispredicted control-flow instructions,

data and instruction cache misses, and a tally of the number of cycles each functional

unit is busy. Analyzing these statistics reveals which CPU components limit the per-

formance of a particular program and thereby provides insights into how to improve

the hardware architecture or software implementation. Scarab features two simulator

frontends: an execution-driven and a trace-based approach. We utilize trace-based

simulation to supply instructions to the CPU pipeline. The traces, captured using

DynamoRIO [75], preserve a precise continuous sequence of dynamically executed

instructions including memory addresses for load and store operations. DynamoRIO

is a runtime code manipulation system that enables dynamic analysis, profiling,

and optimization by allowing arbitrary modifications to application instructions on

various architectures and operating systems.

7.3 SHARC Simulator

In Sharc, the microarchitectural simulator is executed in parallel with a simu-

lation of the physics. Figure 7.4 illustrates how Sharc simulates the physics and the

control algorithm in parallel. The simulation of the physics is executed through a

user-provided implementation of a Python interface, which may call external physics

simulators. For each simulation experiment, one or more subprocesses are started

by Sharc to simulate a controller executable with the microarchitectural simulator.

The particular dynamics of a system are defined by writing a subclass of a Python

class named Dynamics, provided by Sharc. Pseudocode for MyDynamics subclass

149

of Dynamics is shown here:

class MyDynamics(Dynamics):
def evolve_state(self, t0, x0, u, tf):
Evolve the state from t0 to tf given
initial state x0 and control input u.
return xf # Final state of the system at tf.

def get_output(self, x, u, w):
return y # Generate output

def get_exogenous_input(self, t):
return w # Generate exogenous input

Similarly, a controller is defined in C++ by writing a subclass of a C++ class

provided with Sharc named Controller. Pseudocode for a MyController subclass

of Controller is as follows:

class MyController : public Controller {
void calculateControl(int k, double t, const Vec &y){

// Evaluate u = g(t, y) and set the
// object’s ’control’ property to the result.
control = u;

}
};

The code in the calculateControl function is simulated by Scarab to determine

the computational delay of computing 𝑔(𝑡, 𝑦). A noteworthy feature of Sharc’s

design is that the same controller code can be used by Sharc as would be deployed

on an actual cyber-physical system.

7.3.1 Serial Mode

The Sharc simulator supports two modes. While the serial mode is optimized

for maximum accuracy, the parallelized mode minimizes simulation time through

parallel processing. We will describe the serial mode in the following and refer

to Section 7.3.2 for a detailed description of the parallel mode. When running in

serial mode, Sharc executes the controller in a single subprocess that runs for

the entire duration of the simulation.1 The controller subprocess simulates the

controller with Scarab using an “execution-driven” mode, which allows for statistics,

such as CPU cycle counts, to be accessed during the execution of the simulation,

as opposed to having to wait until the simulation completes. At each time step,

1Here, “serial” vs. “parallel” mode refers only to whether one time step or many are computed

concurrently. In the serial mode, parallelization is used to run controller and physics concurrently.

150

Figure 7.4. Diagram of the Sharc simulator structure. The physics simulator
and hardware simulators run in separate processes, with inter-process com-
munication done via named pipe files.

Sharc sends the current time step 𝑘, the current time 𝑡𝑘 and output 𝑦𝑘 to the

controller. The exogenous input 𝑤 is generated at each time 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] using

the get exogenous input function. Once the values are received by the controller,

Scarab begins recording statistics while the control value is computed, at which

point the statistics are saved, and the control value 𝑢 is sent back to the Python

process running the physics simulator. The inter-process communication between

the dynamics simulator and the controller is accomplished using named pipe files.

After 𝑢 is received by the physics simulator, Sharc reads the computation statistics

from Scarab, which it uses to determine the computation time 𝜏 for computing 𝑢.

7.3.2 Parallel Mode

For computationally intensive control algorithms, running simulations in serial

mode can take a long time. Due to simulating the microarchitectural components of

a CPU, the time to simulate a controller algorithm with Scarab can be over 10,000

times longer than computing the same algorithm on physical hardware. To address

this challenge, we developed a method to improve simulation times through parallel

execution.

Recall that the discretized physics are assumed to use a periodic time grid

𝑡0 := 0, 𝑡1 := 𝑇 , 𝑡2 := 2𝑇 , . . ., with both the sensor measurements and control inputs

discretized at a constant sampling rate of 𝑇 . This allows Sharc to parallelize

simulations across time steps. Figure 7.5 provides an overview of the parallelized

151

Figure 7.5. Diagram of Sharc’s parallel mode using a simulation horizon of
𝐾 time steps parallelized across 𝑐 processors. Each column is executed in
parallel. In this diagram, full-state feedback 𝑦𝑘 = 𝑥𝑘 is used, for simplicity.

approach, where full-state feedback is used for simplicity (𝑦𝑘 = 𝑥𝑘). Each column of

Steps 2 and 3 are executed in parallel.

The simulation takes the initial state value 𝑥0 ∈ R𝑛𝑥 and initial control value

𝑢0 ∈ R𝑛𝑢 (which is to be applied until the first control update is finished) and

runs over a time horizon 𝐾 ∈ N. It is divided into batches each containing 𝑐-many

time steps, where 𝑐 is typically the number of processors available. During Step 1,

the simulator assumes that each control update 𝑢𝑘+1 can be computed within one

sample time (𝜏𝑘 < 𝑇) and thus always updates the control at the next time step.

The resulting sequence 𝑥𝑘0 , 𝑥𝑘0+1, . . ., 𝑥𝑘0+𝑐 is an initial guess of the trajectory that

the system would take if every control update is computed within one sample time

(𝜏𝑘 < 𝑇). Since Step 1 assumes no delays in computing the control inputs, Scarab is

not used to record computation times, so this step is executed very quickly.

In Steps 2 and 3, Sharc backtracks to check whether the computational delay

of updating the control at each time step is actually less than 𝑇 . In particular,

Sharc creates 𝑐-many processes—one for each time step in the batch. Each process

is assigned a unique 𝑡𝑘 ∈ {𝑡𝑘0 , 𝑡𝑘0+1, . . . , 𝑡𝑘0+𝑐−1}. Using the precomputed value 𝑥𝑘

and 𝑢𝑘, the simulator recomputes the control update 𝑢𝑘+1 = 𝑔(𝑡𝑘, 𝑦𝑘), but this time

Sharc runs the controller executable with DynamoRIO to generate a trace of its

execution (Step 2) which is then simulated using Scarab to generate the computation

time 𝜏𝑘 (Step 3).

In Step 4, Sharc searches for the first time step 𝑘𝑓 where the computation

152

time 𝜏𝑘𝑓 exceeds 𝑇 . If such a time step is found, then any subsequent time steps

(𝑘 > 𝑘𝑓) are invalid because the states were generated using control values that were

applied (in the simulation) before the controller could compute them. If all of the

control updates took less than the sample time (𝜏𝑘 < 𝑇), then 𝑘𝑓 is defined as the

last sample in the batch (𝑘𝑓 := 𝑘0 + 𝑐) or the simulation (𝑘𝑓 := 𝐾), whichever is

first.2

In Step 5, Sharc checks whether there was a missed computation (𝜏𝑘𝑓 > 𝑇),

revises the simulation trajectory accordingly, and then continues to the next batch.

If 𝜏𝑘𝑓 ≤ 𝑇 , then controller has computed each update within the sample time, so the

simulation either moves to the next batch with 𝑘0 = 𝑘𝑓 +1 (if 𝑘𝑓 < 𝐾) or terminates

(if 𝑘𝑓 = 𝐾). On the other hand, if 𝜏𝑘𝑓 > 𝑇 , then the control computation that was

started at 𝑡𝑘𝑓 will not be available at 𝑡𝑘𝑓+1, violating the assumption in Step 1. Thus,

Sharc must recompute the system’s trajectory starting from 𝑥𝑘𝑓 using 𝑢 = 𝑢𝑘𝑓

until the control update finishes. As in Section 7.2.1, let 𝑡𝑘𝑓 := 𝑡𝑘𝑓 + 𝜏𝑘𝑓 (which

typically is not a sample time) and let 𝜅̃ be the smallest integer such that 𝑡𝑘𝑓 ≤ 𝜅̃𝑇 .

In other words, 𝜅̃𝑇 is the first sample time after the computation that started at 𝑡𝑘𝑓

finishes. We recompute the portion of the trajectory computed in Step 1 from 𝑘𝑓 to

𝜅̃ according to (7.3a) with 𝑢𝑘 = 𝑢𝑘𝑓 held constant:

𝑥𝑘+1 = 𝑓
(︀
𝑡𝑘, 𝑥𝑘, 𝑢𝑘𝑓 , 𝑤(𝑡𝑘)

)︀
∀𝑘 ∈ {𝑘𝑓 , 𝑘𝑓 + 1, . . . , 𝜅̃− 1}.

Then, the simulation moves to the next batch, using 𝑘0 := 𝜅̃ or terminates (if 𝜅̃ ≥ 𝐾).

The simulation from 𝑘𝑓 to 𝜅̃ does not require using Scarab since we already know

the end time of the pending computation, so it can be computed quickly without

parallelization. At 𝜅̃, however, the controller will start computing a new control

value, so Sharc starts a new batch of parallelization.

Due to the large slowdown incurred by using Scarab, parallelization is impor-

tant for simulating computationally intensive control algorithms, but parallelization

somewhat reduces the fidelity of the simulation. In particular, the parallelized mode

is somewhat less accurate in determining computation times because running each

time step in a separate process prevents the simulator from accounting for some

sequential computational effects between time steps, such as memory caching. In

contrast, running Sharc in serial mode allows transient memory effects to persist

2In practice, Sharc truncates any batches that would extend past 𝐾.

153

between time steps. The results, however, of Section 7.4.1, below, show that there is

only a small difference between the delays calculated by the parallelized and serial

modes. Given the large reduction in simulation durations, the trade-off between

accuracy and speed often justifies the use of the parallelized mode.

Parallelization is useful for mitigating the 10,000× slowdown incurred by simulat-

ing the controller with Scarab. The speedup in the parallelized approach, compared

to the serial mode comes from Steps 2 and 3 in Figure 7.5. To quantify the possible

improvements gained by parallelizing, Theorem 7.1 describes how much simulation

time is reduced by using the parallel approach instead of the serial approach. In

particular, it examines how much time it takes to compute 𝑁 many jobs parallelized

across 𝑐 many CPU cores. In this case, each job corresponds to running Scarab once

to determine the computation time of a control input at a particular time step.

Theorem 7.1. Consider a computational system managing 𝑁 jobs, each requiring

a fixed amount of time—defined as one unit of time—to execute on a single CPU

core. The system employs 𝑐 CPU cores for parallelization where 𝑐 ≤ 𝑁 . Assume

that the probability of failure for each job is i.i.d. with probability 𝑝 and that the

system restarts from the job index 𝑘+ 1 after each failure at job index 𝑘. Then, the

average time 𝑇 to complete all the jobs is

𝑇 (𝑐, 𝑝) =
𝑁𝑝

1− (1− 𝑝)𝑐
. (7.4)

Proof. The computational process described herein constitutes a Bernoulli process

as it consists of a sequence of independent binary random variables representing job

success or failure. To analyze this, we calculate the average number of completed

jobs, denoted as 𝐾̄, for each parallel task. A closed-form expression for 𝐾̄ is derived

as follows:

𝐾̄ =

𝑐−1∑︁
𝑖=0

(𝑖+ 1) · Pr{𝐾 = 𝑖}+ 𝑐 · Pr{𝐾 = 𝑐},

= 𝑝 ·
𝑐−1∑︁
𝑖=0

(𝑖+ 1) · (1− 𝑝)𝑖 + 𝑐 · (1− 𝑝)𝑐 =
1− (1− 𝑝)𝑐

𝑝
.

(7.5)

This result leads to the expression for the average time to complete all 𝑁 jobs:

𝑇 (𝑐, 𝑝) =
𝑁

𝐾̄
=

𝑁𝑝

1− (1− 𝑝)𝑐
. (7.6)

154

Note that 𝑇 (1, 𝑝) = 𝑁 , reflecting the case when all jobs are processed sequen-

tially, and lim𝑝→0 𝑇 (𝑁, 𝑝) = 1, aligning with the expectation that in the absence of

failures, the system completes all jobs in unit time. The parallelization gain, which

is the speedup factor for running 𝑁 jobs in parallel on 𝑐 cores instead of running 𝑁

jobs sequentially on one core, is

𝛿(𝑐, 𝑝) ≜
𝑇 (1, 𝑝)

𝑇 (𝑐, 𝑝)
=

𝑁(︁
𝑁𝑝

1−(1−𝑝)𝑐

)︁ =
1− (1− 𝑝)𝑐

𝑝
. (7.7)

Thus, when using 𝑐 cores, the parallel approach is faster than the serial approach by

a factor of (1− (1− 𝑝)𝑐)/𝑝 . In the ideal case with unlimited tasks and unlimited

computational resources, lim𝑐→∞ 𝛿(𝑐, 𝑝) = 1/𝑝 . Therefore, when using Sharc’s

parallel mode to simulate a system that has a uniform probability 𝑝 at each time

step of the control delay 𝜏 being larger than 𝑇 , the expected parallelization speedup

is never better than 1/𝑝, regardless of how many CPUs are used to parallelize the

simulation.

7.4 Numerical Experiments

In this section, we present two examples of the Sharc simulator applied to

systems using a model predictive controller (MPC). In Section 7.4.1, MPC is used

for adaptive cruise control of a vehicle on a roadway. The resulting MPC problem

is linear and thus can be solved efficiently, allowing for the serial mode of Sharc to

run simulations in a reasonable time. We provide a comparison with the parallelized

mode to demonstrate the similarity of the results.

7.4.1 Adaptive Cruise Control

In this section, we present an example of applying Sharc to an adaptive cruise

control (ACC) system used for longitudinal control of a vehicle on a highway. The

dynamical model used in this example is adapted from [76]. In particular, we consider

an ego vehicle velocity 𝑣 and a desired velocity 𝑣des := 15m/s. The ego vehicle is

following a public front vehicle that has velocity 𝑡 ↦→ 𝑣f(𝑡) that we do not control

and is considered as an exogenous input to the system. The headway from the front

of the ego vehicle to the rear of the front vehicle is denoted ℎ.

155

The acceleration of the ego vehicle is

𝑣̇ =
1

𝑀

(︁
𝑢a − 𝑢b − 𝐹

)︁
,

where 𝑀 is the mass of the vehicle, 𝑢a is acceleration force, 𝑢b is braking force, and

𝐹 is a resistive force on the ego vehicle due to drag and friction. The controlled

quantities are 𝑢a and 𝑢b. Assuming travel on a level roadway, 𝑣 ↦→ 𝐹 (𝑣) := 𝛽 +

𝛾𝑣2,where 𝛽 ≥ 0 and 𝛾 ≥ 0 are determined empirically. Values for 𝜏 , 𝛽, 𝛾, and 𝑀

can be found in [76, Table 1]. The resulting dynamics are

ℎ̇ = 𝑣f(𝑡)− 𝑣 (7.8)

𝑣̇ =
1

𝑀

(︁
𝑢a − 𝑢b − 𝐹 (𝑣)

)︁
. (7.9)

The quadratic friction term 𝐹 (𝑣) makes the system nonlinear, so we linearize 𝐹

around 𝑣0 ≥ 0 as 𝑣 ↦→ (𝛽 − 𝛾𝑣20) + 2𝛾𝑣0𝑣. The state of the system is 𝑥 := (ℎ, 𝑣) ∈ R2

and the input is 𝑢 := (𝑢a, 𝑢b) ∈ R2. We write the exogenous inputs to the system

as 𝑤 := (𝑣f, 1) ∈ R2, where 𝑣f is the velocity 𝑣f of the front vehicle, and “1” in the

second component is used to incorporate a constant term (𝛾𝑣20 − 𝛽)/𝑀 arising from

𝐹 . The resulting system is

𝑥̇ =

⎡⎣0 −1

0 −2𝛾𝑣0/𝑀

⎤⎦𝑥+

⎡⎣ 0 0

1/𝑀 −1/𝑀

⎤⎦𝑢+

⎡⎣1 0

0 (𝛾𝑣20 − 𝛽)/𝑀

⎤⎦𝑤. (7.10)

The continuous-time dynamics are discretized with a sample time 𝑇 := 0.1 s, result-

ing in a discrete-time system we write as

𝑥𝑘+1 = 𝐴(𝑣0)𝑥𝑘 +𝐵(𝑣0)𝑢𝑘 +𝐵𝑑(𝑣0)𝑤𝑘, (7.11)

where 𝑥𝑘, 𝑢𝑘, and 𝑤𝑘 are the values of 𝑥, 𝑢, and 𝑤, respectively, at 𝑡 = 𝑘𝑇 . Note

that 𝐴(𝑣0), 𝐵(𝑣0), and 𝐵𝑑(𝑣0) depend on 𝑣0, the center of the linearization.

7.4.1.1 MPC Problem Formulation

To generate control values at each discrete time 𝑘0 ∈ N, we apply MPC with a

prediction horizon of 𝑁𝑝 ∈ N time steps. Given any discrete time 𝑘0 ∈ N, let 𝑥̂𝑘0 be

a measurement-based estimate of 𝑥 at 𝑘0, and let 𝑣0 be the velocity component of

𝑥̂𝑘0 . For each 𝑘 ∈ {𝑘0, 𝑘0 + 1, . . . , 𝑘0 +𝑁𝑝}, let 𝑘 ↦→ 𝑢𝑘|𝑘0 be planned control values

156

starting at 𝑘0, and let 𝑘 ↦→ 𝑥𝑘|𝑘0 be the state prediction generated by (7.11) with

initial condition 𝑥𝑘0|𝑘0 = 𝑥̂𝑘0 and using the control signal 𝑢𝑘|𝑘0 .

The cost function of the MPC problem is a quadratic function that penalizes

the deviance of 𝑣𝑘|𝑘0 from the desired velocity 𝑣des, the control effort 𝑢𝑘|𝑘0 , and

changes to the control effort, which roughly corresponds to the vehicle’s jerk (𝑣). A

positive definite matrix 𝑅 ∈ R2×2 defines the control weight matrix and 𝛼 ≥ 0 is a

jerk penalization parameter.

The ego vehicle must always satisfy the following constraints:

Headway: ℎ ≥ ℎmin := 6m

Velocity: 0m/s ≤ 𝑣 ≤ 𝑣max := 20m/s

Acceleration force: 0N ≤ 𝑢a ≤ 𝑢amax := 4880N

Braking force: 0N ≤ 𝑢b ≤ 𝑢bmax := 6507N.

To ensure the headway constraint ℎ ≥ ℎmin is satisfiable past the end of the MPC

prediction horizon, we also must include a terminal constraint. In particular, ℎ and

𝑣 must satisfy

ℎ ≥ 𝑣2

2|𝑎| −
𝑣2f

2|𝑎f|
+ ℎmin, (7.12)

at the end of the prediction horizon, where 𝑎f < 0 is a lower bound on the rate of

deceleration of the front vehicle (that is 𝑣̇f ≥ 𝑎f) and 𝑎 < 0 which is an upper bound

on the deceleration of the ego vehicle when maximum braking is applied (that is,

𝑣̇ ≤ 𝑎 when 𝑢a = 0 and 𝑢b = 𝑢bmax).

Equation (7.12) is not suitable as a linear MPC constraint, however, because

it includes a nonlinear term and depends on the future velocity of the front vehicle,

which is unknown. By assuming that the front vehicle applies maximum braking,

we estimate its worst-case future velocity as a sequence 𝑘 ↦→ 𝑣f(𝑘|𝑘0). Then, we use

𝑘 ↦→ 𝑤̂(𝑘|𝑘0) := (𝑣f(𝑘|𝑘0), 1) as a worst-case prediction of the 𝑤. To remove the 𝑣2

nonlinearity in (7.12), we replace 𝑣2 with 𝑣𝑣max ≥ 𝑣2, creating a more conservative

terminal constraint:

ℎ(𝑘0+𝑁𝑝)|𝑘0 ≥ 𝑣max

2|𝑎| 𝑣(𝑘0+𝑁𝑝)|𝑘0 −
𝑣2f(𝑘0 +𝑁𝑝|𝑘0)

2|𝑎f|
+ ℎmin. (7.13)

The resulting MPC problem formulation is shown in Problem 1.

In Figure 7.6, the results of simulating the ACC system are shown with a

comparison between the results of serial and parallel simulation schemes. We see

that at as the headway decreases, the system hits a point around 𝑡 = 3.5 s when the

157

Problem 1 (Linear MPC).

minimize 𝐽
(︀
𝑥(·)|𝑘0 , 𝑢(·)|𝑘0

)︀
:=

𝑘0+𝑁𝑝∑︁
𝑘=𝑘0

(︀
𝑣𝑘|𝑘0 − 𝑣des

)︀2
+

𝑘0+𝑁𝑝−1∑︁
𝑘=𝑘0

𝑢⊤𝑘|𝑘0𝑅𝑢𝑘|𝑘0 + 𝛼

𝑘0+𝑁𝑝−2∑︁
𝑘=𝑘0

⃒⃒
𝑢𝑘+1|𝑘0 − 𝑢𝑘|𝑘0

⃒⃒2 (7.14a)

with respect to

𝑥𝑘0|𝑘0 , 𝑥(𝑘0+1)|𝑘0 , . . . , 𝑥(𝑘0+𝑁𝑝)|𝑘0 ∈ R2 (7.14b)

𝑢𝑘0|𝑘0 , 𝑢(𝑘0+1)|𝑘0 , . . . , 𝑢(𝑘0+𝑁𝑝−1)|𝑘0 ∈ R2 (7.14c)

subject to

𝑥𝑘0|𝑘0 = 𝑥̂𝑘0 , (7.14d)

and for each 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘0 +𝑁𝑝 − 1,

𝑥𝑘+1|𝑘0 = 𝐴(𝑣0)𝑥𝑘|𝑘0 +𝐵(𝑣0)𝑢𝑘|𝑘0 +𝐵𝑑(𝑣0)𝑤̂(𝑘|𝑘0), (7.14e)

and for each 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘0 +𝑁𝑝,

0 ≤ 𝑣𝑘|𝑘0 ≤ 𝑣max, (7.14f)

0 ≤ 𝑢a𝑘|𝑘0 ≤ 𝑢amax, (7.14g)

0 ≤ 𝑢b𝑘|𝑘0 ≤ 𝑢bmax, (7.14h)

ℎmin ≤ ℎ𝑘|𝑘0 , (7.14i)

and for 𝑘 = 𝑘0 +𝑁𝑝,

ℎ𝑘|𝑘0 ≥ 𝑣max

2|𝑎| 𝑣𝑘|𝑘0 −
𝑣2f(𝑘|𝑘0)
2|𝑎f|

+ ℎmin. (7.14j)

delays significantly increase, rising above the sampling time. This increase causes

the updated control values to be delayed by six time steps. The delays increase

at this point because more MPC inequality constraints become active, making the

optimization problem harder to solve. In this simulation, the vehicle recovers before

colliding with the lead vehicle, but if the front vehicle brakes more aggressively, the

computational delays could result in a collision.

Figure 7.7 shows a comparison of Sharc simulations using instruction caches

of size 1KB, 8KB, and 1MB. We see that computation times increase as the size

of the instruction cache shrinks, producing significant deviation in 𝑣 and ℎ between

simulations.

158

Figure 7.6. Comparison of trajectories for the ACC system from Section 7.4.1
simulated using the serial and parallel modes. In the Delays plot, the hori-
zontal lines extend from the start time of each computation to its completion
time.

7.5 Conclusion

In this chapter, we present Sharc as a tool to simulate user-specified control

algorithms on a given processor microarchitecture, evaluating how computational

constraints affect the performance of the control algorithm and the safety of the

physical system. We illustrated the power and usefulness of Sharc via two examples:

an adaptive cruise controller implemented with linear MPC and an inverted pendu-

lum system controlled by nonlinear MPC. By providing insight into the impact of

computing hardware on the performance of a CPS, Sharc allows for the co-design of

control algorithms and the computational hardware on which they are run. Future

159

Figure 7.7. Comparison of Sharc simulations for the ACC system in Sec-
tion 7.4.1 using various sizes of instruction cache.

work includes 1) using Sharc to identify common bottlenecks in particular classes

of control algorithms and computational hardware and 2) developing an automated

framework for jointly optimizing the parameters of the hardware and the control

algorithm.

160

Bibliography

[1] J.-P. Aubin and H. Frankowska, “Tangent Cones,” in Set-Valued Analysis,

ser. Modern Birkhäuser Classics, Boston: Birkhäuser, 2009, pp. 117–177.

[2] F. H. Clarke, Optimization and Nonsmooth Analysis (Classics in Applied

Mathematics), 2nd ed. SIAM, 1990, 318 pp.

[3] R. G. Sanfelice, Hybrid Feedback Control . Princeton University Press, 2021.

[4] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Mod-

eling, Stability, and Robustness. Princeton University Press, 2012, 212 pp.

JSTOR: j.ctt7s02z.

[5] M. Maghenem and R. G. Sanfelice, “Sufficient conditions for forward invariance

and contractivity in hybrid inclusions using barrier functions,” Automatica,

vol. 124, Feb. 2021.

[6] M. Nagumo, “Über die Lage der Integralkurven gewöhnlicher differentialgle-

ichungen,” Proc. Phys.-Math. Soc. Jpn., 3rd ser., vol. 24, pp. 551–559, 1942.

[7] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier

certificates,” in Hybrid Syst. Comput. Control, R. Alur and G. J. Pappas, Eds.,

ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2004,

pp. 477–492.

[8] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.

Tabuada, “Control barrier functions: Theory and applications,” in Proc. 18th

Eur. Control Conf., Jun. 2019, pp. 3420–3431.

[9] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “Computationally Aware Switching

Criteria for Hybrid Model Predictive Control of Cyber-Physical Systems,”

IEEE Trans. Automat. Sci. Eng., vol. 13, no. 2, pp. 479–490, Apr. 2016.

161

http://dx.doi.org/10.1007/978-0-8176-4848-0_4
http://dx.doi.org/10.1137/1.9781611971309
http://dx.doi.org/10.2307/j.ctv131btfx
http://dx.doi.org/10.23943/princeton/9780691153896.001.0001
http://dx.doi.org/10.23943/princeton/9780691153896.001.0001
http://www.jstor.org/stable/j.ctt7s02z
http://dx.doi.org/10.1016/j.automatica.2020.109328
http://dx.doi.org/10.1016/j.automatica.2020.109328
http://dx.doi.org/10.11429/ppmsj1919.24.0_551
http://dx.doi.org/10.11429/ppmsj1919.24.0_551
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.23919/ECC.2019.8796030
http://dx.doi.org/10.1109/TASE.2016.2523341
http://dx.doi.org/10.1109/TASE.2016.2523341

[10] J. G. Rivera, A. A. Danylyszyn, C. B. Weinstock, L. R. Sha, and M. J. Gagliardi,

“An architectural description of the Simplex Architecture,” Defense Technical

Information Center, Fort Belvoir, VA, Mar. 1, 1996.

[11] J. Yang, M. A. Islam, A. Murthy, S. A. Smolka, and S. D. Stoller, “A Simplex

architecture for hybrid systems using barrier certificates,” in Comput. Saf.

Reliab. Secur., S. Tonetta, E. Schoitsch, and F. Bitsch, Eds., ser. Lecture

Notes in Computer Science, Springer International Publishing, 2017, pp. 117–

131.

[12] A. Damare, S. Roy, S. A. Smolka, and S. D. Stoller, “A barrier certificate-based

Simplex architecture with application to microgrids,” in Runtime Verification,

T. Dang and V. Stolz, Eds., ser. Lecture Notes in Computer Science, Springer

International Publishing, 2022, pp. 105–123.

[13] P. K. Wintz and R. G. Sanfelice, “Forward invariance-based hybrid control

using uncertified controllers,” in 2023 62nd IEEE Conf. Decis. Control CDC,

Singapore, Singapore: IEEE, Dec. 2023, pp. 864–869.

[14] R. G. Sanfelice, D. A. Copp, and P. Nanez, “A toolbox for simulation of hybrid

systems in MATLAB/Simulink: Hybrid Equations (HyEQ) Toolbox,” in Proc.

16th Int. Conf. Hybrid Syst. Comput. Control, Philadelphia: ACM Press, 2013,

pp. 101–106.

[15] A. D. Ames, A. Abate, and S. Sastry, “Sufficient conditions for the existence

of zeno behavior in a class of nonlinear hybrid systems via constant approxi-

mations,” in Proc. IEEE Conf. Decis. Control, New Orleans, LA, USA: IEEE,

2007, pp. 4033–4038.

[16] P. K. Wintz and R. G. Sanfelice, “Relaxed lyapunov conditions,” in Am.

Control Conf., Denver, CO, USA, Jul. 2025.

[17] E. D. Sontag, “Input-to-State Stability,” in Encyclopedia of Systems and Con-

trol, J. Baillieul and T. Samad, Eds., London: Springer London, 2013.

[18] D. N. Tran, B. S. Ruffer, and C. M. Kellett, “Incremental stability properties

for discrete-time systems,” in IEEE 55th Conf. Decis. Control, Las Vegas, NV,

USA: IEEE, Dec. 2016, pp. 477–482.

[19] H. K. Khalil, Nonlinear Systems, Third. Pearson, 2002.

162

http://dx.doi.org/10.1007/978-3-319-66266-4_8
http://dx.doi.org/10.1007/978-3-319-66266-4_8
http://dx.doi.org/10.1007/978-3-031-17196-3_6
http://dx.doi.org/10.1007/978-3-031-17196-3_6
http://dx.doi.org/10.1109/CDC49753.2023.10383334
http://dx.doi.org/10.1109/CDC49753.2023.10383334
http://dx.doi.org/10.1145/2461328.2461346
http://dx.doi.org/10.1145/2461328.2461346
http://dx.doi.org/10.1109/CDC.2007.4434891
http://dx.doi.org/10.1109/CDC.2007.4434891
http://dx.doi.org/10.1109/CDC.2007.4434891
http://dx.doi.org/10.23919/ACC63710.2025.11107748
http://dx.doi.org/10.1007/978-1-4471-5102-9
http://dx.doi.org/10.1109/CDC.2016.7798314
http://dx.doi.org/10.1109/CDC.2016.7798314

[20] K. Yamazaki, “The range of maps on classical insertion theorems,” Acta Math-

ematica Hungarica, vol. 132, no. 1, pp. 42–48, Jul. 1, 2011.

[21] R. A. Freeman and P. Kokotović, Robust Nonlinear Control Design. Boston,

MA: Birkhäuser Boston, 1996.

[22] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and R. R. Wolenski, Nonsmooth

Analysis and Control Theory (Graduate Texts in Mathematics). New York,

NY: Springer, 1998, vol. 178.

[23] P. K. Wintz and R. G. Sanfelice, “Conical transition graphs for analysis of

asymptotic stability in hybrid dynamical systems,” in 8th IFAC Conf. Anal.

Des. Hybrid Syst., vol. 58, IFAC, Jul. 1, 2024, pp. 159–164.

[24] R. Goebel and A. R. Teel, “Preasymptotic stability and homogeneous approx-

imations of hybrid dynamical systems,” SIAM Rev., vol. 52, no. 1, pp. 87–109,

2010. JSTOR: 25662361.

[25] P. Prabhakar and M. Garcia Soto, “Abstraction Based Model-Checking of

Stability of Hybrid Systems,” in Comput. Aided Verification, N. Sharygina

and H. Veith, Eds., Berlin, Heidelberg: Springer, 2013, pp. 280–295.

[26] S. E. Tuna and A. R. Teel, “Homogeneous hybrid systems and a converse

lyapunov theorem,” in Proc. IEEE Conf. Decis. Control, Dec. 2006, pp. 6235–

6240.

[27] R. Goebel and R. G. Sanfelice, “Pointwise asymptotic stability in a hybrid sys-

tem and well-posed behavior beyond Zeno,” SIAM J. Control Optim., vol. 56,

no. 2, pp. 1358–1385, Jan. 2018.

[28] A. Lamperski and A. D. Ames, “Lyapunov-like conditions for the existence of

zeno behavior in hybrid and lagrangian hybrid systems,” in Proc. IEEE Conf.

Decis. Control, Dec. 2007, pp. 115–120.

[29] S. Nersesov, V. Chellaboina, and W. Haddad, “A generalization of Poincare’s

theorem to hybrid and impulsive dynamical systems,” in Proc. Am. Control

Conf., vol. 2, May 2002, pp. 1240–1245.

[30] X. Lou, Y. Li, and R. G. Sanfelice, “On robust stability of limit cycles for

hybrid systems with multiple jumps,” in Proc. IFAC Conf. Anal. Des. Hybrid

Syst., vol. 48, Atlanta, GA, USA: IFAC, Jan. 1, 2015, pp. 199–204.

163

http://dx.doi.org/10.1007/s10474-011-0096-0
http://dx.doi.org/10.1007/978-0-8176-4759-9
http://dx.doi.org/10.1007/b97650
http://dx.doi.org/10.1007/b97650
http://dx.doi.org/10.1016/j.ifacol.2024.07.441
http://dx.doi.org/10.1016/j.ifacol.2024.07.441
https://www.jstor.org/stable/25662361
https://www.jstor.org/stable/25662361
http://www.jstor.org/stable/25662361
http://dx.doi.org/10.1007/978-3-642-39799-8_20
http://dx.doi.org/10.1007/978-3-642-39799-8_20
http://dx.doi.org/10.1109/CDC.2006.377202
http://dx.doi.org/10.1109/CDC.2006.377202
http://dx.doi.org/10.1137/16M1082202
http://dx.doi.org/10.1137/16M1082202
http://dx.doi.org/10.1109/CDC.2007.4435003
http://dx.doi.org/10.1109/CDC.2007.4435003
http://dx.doi.org/10.1109/ACC.2002.1023189
http://dx.doi.org/10.1109/ACC.2002.1023189
http://dx.doi.org/10.1016/j.ifacol.2015.11.175
http://dx.doi.org/10.1016/j.ifacol.2015.11.175

[31] B. Morris and J. W. Grizzle, “Hybrid Invariant Manifolds in Systems With

Impulse Effects With Application to Periodic Locomotion in Bipedal Robots,”

IEEE Trans. Automat. Contr., vol. 54, no. 8, pp. 1751–1764, Aug. 2009.

[32] M. Philippe, R. Essick, G. E. Dullerud, and R. M. Jungers, “Stability of

discrete-time switching systems with constrained switching sequences,” Auto-

matica, vol. 72, pp. 242–250, Oct. 1, 2016.

[33] A. Kundu and D. Chatterjee, “A graph theoretic approach to input-to-state

stability of switched systems,” Eur. J. Control, vol. 29, pp. 44–50, May 1, 2016.

[34] R. Langerak and J. Polderman, “Tools for stability of switching linear systems:

Gain automata and delay compensation,” in Proc. IEEE Conf. Decis. Control,

Dec. 2005, pp. 4867–4872.

[35] S. Bogomolov, M. Giacobbe, T. A. Henzinger, and H. Kong, “Conic Abstrac-

tions for Hybrid Systems,” in Formal Modeling and Analysis of Timed Systems,

A. Abate and G. Geeraerts, Eds., vol. 10419, Cham: Springer International

Publishing, 2017, pp. 116–132.

[36] P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry

methods in robustness and optimization,” California Institute of Technology,

May 7, 2004.

[37] A. Papachristodoulou and S. Prajna, “On the construction of Lyapunov func-

tions using the sum of squares decomposition,” in Proc. IEEE Conf. Decis.

Control, vol. 3, Dec. 2002, pp. 3482–3487.

[38] S. Kundu and M. Anghel, “Stability and control of power systems using vector

lyapunov functions and sum-of-squares methods,” in Eur. Control Conf., Jul.

2015, pp. 253–259.

[39] S. Kundu and M. Anghel, “A sum-of-squares approach to the stability and

control of interconnected systems using vector Lyapunov functions,” in Proc.

Am. Control Conf., Jul. 2015, pp. 5022–5028.

[40] C. Murti, “Analysis of Zeno stability in hybrid systems using sum-of-squares

programming,” M.S. thesis, Illinois Institute of Technology, 2012.

164

http://dx.doi.org/10.1109/TAC.2009.2024563
http://dx.doi.org/10.1109/TAC.2009.2024563
http://dx.doi.org/10.1016/j.automatica.2016.05.015
http://dx.doi.org/10.1016/j.automatica.2016.05.015
http://dx.doi.org/10.1016/j.ejcon.2016.03.003
http://dx.doi.org/10.1016/j.ejcon.2016.03.003
http://dx.doi.org/10.1109/CDC.2005.1582932
http://dx.doi.org/10.1109/CDC.2005.1582932
http://dx.doi.org/10.1007/978-3-319-65765-3_7
http://dx.doi.org/10.1007/978-3-319-65765-3_7
http://dx.doi.org/10.1109/CDC.2002.1184414
http://dx.doi.org/10.1109/CDC.2002.1184414
http://dx.doi.org/10.1109/ECC.2015.7330553
http://dx.doi.org/10.1109/ECC.2015.7330553
http://dx.doi.org/10.1109/ACC.2015.7172121
http://dx.doi.org/10.1109/ACC.2015.7172121

[41] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for

hybrid systems,” in Comput. Aided Verification, O. Grumberg, Ed., ser. Lecture

Notes in Computer Science, Berlin, Heidelberg: Springer, 1997, pp. 460–463.

[42] G. Frehse, “PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech,”

in Hybrid Syst. Comput. Control, M. Morari and L. Thiele, Eds., ser. Lecture

Notes in Computer Science, Berlin, Heidelberg: Springer, 2005, pp. 258–273.

[43] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid

systems,” vol. 3, Jan. 1, 2002, pp. 365–370.

[44] R. Diestel, “The Basics,” in Graph Theory, ser. Graduate Texts in Mathematics,

5th ed., vol. 173, Berlin, Heidelberg: Springer, 2017.

[45] R. T. Farouki, H. P. Moon, and B. Ravani, “Minkowski geometric algebra of

complex sets,” Geom. Dedicata, vol. 85, pp. 283–315, 2001.

[46] D. B. Johnson, “Finding all the elementary circuits of a directed graph,” SIAM

J. Comput., vol. 4, no. 1, pp. 77–84, Mar. 1975.

[47] K. G. Larsen and W. Yi, “Time abstracted bisimulation: Implicit specifications

and decidability,” in Mathematical Foundations of Programming Semantics,

S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, Eds., Berlin,

Heidelberg: Springer Berlin Heidelberg, 1994, pp. 160–176.

[48] M. Henzinger, T. Henzinger, and P. Kopke, “Computing simulations on finite

and infinite graphs,” in Proceedings of IEEE 36th Annual Foundations of

Computer Science, 1995, pp. 453–462.

[49] P. K. Wintz et al., “SHARC: Simulator for hardware architecture and real-

time control,” in Proceedings of the 28th ACM International Conference on

Hybrid Systems: Computation and Control, ser. HSCC ’25, Irvine, CA, USA:

Association for Computing Machinery, 2025.

[50] P. Leteinturier, S. Brewerton, and K. Scheibert, “MultiCore Benefits & Chal-

lenges for Automotive Applications,” SAE International, Warrendale, PA, SAE

Technical Paper 2008-01-0989, Apr. 14, 2008.

[51] L. M. Kinnan, “Use of multicore processors in avionics systems and its potential

impact on implementation and certification,” in 2009 IEEEAIAA 28th Digit.

Avion. Syst. Conf., Oct. 2009, 1.E.4-1-1.E.4–6.

165

http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1109/.2001.980715
http://dx.doi.org/10.1109/.2001.980715
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1109/SFCS.1995.492576
http://dx.doi.org/10.1109/SFCS.1995.492576
http://dx.doi.org/10.1145/3716863.3718046
http://dx.doi.org/10.1145/3716863.3718046
http://dx.doi.org/10.1109/DASC.2009.5347560
http://dx.doi.org/10.1109/DASC.2009.5347560

[52] D. Pradhan, “Multicore processors bring innovation to medical imaging,” Texas

Instruments, May 2010.

[53] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum, Feb. 1, 2009.

[54] A. Bonci, S. Longhi, G. Nabissi, and G. A. Scala, “Execution Time of Optimal

Controls in Hard Real Time, a Minimal Execution Time Solution for Nonlinear

SDRE,” IEEE Access, vol. 8, pp. 158 008–158 025, 2020.

[55] M. Caccamo, G. Buttazzo, and L. Sha, “Handling execution overruns in hard

real-time control systems,” IEEE Trans. Comput., vol. 51, no. 7, pp. 835–849,

Jul. 2002.

[56] D. Arnström, D. Broman, and D. Axehill, “Exact worst-case execution-time

analysis for implicit model predictive control,” IEEE Trans. Autom. Control,

vol. 69, no. 10, pp. 7190–7196, Oct. 2024.

[57] D. Arnström, Real-Time Certified MPC: Reliable Active-Set QP Solvers. Linkö-

ping: Department of Electrical Engineering, Linköping University, 2023, 190 pp.

[58] Y. V. Pant, H. Abbas, K. Mohta, T. X. Nghiem, J. Devietti, and R. Mangharam,

“Co-design of Anytime Computation and Robust Control,” in IEEE Real-Time

Syst. Symp., San Antonio, TX, USA: IEEE, Dec. 2015, pp. 43–52.

[59] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and

Algorithms (Communications and Control Engineering). London: Springer

London, 2011.

[60] V. M. Zavala and L. T. Biegler, “The advanced-step NMPC controller: Opti-

mality, stability and robustness,” Automatica, vol. 45, no. 1, pp. 86–93, Jan.

2009.

[61] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput Arch. News,

vol. 39, no. 2, pp. 1–7, Aug. 31, 2011.

[62] N. Gober et al. “The Championship Simulator: Architectural Simulation for

Education and Competition.” arXiv: 2210.14324 [cs], Accessed: Mar. 11,

2025, pre-published.

[63] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural

simulation of thousand-core systems,” SIGARCH Comput Arch. News, vol. 41,

no. 3, pp. 475–486, Jun. 23, 2013.

166

https://spectrum.ieee.org/this-car-runs-on-code
http://dx.doi.org/10.1109/ACCESS.2020.3019776
http://dx.doi.org/10.1109/ACCESS.2020.3019776
http://dx.doi.org/10.1109/ACCESS.2020.3019776
http://dx.doi.org/10.1109/TC.2002.1017703
http://dx.doi.org/10.1109/TC.2002.1017703
http://dx.doi.org/10.1109/TAC.2024.3395521
http://dx.doi.org/10.1109/TAC.2024.3395521
http://dx.doi.org/10.1109/RTSS.2015.12
http://dx.doi.org/10.1007/978-0-85729-501-9
http://dx.doi.org/10.1007/978-0-85729-501-9
http://dx.doi.org/10.1016/j.automatica.2008.06.011
http://dx.doi.org/10.1016/j.automatica.2008.06.011
http://dx.doi.org/10.1145/2024716.2024718
https://arxiv.org/abs/2210.14324
http://dx.doi.org/10.1145/2508148.2485963
http://dx.doi.org/10.1145/2508148.2485963

[64] K. Vollmar and P. Sanderson, “MARS: An education-oriented MIPS assembly

language simulator,” SIGCSE Bull., vol. 38, no. 1, pp. 239–243, Mar. 3, 2006.

[65] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An Evalu-

ation of High-Level Mechanistic Core Models,” ACM Trans Arch. Code Optim,

vol. 11, no. 3, 28:1–28:25, Aug. 25, 2014.

[66] M. Ishikawa, D. McCune, G. Saikalis, and S. Oho, “CPU Model-Based Hard-

ware/Software Co-design, Co-simulation and Analysis Technology for Real-

Time Embedded Control Systems,” in IEEE Real Time Embed. Technol. Appl.

Symp., IEEE, Apr. 2007, pp. 3–11.

[67] M. Torngren, D. Henriksson, K.-E. Arzen, A. Cervin, and Z. Hanzalek, “Tool

supporting the co-design of control systems and their real-time implementation:

Current status and future directions,” in IEEE Conf. Comput. Aided Control

Syst. Des., Munich, Germany: IEEE, Oct. 2006, pp. 1173–1180.

[68] C. Faure, M. Ben Gaid, N. Pernet, M. Fremovici, G. Font, and G. Corde,

“Methods for real-time simulation of cyber-physical systems: Application to

automotive domain,” in 2011 7th Int. Wirel. Commun. Mob. Comput. Conf.,

Jul. 2011, pp. 1105–1110.

[69] F. MihaliUnexpected case., M. TruntiUnexpected case., and A. Hren, “Hardware-

in-the-loop simulations: A historical overview of engineering challenges,” Elec-

tronics, vol. 11, no. 15, p. 2462, Aug. 8, 2022.

[70] Scarab.

[71] S. Oh, M. Xu, T. A. Khan, B. Kasikci, and H. Litz, “UDP: Utility-Driven

Fetch Directed Instruction Prefetching,” in ACMIEEE 51st Annu. Int. Symp.

Comput. Archit., IEEE, Jun. 2024, pp. 1188–1201.

[72] A. Seznec and P. Michaud, “A case for (partially) tagged geometric history

length branch prediction,” J. Instr.-Level Parallelism, vol. 8, 2006.

[73] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic

Units,” IBM J. Res. Dev., vol. 11, no. 1, pp. 25–33, Jan. 1967.

[74] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM

Simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49, Jan. 2016.

167

http://dx.doi.org/10.1145/1124706.1121415
http://dx.doi.org/10.1145/1124706.1121415
http://dx.doi.org/10.1145/2629677
http://dx.doi.org/10.1145/2629677
http://dx.doi.org/10.1109/RTAS.2007.9
http://dx.doi.org/10.1109/RTAS.2007.9
http://dx.doi.org/10.1109/RTAS.2007.9
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776809
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776809
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776809
http://dx.doi.org/10.1109/IWCMC.2011.5982695
http://dx.doi.org/10.1109/IWCMC.2011.5982695
http://dx.doi.org/10.3390/electronics11152462
http://dx.doi.org/10.3390/electronics11152462
https://github.com/Litz-Lab/scarab
http://dx.doi.org/10.1109/ISCA59077.2024.00089
http://dx.doi.org/10.1109/ISCA59077.2024.00089
http://dx.doi.org/10.1147/rd.111.0025
http://dx.doi.org/10.1147/rd.111.0025
http://dx.doi.org/10.1109/LCA.2015.2414456
http://dx.doi.org/10.1109/LCA.2015.2414456

[75] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for adaptive

dynamic optimization,” in Proc Int. Symp. Code Gener. Optim. Feedback-Dir.

Runtime Optim., ser. CGO ’03, USA: IEEE Computer Society, Mar. 23, 2003,

pp. 265–275.

[76] S. W. Smith et al., “Improving Urban Traffic Throughput With Vehicle Pla-

tooning: Theory and Experiments,” IEEE Access, vol. 8, pp. 141 208–141 223,

2020.

168

http://dx.doi.org/10.1109/ACCESS.2020.3012618
http://dx.doi.org/10.1109/ACCESS.2020.3012618

Appendix A

Hybrid Equations Toolbox

The Hybrid Equation (HyEQ) Toolbox provides methods in Matlab and

Simulink for computing and plotting numerical solutions to hybrid dynamical sys-

tems. During the beginning of my PhD studies, I rewrote a large portion of the HyEQ

Toolbox to improve the toolbox’s design and capabilities to aid in the simulation,

analysis of hybrid systems and the plotting of hybrid arcs. Most of the examples

throughout this dissertation were simulated and plotted an using this toolbox.

New Features in Version 3.0

This chapter summarizes my contributions to the HyEQ Toolbox, released in

versions 3.0 and 3.1 of the HyEQ Toolbox.

HyEQ MATLAB Library

Object-Oriented Definitions of Hybrid Systems. A hybrid system can now

be defined in a single file by creating a subclass of the HybridSystem class.

This allows for the definition of multiple hybrid systems without name conflicts

and enables the definition of system parameters without using global variables.

Interconnected Hybrid Systems. It is now possible, in Matlab, to define sev-

eral hybrid subsystem systems with inputs and outputs, such as a plant and a

controller, then link them together to form a composite hybrid system. Solu-

tions to the composite system can be computed like any other system.

More Informative Solutions. The new HybridSolution class includes additional

useful information about solutions such as the duration of each interval of flow

169

and the reason the solution terminated. Methods are provided for modify-

ing solution objects by, e.g., applying a transformation the state values or

truncating the time span.

Improved Progress Updates. While computing solutions, a progress bar displays

the percent completed and the current hybrid time. The progress updates

during both flows and at jumps (in v2.04, progress updates were only printed

to the command line at jumps).

Improved Plotting. Plotting hybrid arcs is easier and allows more control over

the appearance of plots. New features include:

∙ Easy control of the marker and line styles for flows and jumps.

∙ Support for legends.

∙ Ability to hide portions of hybrid arcs from plots using a filter (useful for

plotting different modes in different styles).

∙ Automatic creation of subplots for hybrid arcs with multiple components.

∙ Ability to set default plot settings.

Plotting methods are up to 200x faster than in v2.04 for hybrid arcs with many

jumps.

Validation and error reporting. New error checking features catch program-

ming mistakes earlier when using the toolbox. Over 350 automated tests

verify the correctness of the toolbox’s code.

Code Autocompletion. The Hybrid Equations Toolbox supports Matlab’s auto-

completion feature (introduced to the Matlab code editor in R2021b).

HyEQ Simulink Library

The following improvements were made to the Simulink-based Hybrid System

solver:

Hybrid System with External Functions and Inputs. A new Simulink block

allows for a hybrid system with an input to be defined using plaintext .m

Matlab function files to specify 𝑓 , 𝑔, 𝐶, and 𝐷.

170

Block Parameters. Simulink block masks were added to the HyEQ blocks to allow

users to set block parameters without needing to modify anything inside the

block. Parameters are now set in a popup dialog that opens when each block

is clicked.

Instructions for How To Use Blocks. Each block in the HyEQ Simulink library

now includes instructions in the block’s popup dialog that explains how to use

the block.

Signal Sizes. HyEQ Simulink library blocks now check the signal sizes for inputs

and outputs to help identify errors and aid in debugging.

General Improvements

The following updates apply to the entire toolbox:

Easier Installation and Updates. Version 3.0 is packaged using Matlab’s tool-

box packaging, so it can be installed and updated automatically through

Matlab’s Add-on manager.

Backward Compatibility. All code that works in Toolbox version 2.04 is expected

to work in v3.0 without modification. Version 3.0 is compatible with—and

tested on—Matlab versions back to R2014b.

Improved Help Files and Example. All documentation for the HyEQ Toolbox

has been redone to make it easier to access and navigate in Matlab Help.

171

Appendix B

Additional Results and Proofs

B.1 Additional Proofs from Chapter 4

This section contains proofs that were omitted from Chapter 4.

B.1.1 Proof of Lemma 4.1 (Hybrid Basic Conditions)

For clarity, we split the proof of Lemma 4.1 into several parts.

Proof that 𝐶 and 𝐷 are closed. The sets 𝐶cl
p and 𝐷cl

p are defined in (4.15) as set

closures. The sets 𝐶cl
k0
, 𝐶cl

k1
, 𝐶cl

s , 𝐷cl
k0
, 𝐷cl

k1
, and 𝐷cl

s are closed because they are

defined as equal to or as the union and Cartesian product of 𝐶k0 , 𝐷k0 , 𝐷k1 , 𝐶k1 ,

𝐶s, 𝐷s, ℰ1, and 𝒱, which are closed by assumption (B2), as well as the finite set

{0, 1}, which is also closed. Therefore, 𝐶 and 𝐷 are closed.

Proof of dom(p𝐹) ⊃ 𝐶 and dom(p𝐺) ⊃ 𝐷. Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶. Since

𝐶 = 𝐶cl
p ∩𝐶cl

k0
∩𝐶cl

k1
∩𝐶cl

s , we have that 𝑥 is in 𝐶cl
p , 𝐶cl

k0
, 𝐶cl

k1
, and 𝐶cl

s . We want to

show 𝑥 ∈ dom(p𝐹) =
⋂︀
dom(𝐹 cl

⋆). To do this, we will show for each ⋆ ∈ {p,k0,k1, s}
that 𝑥 ∈ dom(𝐹 cl

⋆), since

dom(𝐹 cl
⋆) ⊂ dom(y𝐹 cl

⋆).

For ⋆ = p, we have that 𝑥 is in 𝐶cl
p , which is defined as dom(𝐹 cl

p) in (4.8), so

𝑥 ∈ 𝐶cl
p = dom(𝐹 cl

p) ⊂ dom(y𝐹 cl
p).

For ⋆ = k0, we have 𝐶cl
k0

= 𝐶cl
k0

(by definition), so 𝑥 ∈ 𝐶cl
k0

= 𝐶cl
k0
. From the

definition of 𝐶cl
k0

in (4.8), we see that 𝑥 = (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶cl
k0

= 𝐶k0×ℰ1×𝒱×{0, 1},

172

so (𝑧, 𝜂0) is in 𝐶k0 . By (B3), we have that dom(𝐹k0) = 𝐶k0 , so (𝑧, 𝜂0) ∈ dom(𝐹k0),

so 𝐹k0(𝑧, 𝜂0) = 𝐹 cl
k0
(𝑥) ̸= ∅, from the definition of 𝐹 cl

k0
in (4.4). Thus,

𝑥 ∈ dom(𝐹 cl
k0
) ⊂ dom(y𝐹 cl

k0
).

For ⋆ = k1, we have that 𝑥 ∈ 𝐶cl
k1

= 𝐶cl
k1

= 𝐶k1 (per (4.8)). By (B3), we have

that dom(𝐹k1) = 𝐶k1 , so

𝑥 ∈ dom(𝐹k1) = dom(𝐹 cl
k1
) = dom(y𝐹 cl

k1
).

For ⋆ = s, we have 𝑥 ∈ 𝐶cl
s = 𝐶cl

s = 𝐶s. By (B3), dom(𝑓v) = 𝐶s, so 𝑥 ∈
dom(𝑓v). The domain of 𝐹 cl

s is defined as dom(𝑓v), so

𝑥 ∈ 𝐶s = dom(𝑓v) = dom(𝐹 cl
s) = dom(y𝐹 cl

s).

Therefore, 𝑥 ∈ dom(p𝐹), so dom(p𝐹) ⊃ 𝐶.

By a similar process, one can show that dom(p𝐺) ⊃ 𝐷.

Proof that p𝐹 and p𝐺 are OSC. To show p𝐹 and p𝐺 are OSC we must show that y𝐹 cl
⋆

and y𝐺cl
⋆ are OSC for each ⋆ ∈ {p,k0,k1, s}. By (B4), 𝑓v and 𝑔v are continuous, and

𝐹k0 and 𝐺k0 are OSC. It follows directly that

𝑥 ↦→ y𝐹 cl
k0
(𝑥) = 𝐹 cl

k0
(𝑥) = 𝐹k0(𝑧, 𝜂0)

𝑥 ↦→ y𝐺cl
k0
(𝑥) = 𝐺cl

k0
(𝑥) = 𝐺k0(𝑧, 𝜂0)

𝑥 ↦→ y𝐹 cl
s (𝑥) = 𝐹 cl

s (𝑥) =

⎡⎣𝑓v(𝑥)
0

⎤⎦
𝑥 ↦→ y𝐺cl

s (𝑥) = 𝐺cl
s (𝑥) =

⎡⎣𝑔v(𝑥)
0

⎤⎦
are OSC. Additionally, by (B4),

(𝑧, 𝜂0) ↦→ 𝐹p(𝑧, 𝜅0(𝑧, 𝜂)) and (𝑧, 𝜂0) ↦→ 𝐺p(𝑧, 𝜅0(𝑧, 𝜂))

are OSC. When restricted to 𝑥 ∈ 𝒳0, we have that

y𝐹 cl
p (𝑥) = 𝐹p(𝑥) = 𝐹p(𝑧, 𝜅0(𝑧, 𝜂)) and y𝐺cl

p (𝑥) = 𝐺p(𝑥) = 𝐺p(𝑧, 𝜅0(𝑧, 𝜂)),

are OSC, so y𝐹 cl
p and y𝐺cl

p are OSC on 𝒳1. Alternatively, y𝐹 cl
p and y𝐺cl

p are OSC on

𝒳1 by [4, Lemma 5.16]. Therefore, y𝐹 cl
p and y𝐺cl

p are OSC.

Similarly, y𝐹 cl
k1

and y𝐺cl
k1

are OSC, again by [4, Lemma 5.16].

173

Proof that p𝐹 and p𝐺 are locally bounded. By (B5), 𝐹p, 𝐹k0 , 𝐹k1 , 𝐺p, 𝐺k0 , 𝐺k1 , and

𝜅1 are locally bounded, whereas 𝜅0 is locally bounded because it is continuous (B4).

Thus, it follows that the closed-loop functions 𝐹 cl
p , 𝐹 cl

k0
, 𝐹 cl

k1
, 𝐺cl

p , 𝐺cl
k0
, 𝐺cl

k1
are

locally bounded. Furthermore, since 𝑓v and 𝑉p are continuous, 𝐹 cl
s and 𝐺cl

s are also

locally bounded. The regularized functions in (4.15) are also locally bounded, per

[4, Lemma 5.16].

Proof that 𝐹 (𝑥) is convex for all 𝑥 ∈ 𝐶. Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐶. By as-

sumption (B6), y𝐹 cl
k0
(𝑥) = 𝐹 cl

k0
(𝑥) = 𝐹k0(𝑧, 𝜂0) is convex. The set y𝐹 cl

p (𝑥) is also

convex: If 𝑞 = 0, then 𝐹 cl
p (𝑥) = 𝐹p(𝑧, 𝜅(𝑥)), again per (B6), whereas if 𝑞 = 1, then

y𝐹 cl
p (𝑥) is constructed as the intersection of convex sets and therefore is convex.

Similarly, y𝐹 cl
k1

(𝑥) is also convex, by construction. The set y𝐹 cl
s (𝑥) is a singleton, so it

is convex. Therefore, p𝐹 (𝑥) is convex because it is the Cartesian product of convex

sets.

B.1.2 Proof that 𝑉 is a Lyapunov function candidate

Lemma B.1. Suppose that ℋp, ℋk0 , and ℋk1 satisfy Assumption 4.1 and that 𝒜p

and ℋp×0 satisfy Assumption 4.5 with Lyapunov function 𝑉p. Suppose additionally

that 𝛾 ∈ (0, 1], 𝜇 > 0, and 𝛿 : ℰp,0 → R>0 is continuous and strictly positive. Then,

𝑉 is a Lyapunov function candidate (Definition 1.5) with respect to 𝒜 for ℋ.

Proof. From (L2) and (L4), we have that dom(𝑉p) = dom(𝜎0) = ℰp,0, so 𝑉 is

well-defined on dom𝑉 = 𝒳 . By Lemmas 4.1–4.2, we have that 𝐶 is closed and

𝐺(𝐷) ⊂ 𝐶 ∪𝐷 = 𝒳 . Thus, 𝑉 satisfies (LFC1):

𝐶 ∪𝐷 ∪𝐺(𝐶) = 𝐶 ∪𝐷 = 𝒳 = dom(𝑉).

Next, we show 𝑉 is continuous and there exists an open neighborhood of 𝐶

where 𝑉 is locally Lipschitz. The function 𝑉 is continuous because it is defined

as the point-wise maximum of two continuous functions, 𝑉p (which is continuous

because 𝑉p is a Lyapunov function candidate) and 𝑣 ↦→ 𝑣.

We want to show that 𝑉 is locally Lipschitz on an open neighborhood of 𝐶.

By assumption, there exists an open neighborhood 𝑈p,0 of 𝐶k0 where 𝑉p is locally

Lipschitz. Consider the open set

𝑈 := 𝑈p,0 × R𝑛1 × R× R.

174

Recall that 𝐶cl
k0

= 𝐶k0 ×ℰ1×R≥0×{0, 1} and 𝐶k0 ⊂ 𝑈p,0, so 𝑈 is an open neighbor-

hood of 𝐶cl
k0
. Since 𝐶 ⊂ 𝐶cl

k0
, the set 𝑈 is an open neighborhood of 𝐶. Furthermore,

𝑉 is locally Lipschitz continuous on 𝑈 because 𝑉p is locally Lipschitz on 𝑈p,0, the

function 𝑣 ↦→ 𝑣 is Lipschitz everywhere, and the max operator preserves Lipschitz

continuity. Thus, 𝑉 satisfies (LFC2).

Finally, we show that 𝑉 is positive definite on 𝐶 ∪𝐷 ∪ 𝐺(𝐷) with respect to

𝒜. As shown above, 𝐶 ∪ 𝐷 ∪ 𝐺(𝐷) = 𝐶 ∪ 𝐷 = 𝒳 , so we must show that for all

𝑥 ∈ 𝒳 , if 𝑥 ∈ 𝒜, then 𝑉 (𝑥) = 0, and if 𝑥 ̸∈ 𝒜, then 𝑉 (𝑥) > 0. Take any 𝑥 ∈ 𝒜.

Then, (𝑧, 𝜂0) ∈ 𝒜p and 𝑣 = 0, so 𝑉p(𝑧, 𝜂0) = 0 and 𝑉 (𝑥) = 0. Alternatively, take any

𝑥 ∈ 𝒳 ∖ 𝒜. Then, either (𝑧, 𝜂0) ̸∈ 𝒜p or 𝑣 ̸= 0. We get that 𝑉p(𝑧, 𝜂0) > 0 or 𝑣 > 0,

respectively, so 𝑉 (𝑥) > 0. Therefore, 𝑉 satisfies (LFC3).

B.1.3 Proof of Lemma 4.2

Before proving Lemma 4.2, it is useful to first prove the following lemma.

Lemma B.2. Suppose ℋp, ℋk0 , ℋk1 , and ℋs satisfy Assumption 4.1. Then, 𝐶cl
⋆ ∪

𝐷cl
⋆ = 𝒳 for each ⋆ ∈ {p,k0,k1, s}.

Proof. Take any subsystem ⋆ ∈ {p,k0,k1, s}. From definitions, 𝐶cl
⋆ ∪ 𝐷cl

⋆ ⊂ 𝒳 .

Thus, all that remains is to show 𝒳 ⊂ 𝐶cl
⋆ ∪ 𝐷cl

⋆ . To this end, take any 𝑥 :=

(𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 ; we will show that 𝑥 ∈ 𝐶cl
⋆ ∪𝐷cl

⋆ .

Consider the plant subsystem, ⋆ = p. By (B1), we have that (𝑧, 𝜅(𝑥)) ∈ 𝐶p∪𝐷p.

Per (B3), we find that dom(𝐹p) = 𝐶p and dom(𝐺p) = 𝐷p so 𝑥 ∈ dom(𝐹 cl
p) ∪

dom(𝐺cl
p). Using the definitions of 𝐶cl

p , 𝐷cl
p , 𝐶cl

p , and 𝐷cl
p in (4.8) and (4.15), we

find that

𝑥 ∈ dom(𝐹 cl
p) ∪ dom(𝐺cl

p) = 𝐶cl
p ∪𝐷cl

p .

For ⋆ = k0, we have

𝑥 ∈ 𝒳 = (𝐶k0 ∪𝐷k0)× ℰ1 × 𝒱 × {0, 1} = 𝐶cl
k0

∪𝐷cl
k0
.

Similarly, for ⋆ = {k1, s}, we have that 𝒳 = 𝐶k1 ∪𝐷k1 = 𝐶cl
k1

∪𝐷cl
k1

= 𝐶cl
k1

∪𝐷cl
k1

and 𝒳 = 𝐶s ∪𝐷s = 𝐶cl
s ∪𝐷cl

s = 𝐶cl
s ∪𝐷cl

s by (B1), so

𝑥 ∈ 𝐶cl
k1

∪𝐷cl
k1

and 𝑥 ∈ 𝐶cl
s ∪𝐷cl

s .

We now prove Lemma 4.2.

175

Proof that 𝐶 ∪𝐷 = 𝒳 . Take any 𝑥 ∈ 𝒳 . For each ⋆ ∈ {p,k0,k1, s}, we either have

𝑥 ∈ 𝐶cl
⋆ or 𝑥 ∈ 𝐷cl

⋆ . If 𝑥 ∈ 𝐶cl
⋆ for all ⋆ ∈ {p,k0,k1, s}, then 𝑥 ∈ 𝐶. Otherwise,

𝑥 ∈ 𝐷cl
⋆ for some ⋆ ∈ {p,k0,k1, s}, so 𝑥 ∈ 𝐷. Therefore, 𝐶 ∪𝐷 = 𝒳 .

Proof that p𝐺(𝐷) ⊂ 𝐶 ∪𝐷. To show p𝐺(𝐷) ⊂ 𝐶 ∪ 𝐷, we will instead show that

𝐺(𝐷) ⊂ 𝐶 ∪ 𝐷. The motivation for this is that1 p𝐺(𝐷) = 𝐺(𝐷), and 𝐶 ∪ 𝐷 is

closed, so 𝐺(𝐷) ⊂ 𝐶 ∪𝐷 implies

p𝐺(𝐷) = 𝐺(𝐷) ⊂ 𝐶 ∪𝐷.

We now prove that 𝐺(𝐷) ⊂ 𝐶 ∪𝐷. Take any

𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝐷 and 𝑔 := (𝑔𝑧, 𝑔𝜂0 , 𝑔𝜂1 , 𝑔
′
v, 𝑔𝑞) ∈ p𝐺(𝑥)

(the prime notation on 𝑔′v is used to distinguish it from the function 𝑔v). We want to

show 𝑔 ∈ 𝐶 ∪𝐷 = 𝒳 . From the definition of 𝐷, the vector 𝑥 must be in 𝐷cl
p , 𝐷cl

k0
,

𝐷cl
k1
, or 𝐷cl

s . We will consider these four cases, which correspond to jumps caused

by ℋp, ℋk0 , ℋk1 , or ℋs, respectively.

Case 1. Suppose 𝑥 ∈ 𝐷cl
p and 𝑔 ∈ y𝐺cl

p (𝑥), which indicates a jump in plant state

from (𝑧, 𝜅(𝑥)) ∈ 𝐷p to 𝑔𝑧 ∈ 𝐺p(𝑧, 𝜅(𝑥)), while the other components are unchanged;

that is, 𝑔𝜂0 = 𝜂0, 𝑔𝜂1 = 𝜂1, 𝑔
′
v = 𝑣, and 𝑔𝑞 = 𝑞. By Assumption 4.2 and (B1) of

Assumption 4.1, (𝑔𝑧, 𝜂0) ∈ 𝐶k0 ∪𝐷k0 = ℰp,0. Since 𝑔𝜂1 = 𝜂1 ∈ ℰ1, 𝑔′v = 𝑣 ∈ 𝒱, and
𝑔𝑞 = 𝑞 ∈ {0, 1} are unchanged, we have that

(𝑔𝑧, 𝑔𝜂0 , 𝑔𝜂1 , 𝑔
′
v, 𝑔𝑞) ∈ ℰp,0 × ℰ1 × 𝒱 × {0, 1} = 𝒳 .

Case 2. Suppose 𝑥 ∈ 𝐷cl
k0

and 𝑔 ∈ y𝐺cl
k0
(𝑥). We have (𝑧, 𝜂0) ∈ 𝐷k0 and 𝑔𝜂0 ∈

𝐺k0(𝑧, 𝜂0). By assumption Assumption 4.2, we have (𝑧, 𝑔𝜂0) ∈ ℰp,0 and the other

components are unchanged, so, as before, 𝑔 is in 𝒳 .

Case 3. Suppose 𝑥 ∈ 𝐷cl
k1

and 𝑔 ∈ y𝐺cl
k1
(𝑥). By assumption Assumption 4.2, we have

𝑔𝜂1 ∈ ℰ1 with the other components unchanged, so 𝑔 ∈ 𝒳 .

1Consider ℋp. In the definition of y𝐺cl
p , we regularize 𝐺cl

p using
⋂︀

𝛿>0 𝐺
cl
p (𝑥+ 𝛿B). Since

dom(𝐺cl
p) = 𝐷cl

p , however, 𝐺cl
p (𝑥+ 𝛿B) = 𝐺cl

p

(︀
(𝑥+ 𝛿B) ∩𝐷cl

p

)︀
⊂ 𝐺cl

p (𝐷cl
p) for all 𝛿 > 0. Therefore,

y𝐺cl
p (𝑥) ⊂ 𝐺cl

p (𝐷cl
p)

176

Case 4. Suppose 𝑥 ∈ 𝐷cl
s and 𝑔 ∈ y𝐺cl

s (𝑥). We have that 𝑔′v = 𝑔v(𝑥) ∈ 𝒱 per As-

sumption 4.2, and 𝑞 = 1− 𝑞 ∈ {0, 1} with the other components unchanged, so 𝑔 is

in 𝒳 .

Therefore, p𝐺(𝐷) ⊂ 𝒳 = 𝐶 ∪𝐷.

B.1.4 Construction of Class 𝒦∞ bounds on 𝑉

Lemma B.3. Suppose the assumptions of Lemma 4.2 hold, and that there exists

𝛼𝑝 ∈ 𝒦∞ such that 𝛼𝑝(|(𝑧, 𝜂0)|𝒜p) ≤ 𝑉p(𝑧, 𝜂0) for all (𝑧, 𝜂0) ∈ 𝐶k0 ∪𝐷k0 , as per (L3)

of Assumption 4.5, and let 𝛼 : R≥0 → R≥0 be defined by

𝛼(𝑟) := min
{︁
𝛼𝑝(𝑟/

√
2), 𝑟/

√
2
}︁

∀𝑟 ≥ 0. (B.1)

Then, 𝛼 is a class-𝒦∞ and 𝛼(|𝑥|𝒜) ≤ 𝑉 (𝑥) for all 𝑥 ∈ 𝐶 ∪𝐷 ∪𝐺(𝐷).

Proof. Per Lemma 4.2, 𝒳 = 𝐶 ∪ 𝐷 ∪ 𝐺(𝐷). Take any 𝑥 := (𝑧, 𝜂0, 𝜂1, 𝑣, 𝑞) ∈ 𝒳 .

From Lemma B.4,

|𝑥|𝒜 =
√︁
|(𝑧, 𝜂0)|2𝒜p

+ 𝑣2 ≤
√
2max{|(𝑧, 𝜂0)|𝒜p , 𝑣}.

Then,

𝛼(|𝑥|𝒜) = min
{︁
𝛼𝑝(|𝑥|𝒜/

√
2), |𝑥|𝒜/

√
2
}︁

≤ min
{︁
𝛼𝑝

(︁√
2√
2
max

{︀
|(𝑧, 𝜂0)|𝒜, 𝑣

}︀)︁
,

√
2√
2
max

{︀
|(𝑧, 𝜂0)|𝒜, 𝑣

}︀}︁
. (B.2)

Consider two cases:

Case 1. Suppose |(𝑧, 𝜂0)|𝒜 ≥ 𝑣. Then, max
{︀
|(𝑧, 𝜂0)|𝒜, 𝑣

}︀
= |(𝑧, 𝜂0)|𝒜, so

𝛼(|𝑥|𝒜) = min{𝛼𝑝(|(𝑧, 𝜂0)|𝒜), |(𝑧, 𝜂0)|𝒜}

≤ 𝛼𝑝(|(𝑧, 𝜂0)|𝒜) ≤ 𝑉p(𝑧, 𝜂0) ≤ max{𝑉p(𝑧, 𝜂0), 𝑣} = 𝑉 (𝑥). (B.3)

Case 2. Suppose |(𝑧, 𝜂0)|𝒜 < 𝑣. Then, max
{︀
|(𝑧, 𝜂0)|𝒜, 𝑣

}︀
= 𝑣, so

𝛼(|𝑥|𝒜) = min{𝛼𝑝(𝑣), 𝑣} ≤ 𝑣 ≤ max{𝑉p(𝑧, 𝜂0), 𝑣} = 𝑉 (𝑥). (B.4)

Therefore, by cases, we have that 𝛼(|𝑥|𝒜) ≤ 𝑉 (𝑥) for all 𝑥 ∈ 𝒳 . Finally, 𝛼 is a class-

𝒦∞ function because it is defined as the pointwise minimum of two 𝒦∞ functions,

so it is class-𝒦∞.

177

Lemma B.4. For any 𝑎 ≥ 0 and 𝑏 ≥ 0,

max{𝑎, 𝑏} ≤
√︀
𝑎2 + 𝑏2 ≤

√
2max{𝑎, 𝑏}.

Proof. Take any 𝑎 ≥ 0 and 𝑏 ≥ 0. We have that 𝑎 =
√
𝑎2 ≤

√
𝑎2 + 𝑏2 and 𝑏 =

√
𝑏2 ≤

√
𝑎2 + 𝑏2, so

max{𝑎, 𝑏} ≤
√︀
𝑎2 + 𝑏2.

Since max{·, ·} and
√︁
(·)2 + (·)2 are symmetrical, we can assume without loss of

generality that 𝑎 ≥ 𝑏. Then, max{𝑎, 𝑏} = 𝑎 and√︀
𝑎2 + 𝑏2 ≤

√︀
𝑎2 + 𝑎2 =

√
2 𝑎 =

√
2max{𝑎, 𝑏}.

B.1.5 Tangent Cone Results

This section contains lemmas regarding tangent cones.

Lemma B.5. Given sets 𝑆 ⊂ R𝑛 and 𝒰 ⊂ R𝑛, suppose 𝒰 is open. For every point

𝑥 ∈ 𝑆 ∩ 𝒰 ,
𝑇𝑆(𝑥) = 𝑇𝑆∩𝒰 (𝑥).

Proof. Take any 𝑥 ∈ 𝑆 ∩ 𝒰 . We immediately have that 𝑇𝑆∩𝒰 (𝑥) ⊂ 𝑇𝑆(𝑥), since

𝑆 ∩ 𝒰 ⊂ 𝑆. To show equality, we want to show 𝑇𝑆(𝑥) ⊂ 𝑇𝑆∩𝑈 . Take any 𝑤 ∈ 𝑇𝑆(𝑥).

By definition, there exists convergent sequences 𝑤𝑖 → 𝑤 in R𝑛 and ℎ𝑖 → 0+ in R≥0

such that 𝑥 + ℎ𝑖𝑤𝑖 ∈ 𝑆 for all 𝑖 ∈ N. Since 𝒰 is open and contains 𝑥, there exists

𝜀 > 0 such that 𝑥+ 𝜀B ⊂ 𝒰 . The sequence 𝑖 ↦→ 𝑤𝑖 is bounded, so ℎ𝑖𝑤𝑖 → 0. Thus,

there exists 𝑖0 ∈ N such that |ℎ𝑖𝑤𝑖| ≤ 𝜀 all 𝑖 ≥ 𝑖0. That is, the tail of 𝑖 ↦→ ℎ𝑖𝑤𝑖

is contained in 𝑥 + 𝜀B ⊂ 𝒰 , so the sequences ℎ𝑖−𝑖0 → 0+ and 𝑤𝑖−𝑖0 → 𝑤 satisfy

𝑥+ ℎ𝑖−𝑖0𝑤𝑖−𝑖0 ∈ 𝑆 ∩ 𝑈 for all 𝑖 ∈ N. Therefore, 𝑤 ∈ 𝑇𝑆∩𝒰 (𝑥).

Lemma B.6. Consider a closed set 𝑆 ∈ R𝑛 and a finite set 𝑄 ⊂ R. For 𝑥 := (𝑠, 𝑞) ∈
𝑆 ×𝑄, the tangent cone to 𝑆 ×𝑄 at 𝑥 is

𝑇𝑆×𝑄(𝑥) = 𝑇𝑆(𝑠)× {0}.

Proof. Take any 𝑥 := (𝑠, 𝑞) ∈ 𝑆 ×𝑄. We want to show 𝑇𝑆×𝑄(𝑥) ⊂ 𝑇𝑆(𝑠)× {0} and

𝑇𝑆×𝑄(𝑥) ⊃ 𝑇𝑆(𝑠)× {0}.

178

(“⊂”) Take any (𝑤, 𝑣) ∈ 𝑇𝑆×𝑄(𝑥, 𝑞). We want to show (𝑤, 𝑣) ∈ 𝑇𝑆(𝑠) × {0}. By

definition of the tangent cone, there exists (𝑤𝑖, 𝑣𝑖) → (𝑤, 𝑣) and ℎ𝑖 → 0+ such

that 𝑥 + ℎ𝑖(𝑤𝑖, 𝑣𝑖) ∈ 𝑆 × 𝑄 for all 𝑖 ∈ N, which is to say, 𝑠 + ℎ𝑖𝑤𝑖 ∈ 𝑆 and

𝑞 + ℎ𝑖𝑣𝑖 ∈ 𝑄. Thus, 𝑤 ∈ 𝑇𝑆(𝑠). Since 𝑄 is finite, however, each point in 𝑄 is

isolated, meaning there is an open neighborhood of 𝑞 such that 𝒰 ∩𝑄 = {𝑞}.
Eventually, 𝑣𝑖 = 0 for all 𝑖 larger than some 𝑖0 ∈ N, so 𝑣𝑖 → 0. Thus, 𝑣 = 0,

concluding the proof that (𝑤, 𝑣) ∈ 𝑇𝑆(𝑠)× {0}.

(“⊃”) Take any (𝑤, 𝑣) ∈ 𝑇𝑆(𝑠) × {0}, which is to say, 𝑤 ∈ 𝑇𝑆(𝑠) and 𝑣 = 0. There

exists a sequence 𝑤𝑖 → 𝑤 and ℎ𝑖 → 0+ such that 𝑠+ℎ𝑖𝑤𝑖 ∈ 𝑆. Let 𝑖 ↦→ 𝑣𝑖 := 0

for each 𝑖 ∈ N. We have that (𝑠, 𝑞) + ℎ𝑖(𝑤𝑖, 𝑣𝑖) = (𝑠+ ℎ𝑖𝑤𝑖, 𝑞) ∈ 𝑆 × 𝐹 for all

𝑖 ∈ N. Therefore, (𝑤, 0) ∈ 𝑇𝑆×𝐹 (𝑥).

B.2 Additional Results for Relaxed Lyapunov Condi-

tions

B.2.1 Additional Results for Hybrid Time Domains

This section contains results for relaxing the assumptions imposed on the hybrid

time domains of solutions in parts (b)-(f) of [3, Thm. 3.19(3)]

Lemma B.7. Let ℋ be a hybrid system. The following are equivalent:

(L7.1) For each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for every solution 𝜙

to ℋ and every 𝑇 ≥ 0,

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟], (𝑡, 𝑗) ∈ dom𝜙, 𝑡+ 𝑗 ≥ 𝑇 =⇒ 𝑡 ≥ 𝛾𝑟(𝑇)−𝑁𝑟.

(L7.2) For each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for every solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

(𝑡, 𝑗) ∈ dom𝜙 =⇒ 𝑡 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟

Proof. First, we show (L7.1) =⇒ (L7.2). Take any 𝑟 > 0 and take 𝛾𝑟 ∈ 𝒦∞ and

𝑁𝑟 ≥ 0 from (L7.1). Take any solution 𝜙 to ℋ such that |𝜙(0, 0)|𝒜 ∈ (0, 𝑟] and any

(𝑡0, 𝑗0) ∈ dom𝜙. Let 𝑇0 := 𝑡0 + 𝑗0. By (L7.1),

𝑡0 ≥ 𝛾𝑟(𝑇0)−𝑁𝑟 = 𝛾𝑟(𝑡0 + 𝑗0)−𝑁𝑟.

179

Therefore, (L7.2) holds.

Conversely, we show (L7.1) ⇐= (L7.2). Suppose (L7.2). Take any 𝑟 > 0

and take 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 from (L7.2). Take any solution 𝜙 to ℋ such that

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟], any 𝑇1 ≥ 0, and any (𝑡1, 𝑗1) ∈ dom𝜙 such that 𝑡1 + 𝑗1 ≥ 𝑇1.

By (L7.2) and the monotonicity of 𝛾𝑟,

𝑡1 ≥ 𝛾𝑟(𝑡1 + 𝑗1)−𝑁𝑟 ≥ 𝛾𝑟(𝑇1)−𝑁𝑟.

Therefore, (L7.1) holds.

The following lemma and proof is nearly identical to the preceding one. The

only difference is “𝑡” is replaced by “𝑗” in the left-hand side of the “⋆ ≥ 𝛾𝑟(⋆)−𝑁𝑟”

inequalities.

Lemma B.8. Let ℋ be a hybrid system. The following are equivalent:

(L8.1) For each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for every solution 𝜙

to ℋ and every 𝑇 ≥ 0,

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟], (𝑡, 𝑗) ∈ dom𝜙, 𝑡+ 𝑗 ≥ 𝑇 =⇒ 𝑗 ≥ 𝛾𝑟(𝑇)−𝑁𝑟.

(L8.2) For each 𝑟 > 0, there exist 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 such that for every solution 𝜙

to ℋ with |𝜙(0, 0)|𝒜 ∈ (0, 𝑟],

(𝑡, 𝑗) ∈ dom𝜙 =⇒ 𝑗 ≥ 𝛾𝑟(𝑡+ 𝑗)−𝑁𝑟

Proof. First, we show (L8.1) =⇒ (L8.2). Suppose (L8.1). Take any 𝑟 > 0

and take 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 from (L8.1). Take any solution 𝜙 to ℋ such that

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟] and any (𝑡0, 𝑗0) ∈ dom𝜙. Let 𝑇0 := 𝑡0 + 𝑗0. By (L8.1),

𝑗0 ≥ 𝛾𝑟(𝑇0)−𝑁𝑟 = 𝛾𝑟(𝑡0 + 𝑗0)−𝑁𝑟.

Therefore, (L7.2) holds.

Conversely, we show (L8.1) ⇐= (L8.2). Suppose (L8.2). Take any 𝑟 > 0

and take 𝛾𝑟 ∈ 𝒦∞ and 𝑁𝑟 ≥ 0 from (L8.2). Take any solution 𝜙 to ℋ such that

|𝜙(0, 0)|𝒜 ∈ (0, 𝑟], any 𝑇1 ≥ 0, and any (𝑡1, 𝑗1) ∈ dom𝜙 such that 𝑡1 + 𝑗1 ≥ 𝑇1.

By (L8.2) and the monotonicity of 𝛾𝑟,

𝑗1 ≥ 𝛾𝑟(𝑡1 + 𝑗1)−𝑁𝑟 ≥ 𝛾𝑟(𝑇1)−𝑁𝑟.

Therefore, (L8.1) holds.

180

The next result simplifies the condition for the “finite number of jumps” case

in [3, Thm. 3.19]

Lemma B.9. Let ℋ be a hybrid system. The following are equivalent:

1. For every 𝑟 ≥ 0, there exists 𝐽𝑟 ∈ N such that for every solution 𝜙 to ℋ with

|𝜙(0, 0)|𝒜 ≤ 𝑟,

dom𝜙 ⊂ R× {0, 1, . . . , 𝐽𝑟}.

2. There exist 𝛾 ∈ 𝒦 and 𝐽 > 0 such that for every solution 𝜙 to ℋ and every

(𝑡, 𝑗) ∈ dom𝜙,

𝑗 ≤ 𝛾(|𝜙(0, 0)|𝒜) + 𝐽.

Proof. (1. =⇒ 2.) Suppose that for every 𝑟 ≥ 0, there exists 𝐽𝑟 ∈ N such that for

every solution 𝜙 to ℋ such that |𝜙(0, 0)|𝒜 ≤ 𝑟,

dom𝜙 ⊂ R× {0, 1, . . . , 𝐽𝑟}.

Let 𝚥 : R≥0 → R≥0 be a nondecreasing function chosen such that for each 𝑟 ≥ 0

and dom𝜙 ⊂ R× {0, 1, . . . , 𝚥(𝑟)} for each solution 𝜙 to ℋ with |𝜙(0, 0)|𝒜 ≤ 𝑟.

Because 𝚥(𝑟) exists for all 𝑟 ≥ 0 and is nondecreasing, it is locally bounded,

so the supremum over any compact interval is finite. We will define a continuous

function 𝜎 : R≥0 → R≥0 that upper bounds 𝚥 by first defining 𝜎 at 0, 1, 2, etc., and

then using linear interpolation between those points. For 𝑟0 = 0, let

𝜎(𝑟0) := sup
𝑟∈[0,1]

𝚥(𝑟).

For each 𝑟𝑖 ∈ {1, 2, . . . }, let

𝜎(𝑟𝑖) := max

{︃
sup

𝑟∈[𝑟𝑖,𝑟𝑖+1]
𝚥(𝑟), 𝜎(𝑟𝑖−1) + 1

}︃
.

Since 𝚥(𝑟𝑖+1) ≥ 𝚥(𝑟𝑖) + 1, the sequence 𝑟𝑖 ↦→ 𝜎(𝑟𝑖) is strictly increasing. Then, for

𝑟 ̸∈ N, let

𝜎(𝑟) = (𝑟 − ⌊𝑟⌋)𝜎(⌊𝑟⌋) + (⌈𝑟⌉ − 𝑟)𝜎(⌈𝑟⌉),

which is the linear interpolation between 𝜎(⌊𝑟⌋) and 𝜎(⌈𝑟⌉) and, as such, 𝜎 is

continuous. For all 𝑟 ≥ 0, we have that 𝜎(𝑟) ≥ 𝚥(𝑟). Let 𝐽 := 𝜎(0) and let 𝛾 :

R≥0 → R≥0 be defined, for each 𝑟 ≥ 0, by

𝛾(𝑟) := 𝜎(𝑟)− 𝐽.

181

Because 𝜎 is continuous and increasing, 𝛾 is also. Additionally, 𝛾(0) = 𝜎(0)− 𝐽 = 0.

Therefore, 𝛾 ∈ 𝒦.

Take any solution 𝜙 to ℋ. Because

𝚥(|𝜙(0, 0)|𝒜) ≤ 𝜎(|𝜙(0, 0)|𝒜) = 𝛾(|𝜙(0, 0)|𝒜) + 𝐽,

we have that

dom𝜙 ⊂ R×
{︀
0, 1, . . . , 𝚥(|𝜙(0, 0)|𝒜)

}︀
⊂ R×

{︀
0, 1, . . . , 𝛾(|𝜙(0, 0)|𝒜) + 𝐽

}︀
.

Thus, for all (𝑡, 𝑗) ∈ dom𝜙,

𝑗 ≤ 𝛾(|𝜙(0, 0)|𝒜) + 𝐽.

(1. ⇐= 2.) Suppose that there exist 𝛾 ∈ 𝒦 and 𝐽 > 0 such that for every solu-

tion 𝜙 to ℋ and every (𝑡, 𝑗) ∈ dom𝜙,

𝑗 ≤ 𝛾(|𝜙(0, 0)|𝒜) + 𝐽.

Take any 𝑟 ≥ 0 and let 𝐽𝑟 := 𝛾(𝑟) + 𝐽 . Then, for every solution 𝜙 to ℋ with |𝜙|𝒜,
we have that

𝛾(|𝜙(0, 0)|𝒜) + 𝐽 ≤ 𝛾(𝑟) + 𝐽 = 𝐽𝑟.

Therefore, for all (𝑡, 𝑗) ∈ dom𝜙,

𝑗 ≤ 𝐽𝑟.

B.3 Additional Results for CTG

This section contains results omitted from Chapter 6.

Lemma B.10. Let ℋ be a conical hybrid system with constant flows and let 𝜙

be any solution to ℋ. For all 𝑟 > 0, the hybrid arc 𝜓(𝑡, 𝑗) := 𝑟𝜙(𝑡/𝑟, 𝑗) for all

(𝑡, 𝑗) ∈ dom(𝜓) := {(𝑡, 𝑗) | (𝑡/𝑟, 𝑗) ∈ dom(𝜙)} is a solution to ℋ.

Proof. Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid system with constant flows, let 𝜙

be any solution to ℋ, and for any 𝑟 > 0, let 𝜓(𝑡, 𝑗) := 𝑟𝜙(𝑡/𝑟, 𝑗) for all (𝑡, 𝑗) ∈
dom(𝜓) := {(𝑡, 𝑗) | (𝑡/𝑟, 𝑗) ∈ dom(𝜙)}.

182

We have that 𝑡𝑗 is a jump time in dom(𝜓) if and only if 𝑡𝑗/𝑟 is a jump time in

dom(𝜙), so 𝜙(𝑡𝑗/𝑟, 𝑗 − 1) ∈ 𝐷. Since 𝐷 is a cone, 𝜓(𝑡𝑗 , 𝑗 − 1) = 𝑟𝜙(𝑡𝑗/𝑟, 𝑗 − 1) is

also in 𝐷. By the linearity of 𝑔,

𝑔(𝜓(𝑡𝑗 , 𝑗 − 1)) = 𝑔(𝑟𝜙(𝑡𝑗/𝑟, 𝑗 − 1))

= 𝑟𝑔(𝜙(𝑡𝑗/𝑟, 𝑗 − 1))

= 𝑟𝜙(𝑡𝑗/𝑟, 𝑗)

= 𝜓(𝑡𝑗 , 𝑗),

so 𝜓 satisfies the jump conditions.

Take any pair of consecutive jump times 𝑡𝑗 and 𝑡𝑗+1 in dom(𝜓) such that 𝑡𝑗+1 >

𝑡𝑗 , meaning 𝐼 := [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜓). Then, [𝑡𝑗/𝑟, 𝑡𝑗+1/𝑟] is also

an interval of flow in dom(𝜙). For each 𝑡 ∈ 𝐼, we have that 𝜓(𝑡, 𝑗) = 𝑟𝜙(𝑡/𝑟, 𝑗) ∈ 𝐶

because 𝐶 is a closed cone. From flow condition (1.6) in the definition of hybrid

solutions, we have that 𝜙̇(𝑡, 𝑗) = 𝑓(𝜙(𝑡, 𝑗)) for almost all 𝑡 ∈ 𝐼. Thus, using the

chain rule and the fact that 𝑓 is constant-valued, we find that

𝜓̇(𝑡, 𝑗) =
𝑑

𝑑𝑡
(𝑟𝜙̇(𝑡/𝑟, 𝑗))

= 𝑟

(︃
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡/𝑟

𝜙(𝑡, 𝑗)

)︃(︂
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡

(𝑡/𝑟)

)︂
= 𝑟𝑓(𝜙(𝑡/𝑟, 𝑗))(1/𝑟)

= 𝑓(𝜓(𝑡, 𝑗))

for almost all 𝑡 ∈ 𝐼, so 𝜓 satisfies the flow conditions in the definition of a hybrid

solution. Therefore, 𝜓 is a solution to ℋ.

Lemma B.11. Let ℋ be a conical hybrid system with linear flows and let 𝜙 be any

solution to ℋ. For all 𝑟 > 0, the hybrid arc 𝜓 defined by 𝜓(𝑡, 𝑗) := 𝑟𝜙(𝑡, 𝑗) for all

(𝑡, 𝑗) ∈ dom(𝜓) := dom(𝜙) is a solution to ℋ.

Proof. Let ℋ = (𝐶, 𝑓,𝐷, 𝑔) be a conical hybrid system with linear flows, let 𝜙 be

any solution to ℋ, and for any 𝑟 > 0, let 𝜓(𝑡, 𝑗) := 𝑟𝜙(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜓) :=

dom(𝜙).

For each jump time 𝑡𝑗 in dom(𝜙), we have that 𝑡𝑗 is a jump time in dom(𝜓)

and 𝜙(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷. Since 𝐷 is a cone, 𝜓(𝑡𝑗 , 𝑗 − 1) = 𝑟𝜙(𝑡𝑗 , 𝑗 − 1) is also in 𝐷. By

183

the linearity of 𝑔,

𝑔(𝜓(𝑡𝑗 , 𝑗 − 1)) = 𝑔(𝑟𝜙(𝑡𝑗 , 𝑗 − 1)) = 𝑟𝑔(𝜙(𝑡𝑗 , 𝑗 − 1)) = 𝑟𝜙(𝑡𝑗 , 𝑗) = 𝜓(𝑡𝑗 , 𝑗),

so 𝜓 satisfies the jump conditions.

Take any pair of consecutive jump times 𝑡𝑗 and 𝑡𝑗+1 in dom(𝜙) such that 𝑡𝑗+1 >

𝑡𝑗 , meaning 𝐼 := [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜙), and also in dom(𝜓). For

each 𝑡 ∈ 𝐼, we have that 𝜓(𝑡, 𝑗) = 𝑟𝜙(𝑡, 𝑗) ∈ 𝐶 because 𝐶 is a closed cone. Let 𝐴 be

the linear map defining the flow dynamics 𝑥̇ = 𝑓(𝑥) = 𝐴𝑥. From flow condition (1.6)

in the definition of hybrid solutions, we have that 𝜙̇(𝑡, 𝑗) = 𝐴𝜙(𝑡, 𝑗) = 𝑓(𝜙(𝑡, 𝑗)) for

almost all 𝑡 ∈ 𝐼. Thus,

𝜓̇(𝑡, 𝑗) = 𝑟𝜙̇(𝑡, 𝑗) = 𝑟𝐴𝜙(𝑡, 𝑗) = 𝐴(𝑟𝜙(𝑡, 𝑗)) = 𝐴𝜓(𝑡, 𝑗)

for almost all 𝑡 ∈ 𝐼, so 𝜓 satisfies the flow conditions in the definition of a hybrid

solution. Therefore, 𝜓 is a solution to ℋ.

184

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Preliminaries
	Hybrid Systems
	Notation for Sets and Set-valued Maps
	Set-valued Lie derivative
	Stability Properties and Lyapunov Functions
	Safety, Forward Invariance, and Barrier Functions

	Uniting Feedback For Safety with Static Controllers
	Problem Setting
	Hybrid Closed–Loop System
	Forward Invariance of K
	Unbounded Solutions Without Chattering

	Uniting Feedback for Asymptotic Stability with Static Controllers
	Hybrid Control Strategy
	Construction of the Closed-Loop System with Static Feedback

	Uniting Feedback with Hybrid Controllers and a Hybrid Plant
	Uniting Feedback for Hybrid Plant with Hybrid Controllers
	Regularity of the Closed-loop System
	Existence of Solutions
	Ensuring Minimum Dwell Times

	Supervisor Design for Global Asymptotic Stability

	Relaxed Lyapunov Conditions for Hybrid Systems
	Introduction
	Insertion Theorems
	Insertion Theorems for Positive Definite Functions
	Insertion Theorems for Class K-infinity Functions

	Lyapunov Theorems for Compact Sets
	Simplified Assumptions on Hybrid Time Domains
	Bounded Solutions from Lyapunov Functions
	Continuous-Time and Discrete-Time Systems

	Conical Transition Graph (CTG)
	Introduction
	Preliminaries
	Conical Hybrid Systems
	Properties of Conical Hybrid Systems

	Applications of Conical Hybrid Systems
	Sampled Linear Systems
	Conical Approximations

	Conical Transition Graph
	Establishing Pre-asymptotic Stability via the CTG
	CTG Simulations
	Stability and Asymptotic Stability

	Abstractions to Reduce the Graph Size
	Numerical Example
	Results

	Future Work

	Simulator for Hardware Architecture and Real-time Control
	Introduction
	Problem Setting
	Literature Review

	Modeling
	Physics and Controller
	Interaction between Physics and Controller with Computation Delays
	Computational Hardware Simulation

	SHARC Simulator
	Serial Mode
	Parallel Mode

	Numerical Experiments
	Adaptive Cruise Control

	Conclusion

	Hybrid Equations Toolbox
	Additional Results and Proofs
	Additional proofs from Chapter 4
	Proof of Hybrid Basic Conditions
	Proof that V is a Lyapunov function candidate
	Proof of result:X = C cup D
	Construction of Class K-infinity bounds on V
	Tangent Cone Results

	Additional Results for Relaxed Lyapunov Conditions
	Additional Results for Hybrid Time Domains

	Additional Results for CTG

