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Abstract

SAFETY AND ASYMPTOTIC STABILITY WHILE EXPLOITING

UNCERTIFIED CONTROLLERS VIA UNITING FEEDBACK
by
Paul Kenna Wintz

Certificate functions, such as barrier functions and Lyapunov functions, are com-
monly used to verify control system properties. The construction of these certificates,
however, is often difficult, typically requiring significant trial and error. Once a cer-
tificate function is found, modifications to the controller are hindered because each
change requires the construction of a new certificate function. This problem is ad-
dressed in this dissertation by the design of uniting feedback strategies that allow
uncertified controllers to be safely used by exploiting a controller with a known certifi-
cate as a backup. In uniting feedback, an automatic supervisor switches between two
controllers. The result is a hybrid control strategy that switches between certified
and uncertified controllers while preserving the safety or asymptotic property that
is guaranteed for the certified controller. By using a certified controller as a backup,
these uniting feedback strategies allow for exploiting uncertifiable controllers that
may have other desirable properties. A general framework is developed that allows
for the design of supervisors for systems with both the controllers and the plant
modeled as hybrid dynamical systems with set-valued dynamics, while ensuring the
closed-loop system is well-posed and the switching does not occur too often.
Several auxiliary tools and results are also included. A hybrid Lyapunov theorem
is presented that relaxes several key assumptions in prior hybrid Lyapunov theorems.
These relaxations make it easier to construct Lyapunov certificates and are used
to prove results in this dissertation. Additionally, the conical transition graph is
presented as a tool for algorithmically checking stability in conical hybrid systems,
guiding the search for Lyapunov functions or identifying when such a search is futile.
Finally, the Simulator for Hardware Architecture and Real-time Control (SHARC) is
a simulation tool for verifying the performance of computationally delayed control
systems, providing a useful testing platform for verifying uniting feedback strategies

when deployed on systems with limited computational resources.
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Chapter 1

Introduction

This dissertation considers the design of controllers for control systems to pro-
duce desired properties in the closed-loop system. We consider a broad class of
control systems and controllers, but as an initial illustration consider a continuous-
time control system with state z € R™ and u € R™ that we write as an ordinary

differential equation (ODE) with an input:

z= f(z,u),

where values of u are generated by the controller and 2 := dz/dt. A static state feed-
back controller assigns the input as a function of the current state, e.g., u(t) = x(z(t)),
where k : R™ — R™. Such a controller does not depend on the past, so it is called
memoryless. For historical reasons, the system that is to be controlled is called
the plant (derived from the early application of control engineering to chemical
plants). Aside from modeling the evolution of a plant continuous-time as an ODEs,
the dynamics can also be given in discrete time as difference equations, or in both
as a combination of continuous- and discrete-time, which we call hybrid systems.
The class of control systems can be further broadened by allowing for set-valued
dynamics, which in the case of a continuous-time system results in a differential

inclusion,

zZ € F(z,u)

where F' is a set-valued map that describes a set of possible values of the derivative Z.
Generally, solutions are not unique for systems with set-valued dynamics, which
makes them suitable for modeling uncertainty or non-deterministic control systems.

Similarly, we can also consider a broader class of controllers beyond static

feedback. In fact, controllers can also have internal states that evolve according to



some dynamics. Returning to the context of continuous-time systems, as dynamic

feedback controller with state € RP can be written as

77 = fc(zvn)
u = £(z,m),

where z and u are the state and input of the plant, as before. As with plants,
the dynamic feedback controllers can have dynamics in continuous-, discrete-, or
hybrid-time as well as be set valued.

There are two of the fundamental goals in the design of control systems: i) Move
the system to a target. ii) Avoid obstacles and any unsafe or prohibited states.
The first goal, target-reaching, can be stated mathematically as convergence of the
system’s state to a set in its configuration space. Typically, one wishes to design
a system that can converge to the target from any point in some region around it.
We call this property asymptotic stability. If the system converges to the target
from every initial state (within some domain of consideration), then we say that
the target is globally asymptotically stable. Thus, the first goal can be restated as
“design a controller that renders the target set to be globally asymptotically stable.”

The second goal, called constraint-satisfaction or safety, is described mathe-
matically by the concept of forward invariance. Informally, a set of configurations
in a dynamical system’s state space is called forward invariant if every trajectory
that starts inside the set will always remain inside the set as it evolves according to
the system dynamics.! When designing a safe controller, the particular goal is to
produce a forward invariant set that is fully within the constraints and contains all
possible initial system states.

The process of achieving the two goals has parts relevant to this work, namely

controller synthesis and formal verification.? Although I will refer to these as “steps,”

'Trajectories may, however, enter a forward invariant set. The “forward” indicates that solutions
do not leave the set time progresses forward. In contrast, backward invariance would indicate that
solutions remain in the set as you consider trajectories moving backward in time, indicating that

no trajectories move into the set.
20ther tasks are also involved. Before one can synthesize a controller, one typically creates

or learns a model of the system, including finding numerical values for system parameters. Once
a controller is designed, mathematically, the implementation onto a physical system also carries
significant challenges. On a physical system, one must also estimate the state of the system using

measurements and account for unmodeled disturbances and uncertainties.
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their execution is not sequential, as they typically require multiple iterations. The
synthesis step consists of selecting a controller that is intended to satisfy the system
specifications. There are existing formulaic methods for controller synthesis for
particular classes of control systems, such as linear control systems, but the task is
generally non-trivial. The verification step consists of demonstrating that the goal
is achieved. Although such verification can be preformed empirically, via statistical
analysis of physical or simulated experiments, we are interested in formal methods
of proving that a mathematical model of a control system satisfies given properties
through deductive reasoning.

One prominent method for verification of asymptotic stability or safety of a
closed-loop system is via the construction of a certificate function with certain
properties, namely positive definiteness and monotonic rate of change along flows
in certain regions. For stability properties, certificate functions are called Lyapunov
functions and for safety, certificates are called barrier functions or barrier certificates.
There are, in fact, many varieties of Lyapunov functions. Differences arise from the
particular type of stability desired (Lyapunov stability, local/global asymptotic
stability, finite-time stability, fixed-time stability, input-to-state stability, practical
asymptotic stability), with a similar variety of theorems that apply for various
combinations of system and type of stability. There are also several varieties of
barrier functions, although fewer, with distinctions primarily arising from differences
in the types of systems considered. In this work, we consider Lyapunov functions for
certifying global asymptotic stability and barrier functions for safety with respect
to hybrid dynamical systems, including hybrid systems with set-valued dynamics.

Constructing Lyapunov and barrier functions for nonlinear systems is gener-
ally a difficult problem. For each variety of Lyapunov function, there is condition
that the function is positive definite with respect to the target set and one or more
other conditions that are sufficient for ensuring that Lyapunov function is mono-
tonically decreasing or nondecreasing for all trajectories the system can take. The
process typically involves trial and error. Once a Lyapunov or barrier function
is known, modifications to the controller is difficult because each change requires
the construction of a new certificate function, limiting iteration. We address this
problem in Chapters 2—4 by introducing uniting feedback strategies that allow un-

certified controllers to be used by exploiting a controller with a known certificate as
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a backup. The result is a hybrid control strategy that switches between the certified
and uncertified controllers while preserving the safety or asymptotic property that
is guaranteed for the certified controller. Our control strategy is designed to prevent
chattering and ensures that the safety or asymptotic stability property is robust to
small measurement noise.

In Chapters 3 and 4 we give a uniting feedback strategy for global asymptotic
stability. To prove that the uniting feedback produces global asymptotic stability, we
generate a new certificate function for the hybrid closed-loop system, which turns out
to be a non-smooth function. Although there are existing theorems for nonsmooth
Lyapunov functions in the context of hybrid systems, we found the assumptions too
strict for what we needed. Thus, we developed a hybrid Lyapunov theorem with
relaxed assumptions, which is presented in Chapter 5.

The application of our uniting feedback strategy requires that one must first
construct a Lyapunov function. The construction of Lyapunov functions is generally
difficult. In fact, is often unclear whether or not one’s search for a Lyapunov function
is futile. The search can be unsuccessful because the right function has not been
tried or because the system is actually unstable. While constructing Lyapunov
functions, it is not obvious during if failure to find a Lyapunov function is due to
not yet trying the right function or if no such function exists because the system is
unstable. Thus, it would be useful to have reliable methods for checking the target
set is asymptotically stable or unstable before one starts searching for a Lyapunov
function. For continuous- or discrete-time systems, stability of the origin can be
immediately determined by examining the eigenvalues of the system’s matrix. In
Chapter 6, we investigate a method for evaluating stability in a class of hybrid
systems that we call conical hybrid systems and is a reasonably close analog to
linear systems for hybrid systems. We developed a tool called the conical transition
graph (CTG) that can automatically determine stability for conical hybrid systems,
including systems that switch between multiple modes.

One promising application of our uniting feedback strategies is for deployment
of computationally demanding controllers on cyber-physical systems with limited
computational resources. Suppose system designers want to deploy an advanced
controller that is expected to perform well but is difficult to verify due to complex

interactions between the system’s trajectory, delays in updating the control values,
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and the variable amount of time required to compute updates. By using a compu-
tationally inexpensive controller as the certified controller in the uniting feedback
strategy, the designers can deploy advanced controllers without jeopardizing the
system. In Chapter 7, we present a tool called SHARC for computing trajectories of
cyber-physical systems that uses a cycle-accurate simulation of the system’s comput-
ing hardware to incorporate the computational delays into the timing of the system’s

control updates.

1.1 Preliminaries

For notation, we use N := {0,1,2,...} and R>¢ := [0,00). The Euclidean
norm of z € R"™ is written |z| and the inner product between x and y € R" is
written (x, y). The concatenation of vectors x; € R™ and zp € R™ is denoted
(z1,m2) := [71] € R™*T™2. We write the unit ball in R" as B := {z € R" : [z| < 1}.
For a set S C R", we denote the boundary as 95, the interior as int(S), the closure
as S, and the convex hull as conv(S). A neighborhood of S is any open set U
such that S C U. The distance from z to S is |z|g := infyc 4]y —x|. For any
sets S1, 52 € R"™, we write dist(S1, S2) := inf{|s1 — s2| : s1 € S1,52 € S2}. Given a

nonempty set A C R"™, the distance from any x € R" to A is

= inf |a — z|.
|z|.4 ;gAla |

We write the domain of a function f as dom(f). “Continuously differentiable”

is abbreviated as CL. If f : R® — R is differentiable at = € dom(f), then the gradient
of f at x is denoted V f(x). We say f is lower semicontinuous (LSC) if

f(zo) < liminf f(x) Vxo € dom(f).

T—T0

If f is LSC, then g := —f is upper semicontinuous (USC).

A continuous function « : [0, ¢) — Rxg is class—K if « is zero at zero and strictly
increasing. A continuous function o : R>o — R>¢ is said to be in class—K if it is
zero at zero, strictly increasing, and lim, o a(r) = co. A function p : R>g — R> is
positive definite if p(0) = 0 and p(r) > 0 for all r > 0. We write the set of all positive
definite functions on R>g as PD(0). Given nonempty sets A C R" and X C R", a

function o : R® — R>q is said to be positive definite on X with respect to A if
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o(x)=0forall x € ANX and o(x) >0 for all x € X \ A. The set of all positive
definite functions on X = R™ with respect to A is denoted PD(A). A function f is
said to be negative definite if g := —f is positive definite.

The contingent cone [1] to a set S at x is denoted Tg(z). For nonsmooth
functions, we use the Clarke generalized gradient and Clarke generalized directional
derivative [2]. For a locally Lipschitz function V' : R® — R, the Clarke generalized
gradient of V at x € R" is

(1.1)

0°V(x) == conv{lim VV (x;) ’ @i = 2) sb. Vi) is }
1—00

differentiable at each x;
The Clarke generalized directional derivative of V' at x € R™ in the direction w € R™
is given by

Ve(z,w) = Cer(;})z%;%x)(g, w). (1.2)

A set-valued map F': X = Y maps each z € X toaset F(z) CY. The domain
of F'is defined as dom(F) := {x € X | F'(z) # @}. We say F' is outer semicontinuous
(OSC) [3, Def. A.32] if for each zp € dom(F), each sequence {z;}°; in dom(F)
converging to xo, and each convergent sequence {y;}°; with each y; € F(z;), we
have that

lim y; € F(xo).

1—00
We say F is locally bounded if for each xg € dom(F'), there exists a neighborhood U
of zg such that F(U Ndom F) is bounded [3, Def. A.11].

1.1.1 Hybrid Systems

We consider hybrid systems on R™ written as

z €F(x) zeC
H: (1.3)
" €G(z) v€D
with state x € R", flow set C' C R", flow map F': C = R", jump set D C R", and
jump map G : D = R"™. We write H compactly as H = (C, F, D, G). The continuous-
time system formed by removing the discrete dynamics of H is written as (C, f).
Solutions to hybrid systems are defined on hybrid time domains, which consist

of pairs of values (t,7) € R x N where ¢ parameterizes the passage of ordinary

time and j parameterizes the passage of discrete time, counted as the number of

14



discrete jumps that have occurred. More precisely, a hybrid time domain E is a
subset of R>p x N such that there exists J € NU{co} and a nondecreasing sequence

{tj}jeq0,....y With to := 0 such that for every (t*,j*) € E, the following holds:

En([0,t*]x{0,1,...,5°}) = ([to,t1] x {0}) U ([t1,t2] x {1}) U---U ([tj=,t"] x {5*}).
(1.4)
Each t1,t9,...,t; is called a jump time in E. If t; <t;;q, then the interval
I :={t]|(t,j) € dom(p)} (which has nonempty interior) is called an interval of
flow in E. We write
sup, E := sup{t € Rsq | (t,]) € B},
sup; E :=sup{j € N| (¢,j) € E},
length(E) := sup, ' + sup; E.
A function ¢ : dom(p) — R"™ is called a hybrid arc if dom(yp) is a hybrid time
domain and ¢ is absolutely continuous on each interval of flow in dom(¢).* A hybrid

arc ¢ is said to be complete if length(dom ¢) = co. A hybrid arc ¢ is said be an
extension of another hybrid arc ¢ if dom(v)) is a strict subset of dom(y) and

QO(t,j) = ¢(t7]) \V/(t,j) € dom(q/))

Definition 1.1 (Hybrid Solution). A hybrid arc ¢ is called a solution of H if it

satisfies the following:
e At each jump time ¢; in dom(yp), the hybrid arc ¢ must satisfy
o(tj,j—1)e D (1.5a)

o(tj,7) € Glp(tj,j—1)). (1.5b)

e For each interval of flow I; in dom(y) (with I; = [tj,t;41] or I; = [t;, 00) for

some j),
p(t,j) el for all ¢ € int I; (1.6a)
Ccll—(’:(t,j) € F(p(t, 7)) for almost all ¢ € I;. (1.6b)

3 Absolute continuity is the weakest form of continuity that implies a function is differentiable
almost everywhere, making it the weakest assumption suitable for the definition of solutions to

differential inclusions.
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A solution ¢ to H is said to be a mazimal solution if it cannot be extended. That
is, ¢ is maximal if there does not exist another solution ¢ to H such that dom(y)
a strict subset of dom(v)) and ¢(t,7) = ¥(t,7) for all (t,7) € dom(y). At a jump
time ¢ in a hybrid domain, ¢ corresponds to several values of j, so it is useful to
define a function that maps each ¢ to a single value of j. In particular, for each

(t,7) € dom(p), we define
t— J3(t) :=max{j | (¢,7) € dom(p)}. (1.7)

For more on hybrid systems, see [3, 4].

A hybrid system H is called well-posed if its set of solutions is sequentially
compact, meaning that the limit of any graphically convergent sequence of solutions is
also a solution. Well-posedness is useful for establishing properties such as robustness
of asymptotic stability of compact sets. The following conditions [4, Assumption 6.5]

are sufficient for a hybrid system to be well-posed.

Definition 1.2 (Hybrid Basic Conditions [3, Def. 2.20]). A hybrid system H =
(C,F,D,G) on R™ as in (1.3) is said to satisfy the hybrid basic conditions if

(A1) C and D are closed;

(A2) C C dom(F), F is outer semicontinuous and locally bounded relative to C,

and F'(x) is convex for each = € C'; and

(A3) D C dom(G), and G is outer semicontinuous and locally bounded relative

to D. o

1.1.2 Notation for Sets and Set-valued Maps

In this work we use several notations that simplify writing about dynamical
systems with set-valued maps. For sets A C R™ and B C R™, we write the Cartesian

product using array notation, as shown here:

A
B

= A x B.

16



We also use the same notation to construct a mixture of column vectors and sets,

e.g., for AC R" and v € R™,

A
= A x {v}.
v
For set-valued maps F; : R™ = R" and F> : R™ == R”, we define F1 N F; :
R™ = R™ as
(FlﬂFQ)(.T}) :Fl(x)ﬂFg(x) Vo € R".

1.1.3 Set-valued Lie derivative

For a differential inclusion & € F(z) with a set-valued map F': R” = R" and a
Lipschitz continuous function V' : R™ — R, we define the set-value Lie derivative of

V along F as
LpV(z):={{ f) ‘ (€dV(z), f€F(x)} Vo € R™.
The set-valuedness of LpV (z) comes from two places:
1. The set-valued right-hand side of the differential inclusion & = F'(z), and

2. the set-valued Clarke generalized gradient of V| which we use because V is

only assumed to be Lipschitz—not necessarily differentiable.

Thus, even if F' is single valued or, alternatively, V' is smooth, the Lie Derivative
of V along F' would still be set-valued. For each zp € R", LV (x) is a set in R,
we can write the least upper bound as sup LgV (xz¢), which gives an upper bound
on the rate of change of V for solutions to & € F(z) at xy. This is essential to

Lyapunov-like theorems for differential inclusions, as considered in the next section.

1.1.4 Stability Properties and Lyapunov Functions

We consider a variety of stability properties for hybrid systems, which we collect
into two groups: local stability properties, given in Definition 1.3 and global stability

)

properties, given in Definition 1.4. In both definitions, the prefix “pre-” indicates
that these properties allow for maximal solutions that terminate after finite time

(e.g., due to leaving C'U D).
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Definition 1.3. For a hybrid system H as in (1.3), a nonempty set .4 C R™ is said
to be

e stable for H if for all € > 0, there exists § > 0 such that for every solution ¢
to H with |¢(0,0)]|4 < J, we have that |¢(t, j)|.4 < € for all (¢,7) € dom(yp); and

o pre-attractive for H if there exists ;1 > 0 such that for each solution ¢ to H with
|©(0,0)].4 < p, we have that (¢,7) — |¢(t,7)].a is bounded and, if ¢ is complete,
then

i N
dm [p(t, 5)la =0

If A is stable and pre-attractive for H, then it is said to be pre-asymptotically stable
(pAS). o

For the global stability properties, we consider uniform global pre-asymptotic
stability of sets, which is a stronger condition than global pre-asymptotic stability.
The “uniformity” in the defined term refers to the requirement that for each € > 0
and r > 0, there is a uniform bound 7" > 0 on the hybrid time it takes any hybrid
solution that starts within a distance of r from A to converge within a distance ¢

from A.

Definition 1.4 ([3, Def. 3.7]). For a hybrid system H as in (1.3), a nonempty set
A C R” is said to be

o uniformly globally stable for H if there exists a class-Ky, function « such that
every solution ¢ to H satisfies |p(t,7)|4 < a(|©(0,0)]4) for each (¢, j) € dom(y);

and

o uniformly globally pre-attractive for H if for each € > 0 and r > 0, there exists
T > 0 such that every solution ¢ to H with |p(0,0)|4 < r satisfies |p(t,5)|a < e
for all (¢,j) € dom(y) such that ¢t +75 > T.

If A is both uniformly globally stable and uniformly globally pre-attractive for A,
then it is said to be uniformly globally pre-asymptotically stable (UGpAS) for H. o

If every maximal solution to H is complete, then the “pre-” prefixes are omitted,

18



in which case, if A is pAS or UGpAS, then we say A is, respectively, asymptotically
stable (AS) or uniformly globally asymptotically stable (UGAS).

A classical approach to show stability is by construction of a Lyapunov function
(of some sort). The following definition gives basic assumptions that make a function
a viable candidate to be a Lyapunov function in the context of hybrid systems with

set-valued maps.

Definition 1.5 (Lyapunov function candidate). Consider a hybrid system #H :=
(C,F,D,G) on R" and a set A C R™. A function V : dom(V) — R is a Lyapunov
function candidate with respect to A for H if the following conditions hold:

(LFC1) (CUDUG(D)) C domV;
(LFC2) V is continuous and is locally Lipschitz on an open neighborhood of C;

(LFC3) V is positive definite on C'U D U G(D) with respect to A. o

A Lyapunov theorem for hybrid systems is given in [3, Thm. 3.19]. In Chapter 5,
we present an alternative hybrid Lyapunov theorem by relaxing the assumptions
of [3, Thm. 3.19]. The following corollary gives a special case of the results in

Theorem 5.1 which

1. illustrates the general form of a hybrid Lyapunov theorem and

2. is used in Chapter 4 to assert uniform global asymptotic stability.

Corollary 1.1. Consider a hybrid system H = (C,F,D,G) on R", a nonempty
compact set A C R™, and a Lyapunov function candidate V' with respect to A for
‘H. Suppose there exists « € K and an LSC function o, € PD(A) such that

alz)a) < V(x) Ve e CUDUG(D), (1.8a)
sup Lrnr,V(z) < —oc(x) Vo € C, (1.8b)
V(g) <V(x) Vz € D, Vg € G(x), (1.8¢c)

and, for each r > 0, there exist A > 0 and A; > 0 such that for every solution with
¢(0,0)[4 < r and every (to, jo) € dom(p) and (t1,1) € dom(ep),

lt1 —tol < A = |j1 —jol < Ay (1.9)
Then, A is UGpAS for H.
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1.1.5 Safety, Forward Invariance, and Barrier Functions

Definition 1.6 (Forward Invariance). A set K C R" is said to be forward pre-
invariant for a hybrid system H if, for each zg € K and each maximal solution ¢
starting from ¢(0,0) = zo: ¢(t,7) € K for all (¢,7) € dom(yp). If, additionally, each

maximal solution starting in K is complete, then K is called forward invariant. <

Forward invariance is a useful concept for the analysis of dynamical systems,
but to show that a control system is “safe,” we must show the existence of a forward
invariant set that does not intersect the inadmissible (that is, every point inside the
forward invariant set satisfies the system’s constraints) and that contains the initial

set (the set of all possible starting configurations of the system).

Definition 1.7. A control system on R™ with admissible set X C R™ and initial set
Xy C R™ is called safe if there exists a forward invariant set K such that K C X
and Xy C K. o

One of the standard tools for demonstrating that a set is forward (pre-)invariant

is by finding a barrier function.

Definition 1.8. Consider a hybrid system H = (C, F, D, G) in R™ as in Definition 1.1
and a set & C R™. We call a C! function B a barrier function of K for H if

(Bl) K ={z € R"| B(z) <0},
(B2) There exists a neighborhood U of K such that for all x € (U \ K) N C,

sup Lrn1, B(z) <0,

(B3) Forallz € KN D,
G(z) cCUD,

(B4) For allz € KN D and 7 € G(x),

B(y) <0. o

By [5, Thm. 1], the existence of a barrier function implies that K is forward
pre-invariant. In the following corollary, we give a simplified version of [5, Thm. 1]

that is sufficient for our uses.
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Corollary 1.2. Suppose that H is a hybrid system as in Definition 1.1 that satisfies
the hybrid basic conditions in Definition 1.2. If there exists a C' barrier function of

a set K for H as in Definition 1.8, then K is forward pre-invariant for H.

For a differential equation Z = f(z), conditions (B3) and (B4) hold vacuously
and (B2) simplifies to the following:

(B2') There exists a neighborhood U of K such that

(VB(z), f(z)) <0 VzxeU\K.
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Chapter 2

Uniting Feedback For Safety with

Static Controllers

This chapter introduces a uniting feedback strategy for ensuring safety while
using an uncertified controller for a continuous-time plant and static feedback con-
trollers, which are assumed to be continuous functions. Compared to subsequent
chapters, this setting is the simplest since it does not require a mechanism to ensure
convergence, as in Chapter 3, nor does it involve set-valued dynamics as in Chapter 4.

For a constrained nonlinear control system, we introduce a supervisor that
controls switches between a barrier function—certified controller and an uncertified
controller. The supervisor’s switching strategy allows for properties of the uncertified
controller to be exploited while preserving the forward invariance that is guaranteed
by the barrier function for the certified controller. Tunable threshold functions de-
termine regions of the state space where the supervisor switches between controllers.
Conditions are given to prevent chattering by establishing a positive minimum time
between switches. An example illustrates achieving forward invariance despite using
an uncertified MPC controller with delayed computations.

Control systems often have operational constraints, such as physical obstacles,
legal regulations, or limits on the amount of force or electrical current that a system
can safely endure. A popular approach to verify that a system satisfies its constraints
is via a barrier function (also called a barrier certificate) [5], [6], [7]. There are several
definitions of barrier functions in the literature [8]. For the definition used in this
chapter, a barrier function maps the system’s state space to R and satisfies conditions
such that its zero-sublevel set is forward invariant and every point in that set is

admissible. The zero-level set is a barrier that the state cannot cross, so if the system
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starts in the zero-sublevel set, then it is safe.

We consider a continuous-time nonlinear plant with state space R™ and a set
K C R"™ that we want to render forward invariant. If, for a controller x, the set K is
rendered forward invariant and a barrier function of K is known for the closed-loop
system, then we say k is barrier-certified. A controller for which a barrier function
is unavailable is uncertified. Per Definition 1.7, we assume that system designers
would pick K such that it is fully within the system constraints and contains all of
the initial states so that forward invariance of K implies system is safe.

Although uncertified controllers are not expected to render the set K forward
invariant, they can have other desirable properties, such as tracking a reference
trajectory, minimizing control effort, or reducing computational demands. As an
example, consider model predictive control (MPC). An MPC controller computes
the input at discrete sample times by solving a finite-horizon optimization problem.
The advantages of MPC are that it computes an approximately optimal control
input that satisfies constraints. For nonlinear systems with nonlinear constraints,
however, computing an MPC input is computationally expensive, which can lead
to delayed updates that cause the system to violate constraints (see Example 2.2
and [9]). This motivates the development of supervisory control that uses a certified
controller as “guardrails”—if the uncertified controller moves the system too close
to the unsafe set, the supervisor triggers a switch to the certified controller so that
the system stays in the safe set.

The Simplex architecture is an approach for switching between an “advanced,”
unverified controller and a “simple,” easy-to-verify controller [10], [11]. In the
Simplex architecture, a decision module decides at each time step whether to use
the unverified controller—if it is performing safely—or to fall back to the verified
controller. In [11], barrier functions are used with the Simplex architecture to
achieve safety for hybrid systems, but this approach requires costly reachability
analysis and has only “one way” switching—that is, there are no conditions given
for returning to the unverified controller after switching to the verified controller.
The Simplex architecture is also used with a barrier certificate in [12], but there are
several limitations to their approach that we overcome in this chapter; namely, only
rectangular constraints are considered, and the switching criteria depends on the

extremal values of the vector field over the entire admissible set, leading to excessive
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conservatism.

In this chapter, we introduce a hybrid control strategy for switching between
a barrier-certified controller kg and an uncertified controller x; such that the set
K is forward invariant for the resulting hybrid closed-loop system; the uncertified
controller k1 is preferred over the certified controller kg; and the switching between
ko and k1 does not chatter (i.e., the time between all switches is greater than some
positive constant). In our switching strategy, user-defined thresholds on the value
and the rate-of-change of the barrier function determine where switches occur. The
thresholds are defined as functions of the state, so that larger margins can be chosen
in regions where the system has faster dynamics. We show that our hybrid control
strategy renders K forward invariant, and we provide conditions for establishing a

positive minimum time between switches. This work was first published in [13].

2.1 Problem Setting

Consider a continuous-time plant

Z = fo(z,u) (2.1)

with state z € R", input u € R™, and fp : R” x R™ — R". Suppose we are given
a closed set K C R™ to be rendered forward invariant, and two static feedback

controllers kg, x1 : R™ — R™ such that the vector fields

Z = fp(Z,/io(Z)) and z+— fp(Z,/il(Z»

are continuous. In conjunction with kg, we are also given a C! barrier function

B :R"™ — R of K for the closed—loop

5= fol2) = folz rol2))- (2.2)

The controller k1 is not assumed to render K forward invariant for the closed—loop

i = fulz) = folzma(2): (2.3)

Since B guarantees that K is forward invariant for (2.2), we call ko a certified

controller, whereas 1, which has no such guarantee, is called uncertified.
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Given the C! barrier function B of K for (2.2), we define

By(2) = (VB(:), fo(2rg(2)))  V(z0) € X, (2.4)

which is the (hypothetical) rate of change of ¢ — B(z(t)) if t — 2(t) were to evolve

according to z = f,(2).

Hybrid Control Strategy
> Switching
Logic
i I q
Y L em @)
> K1 Plant

Figure 2.1. Feedback diagram for the closed—loop system H in (2.6).

The decision unit that determines when to switch between g and k1 is called a
supervisor. As shown in Figure 2.1, an auxiliary logic variable g € {0, 1} is used to
select which controller is used. When ¢ = 0, the certified controller k¢ is used and
when g = 1, the uncertified controller k; is used. The supervisor’s switching logic
is defined by two switching sets: Zp—1, 210 C R™. The set Zy,1 specifies where
the supervisor switches from ¢ =0 to ¢ = 1 and the set Z1,,¢ specifies where the
supervisor switches from ¢ = 1 to ¢ = 0. As complements of the switching sets, we
define hold sets

Zy:=Rn\ Zp; and 2 :=R"\ Zj (2.5)

that specify where the supervisor holds constant ¢ = 0 and g = 1, respectively. In
Section 2.2, we design Zy,1 and 21,0 such that the hybrid closed—loop system with

the switched feedback u := k4(z) satisfies the following properties:
e The set K is forward invariant.
e The uncertified controller 1 is preferred over the certified controller k.

e The switching between x¢ and x; does not chatter.
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Figure 2.2. Diagram of the switching sets Zy_,1 and Z;, 0.

2.2 Hybrid Closed—Loop System

We model the closed—loop system with a supervisor for switching between
controllers kg and k1 as a hybrid system H with state z := (z,q) in state space

X :=R" x {0, 1}, and dynamics given by

Flzﬂa@:[ﬁ@] (2.0) € C = CoUC
1:{ (2.6)

) =sa=[,2,| Goep=nun
where
Co := 2y x {0}, Cy == 21 x {1},
Dy := Zy51 x {0}, Dj:= 2150 x {1}.
To design Zy1 and Zi.,9, we introduce four threshold functions dg, 41, 0o, 01 :

R"™ — R<p, such that
Jo(2) < 01(2) <0 and 6Op(z) <b1(2) <0 VzeR"™ (2.7)

We use the functions dg and d; as thresholds on B and the functions 6y and 6, as
thresholds on B; to determine where switches occur. Thus, we define the switching

sets as
Zos1 = {2z € R" | B(2) < do(2) or Bi(z) < 6p(2)}

' (2.8)
Zis0:={2 € R" | B(z) > d(z), Bi(z) > 01(2)}.

The switching sets Zp.,1 and 21,9 are shown in Figure 2.2. Expanding the definitions
in (2.5) of the hold sets Zp and Z; produces

Zy={z €R" | B(2) > do(2), Bi(2) > bo(2)}

. (2.9)
Z1 ={2zeR"| B(z) <d1(2) or Bi(z) <6i(2)}.

We have that C U D = X because Zy U Zp1 = Z1 U 21,50 = R™
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The set Zj is designed such that the supervisor continues to use the certified
controller kg so long as the state is close to the boundary of K (namely, B(z) > do(z))
and the hypothetical rate of change of B under ; is too large (Bj(z) > 6o(2)).
As the complement, Zy 1 is designed such that the supervisor switches to the
uncertified controller k1 when the state is either far from 0K (i.e., B(z) < d¢(2)) or
the hypothetical rate that B would decrease under &1 is fast enough (Bj(z) < g(z)).

For ¢ =1, the set Z; is designed such that the supervisor continues to use
the uncertified controller k1 at each state z € K that is far from 0K or where the
rate that B would decrease under k1 is fast enough. The set Zi, ., is the closed
complement of Z; and is designed to trigger a switch to the certified controller kg
whenever the state is too close to K and is moving toward K (or, more precisely,

not moving away fast enough).

Example 2.1. To illustrate the design of H, consider the double integrator plant

01 0
Z= fe(z,u) = z+ u. (2.10)
0 0 1
Suppose we want the system to avoid a disk with radius 1, centered on the z;-axis
at ¢ := (5,0) € R% The admissible set, which we want to render forward invariant,
is
K={zeR:|z—c|>1}={2€R*:1—|z— | <0}.
Let ro(z) == [-1 1](z —c¢) and B(z) := 3(1 — [z — ¢|?).

The closed—loop system is

i=foe) = |0 M-
-1 1
and
Bo(z)=—(z—¢)" 01 (z—¢)=—25<0
-1 1

Thus, K is forward invariant for the system 2z = fy(z).
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Switching Criteria

d1(2)
_10-1
10 B(2)
Phase Plot 8o(2)
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O Inadmissible #(0,0)
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¢(g=1) m\zl
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Figure 2.3. A solution ¢ (left) for Example 2.1 and the corresponding switch-
ing criteria (right). The first five switches occur when B(z) < §p(z) or
B(z) > 61(2). At t = 2.4sec, a switch to ¢ = 1 occurs because By (z) < f(z).
Dotted lines indicate thresholds that do not have an effect for the current
value of q.

For the uncertified controller, let k;1(2) := [-1 —2]z, which renders the origin
of system (2.10) globally exponentially stable, but violates constraints. The closed—

loop system under x; is

T CE R

The set K, however, is not forward invariant under k1. At z = (5,1) € 0K,

We use constant threshold functions, which we write (with abuse of notation)
as 0y :=—1, 6, := —0.1, §p := —1, and é; := —0.1. Figure 2.3 shows a solution to
H and the corresponding switching criteria.! These plots show that the system is
controlled by the uncertified controller 1 until it becomes too close to the obstacle
and switches to the certified controller kg. The closed—loop system H satisfies the
assumptions of Theorem 2.2 given in Section 2.3, so the set K is forward invariant

for H. o

!Simulations are computed in MATLAB with the HyEQ Toolbox [14].
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Delayed vs. Undelayed MPC 0 Delayed MPC with Supervision
I T
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lDelayed ¢0.0) 09
05k Not Delayed 4 -0.51

T
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Figure 2.4. Trajectories for Example 2.2 using only x; without supervision (left)
and using supervised switching between k¢ and ; (right). Computational
delays cause unsupervised k; to violate constraints (dashed line), using our
supervisor preserves the constraint due to switching to xo near the inadmis-
sible set.

Example 2.2. Consider the system given in Example 2.1 with the uncertified con-
troller x1 replaced by an MPC controller. If each periodic MPC computation finishes
immediately, then the trajectory grazes the boundary of the unsafe set but does not
enter it. MPC computations can be slow, however, in the presence of nonlinear or
non-convex constraints. In Figure 2.4, we see that adding small, random delays to
the update times for the MPC input causes the solution to violate the constraint,
but using our supervisory control strategy, H respects the constraint by switching

to the certified controller. S

2.3 Forward Invariance of K

Our first result, Theorem 2.1, states that K is forward pre-invariant for #,
meaning that each solution to H remains in K for as long as the solution exists. Under
stronger assumptions, Theorem 2.2 asserts that K is forward invariant by establishing
that every maximal solution ¢ is complete (sup, dom(y) = oo or sup; dom(p) = c0)

and, if ¢ is bounded, then sup, dom(y) = cc.

Theorem 2.1 (Forward Pre-Invariance). Consider H in (2.6). Suppose B is a C*
barrier function of K for z = fy(z); the vector fields fy and fi are continuous; and
the threshold functions &y, 01, 0y, and 6, satisfy the inequalities in (2.7). Then,
K':= K x{0,1} is forward pre-invariant for H in (2.6).
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Proof. Let B’ :== (z,q) — B(z). The proof proceeds by first showing B’ is a barrier
function of K’ for H, and is completed by applying Corollary 1.2.
By assumption, B is a barrier function of K for 2 = fy(z), so we have that

K ={z € R"| B(z) <0}. Thus, for all (z,q) € &,
K'={(z,q) € X | B'(z,q) <0},

because B(z) = B'(z,q). Thus, B’ is a barrier function candidate of K’, meaning it
satisfies (B1).

Because B is a barrier function of K for z = fy(z), we can take from (B2')
a neighborhood U of K where By(z) < 0. Consequently, the set U’ := U x {0,1}
is a neighborhood of K’. We want to show that (VB'(z,q), f(z,q)) < 0 for all
(z,q) € (U'\ K')NC, as required by (B2). Every element (z,q) of (U'\ K')NnC

satisfies one of two disjoint cases:
e If g=0and z € (U\ K)N 2y, then, by (B2'),
(VB'(2,0), fo(2)) = Bo(z) < 0.
o If g=1and z € (U\K)NZy, then by the design of Z;, either B(z) < d1(z) <0

or Bl(z) < 01(z) < 0. Because z ¢ K, we must have B(z) > 0 > ¢;(z). Thus,
every z in (U \ K) N Z; satisfies By(z) < 61(z), so

(VB'(2,1), fi(2)) = Bi(2) < 61(2) < 0.
Therefore, (B2) is satisfied.

From the definition of g, we have that B'(¢(z,q)) = B'(z,1 — ¢). Additionally,
the assumption (B1) states that B(z) <0 for all z € K. Thus,

B'(9(z,9)) <0 V(z,q) € K'ND. (2.11)
Finally, the condition
9(2,q) €eCUD V(z,q) e K'nD

holds trivially because CUD = X. Thus, (B4) is satisfied, so B is a barrier function
of K’ for H.

Checking the remaining assumptions of Corollary 1.2, we have that f is contin-
uous because fy and f; are continuous by assumption. The set K’ is closed because

B’ is Cl. Therefore, by Corollary 1.2, K’ is forward pre-invariant for H. O
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In the following results, we assert, under appropriate assumptions, that the
closed—loop system H is well-posed (Lemma 2.2), the existence of a lower bound
on the time between switches for bounded solutions (Lemma 2.2), and that every

maximal solution to H is complete.

Lemma 2.1 (Hybrid Basic Conditions). Consider H in (2.6). Suppose fo, fi, 6o,
61, do, and &, are continuous and B is C'. Then, the system H in (2.6) satisfies the
hybrid basic conditions (A1)—(A3) in Definition 1.2.

Proof. The continuity of f and g follow directly their definitions and the continuity
of fo and fi, thereby satisfying (A2) and (A3). The gradient VB is continuous
because B is C, and the vector field fy is continuous by assumption, so the function
Bo is continuous also. Thus, the sets Zy, 201, Z1, and 21, are closed because

they can be written as finite unions and intersections of sublevel sets of continuous

functions:
Zy={z €R" | fo(z) — Bi(2) <0} n{z € R" | do(2) — B(z) < 0}

Zoos1 = {2z €R" | By(2) — 00(2) <0} U {z € R" | B(2) — do(2) < 0}

2 ={z€R" | By(2) — 01(2) <0} U{z € R" | B(z) — 6 (2) < 0}
Ziyo={z €R" | 91(2) — Bi(2) <0} N {z € R" | 6,(z) — B(z) < 0}

Thus, C' = (Zp x {0}) U (21 x {1}) and D = (Zp51 x {0}) U(Z150 x {1}) are closed,
satisfying (A1). O

In the following result, we assert (under appropriate assumptions) that each
bounded solution to the closed—loop system H has a positive minimum dwell time
between jumps. This result, combined with a proof that all maximal solutions are
complete (in Theorem 2.2, below), allows us to conclude that maximal solutions

exist for all time t > 0.

Lemma 2.2. Suppose B : R — R is C'; the vector fields fy and f, are continuous;
and the threshold functions dg, 01, 0p, and 01 are continuous and satisfy the inequal-
ities in (2.7). For each solution ¢ to H in (2.6), if ¢ is bounded, then there exists
v > 0 such that tj 1 —t; >~ for every pair of jump times t; and t; 1 in dom(¢p).

Proof. To establish a lower bound on the time between jumps, we will show D and

g(D) are disjoint and apply [3, Prop. 2.34]. The sets D and g(D) are disjoint if and
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only if Zy,1 and Z1,,¢ are disjoint because
DO = ZO,_>1 X {0} and D1 = Zl,_>0 X {1},

and
g(D()) = ZO»—)I X {1} and g(Dl) = Zl,_>[) X {0}

Take any 2% € Zp,1. By (2.7) and the definition of Zy,,1,

B1(2°) < 00(2°) < 61(z°) or B(2°) < 0(2%) < 61(2Y),
thus 2% € Z;,,0. Similarly, for every z' € Zi, 0,

Bi(zY) > 601(2") > 6p(2') and  B(z') > 61(2') > do(2h),

so z! & Zy,1. Therefore, Zy,1 and Zi,,¢ are disjoint and D N g(D) = @.
By Lemma 2.1, H satisfies the hybrid basic conditions Definition 1.2. Thus, the

conclusion follows from [3, Prop. 2.34]. O

To ensure solutions to H exist for all ¢ > 0, we require that all solutions
to 2 = fo(z) and 2 = fi(z) do not exhibit “finite escape times.” We say that
2 [to, T) — R™ with tg < T has a finite escape time T if limy ~p|z(t)| = oo.

Lemma 2.3 (Maximal Solutions are Complete). Suppose B is a C! barrier function
of K for Z = fy(z); the functions fo, f1, 0o, 61, d9, and §; are continuous; for each
q € {0, 1}, no solution to

2= fq(2) z€Z,

has a finite escape time; and the threshold functions 6y, 01, dg, and §1 are continuous
and satisfy the inequalities in (2.7). Then, every maximal solution ¢ to H in (2.6)
is complete. If, additionally, ¢ is bounded, then sup; dom(y) = oo (that is, ¢ is
defined for all ordinary time t > 0).

Proof. Our proof uses [3, Prop. 2.34]. For a hybrid system H' = (C’, f',D’,q’), a
point g € C" U D' is said to satisfy the wviability condition (VC) if there exists a
neighborhood U of ¢ such that f/(x) € Ter(x) for every . € UNC'.
To show that VC holds for H at every point in C'\ D, we use the following fact:
For any set S C R", the tangent cone of S at an interior point x € int .S is the entire
space. That is,
Ts(x) = Trn(x) Va € int S.
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Because, by assumption, B is C' and fy, fi, 60, 61, fo, and 6; are continuous,
Lemma 2.1 asserts that C' is closed (Al). Because C is closed and D = X'\ C,
we have that C'\ D C int C. Thus, T¢(x) = Tx(z) for all x € C'\ D. It follows
that for every xg € C'\ D, there exists a neighborhood U C int C' of xy such that
fo(z) € To(x) for all x € U N C. Therefore, VC holds everywhere in C'\ D.

Because H satisfies the hybrid basic conditions and VC holds at each point
in C'\ D, every maximal solution ¢ to H satisfies exactly one of the following

conditions [3, Prop. 2.34]:

(M1) ¢ escapes to infinity in finite time.
(M2) ¢ leaves C U D.

(M3) ¢ is complete.

By assumption, every solution does not escape to infinity in finite time, ruling
out (M1). Furthermore, g(D) C CUD = X, so, per the note in [3, Prop. 2.34], (M2)
does not occur. By elimination, only (M3) is possible, therefore every maximal
solution is complete.

Let ¢ be a maximal solution to H and let 7' := sup,dom(y) and J :=
sup; dom(yp). Because ¢ is complete, either 7' = oo or J = oo (or both). If T" = oo,
then ¢ is defined for all ordinary time. Suppose J = oo. Let {t; }]‘?‘;0 be the sequence
of jump times in ¢. With the given assumptions, Lemma 2.2 asserts that there exists
~ > 0 such that

tjiy1—tj >~ forj=0,1,....

The infinite sum of a positive constant diverges, so

o0 o0
) SUNNIES 0
j=0 §=0

Theorem 2.2 (Forward Invariance). Suppose B is a C! barrier function of K for
Z2 = fo(z); the vector fields fy and f; are continuous; the threshold functions &y, d1,
6o, and 6, are continuous and satisfy the inequalities in (2.7); and for each q € {0, 1},
no solution to

2= fq(2) z€Z
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has a finite escape time. Then, K' := K x {0, 1} is forward invariant for H and
every maximal solution ¢ to H is complete. Furthermore, if ¢ is bounded, then

sup, dom(p) = co.

Proof. By Theorem 2.1, the set K’ is forward pre-invariant for H. Furthermore,

Lemma 2.3 asserts that every maximal solution is complete. ]

The “no finite escape time” assumption in Theorem 2.2 is satisfied if, for each

q € {0, 1}, the vector field f, is globally Lipschitz continuous or the set Z, is bounded.

Remark 2.1. Under the assumptions of Theorem 2.2, H is well-posed because it
satisfies the hybrid basic conditions in [4, Assumption 6.5]. Solutions to a well-posed
hybrid system have (in a sense) continuous dependence on initial conditions, although
the sense of continuity is weaker (upper semi-continuous instead of continuous) than

it is for well-posed continuous-time systems [4, Chapter 6].

2.4 Unbounded Solutions Without Chattering

There are several practical difficulties with Lemma 2.2 and Theorem 2.2 that
we address in this section. Notably, the minimum dwell time v > 0 in Lemma 2.2
depends on the choice of solution, rather than being a uniform lower bound that
applies to all solutions. This can cause problems if, for example, the minimum
dwell time ~ for a particular solution is shorter than the clock rate of the computer
processor used to run the supervisor. Furthermore, if a solution is unbounded, then
the time between switches may converge to zero, as shown in Example 2.3, below. To
address these problems, Theorem 2.3 provides conditions for establishing a uniform
lower bound on the time between jumps for all solutions to H (including unbounded

solutions).
Example 2.3. One can construct H with z € R? and with
fo(2) = (21, -1), Zos1 = {(21,22) | 22 < 0},
J1(2) = (21, +1), Zi0 = {(21, 22) ‘ 29 > eXP(—Z%)},

such that H satisfies the assumptions of Theorem 2.2. Consider a maximal and
complete solution ¢ that starts in the right-half plane. The z;-component of ¢ grows

exponentially, approaching +o0o as t + j — 00, so ¢ is unbounded. Meanwhile, the
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zo-component of ¢ bounces between Zy,; and Zj.,9 as the distance between them

approaches zero—causing the time between switches to also approach zero. o

The following result, Lemma 2.4, establishes an upper bound on the distance
that a solution to a differential equation can travel in a fixed amount of time,

assuming a Lipschitz-continuous vector field.

Lemma 2.4. Suppose f : R™ — R" is Lipschitz continuous with Lipschitz constant
L. Then, for each o € R™ and each solution t — ¢(t) to & = f(x) with ¢(0) = zo,

the distance between ¢ and xg satisfies
|p(t) = wo| < t|f(wo)lexp(Le) VL= 0.

Proof. Take any xop € R™ and 7> 0. Let t — ¢(t) be a solution to & = f(x),
x(0) = o and let t — 1(t) = o + tf(xo). For each t > 0,

10016 = 0| = |70 + 1) = Fao)|

By Lipschitz continuity,

‘f(xg +tf(z0)) — f(z0)| < L‘xo +tf(zo) — :co‘ — tL|f(x0)].

Therefore, by the Solution Comparison Theorem in [15] with € := ¢L|f(xo)| implies
that for all ¢ > 0,

o) = ()] < t]f (o)l (exp(Lt) — 1). (2.12)
We substitute zog = () — tf(zo) into |¢(t) — xol:

|p(t) = wo| = l(t) — (t) + tf (o).

Using the triangle inequality, we find

o(t) — ol < lp(t) — ¥ (8)] + tlf (wo)]-
Using inequality (2.12), we find that for all ¢ > 0,
lp(t) — ol < tf(wo)|(exp(Lt) — 1) +t[f (o)]
— 1] (w0) | exp(L). m

Using the bound in Lemma 2.4, along with assumptions of Lipschitz continuity
for fo and f;, Lemma 2.5 provides conditions to establish a uniform lower bound on

dwell times for all solutions to H.
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Lemma 2.5 (Uniform Lower Bound on Dwell Times). Consider ‘H in (2.6) with
data as in (2.8). Suppose fq is Lipschitz continuous with Lipschitz constant Lg. Let

7 > 0 be fixed. If, for each zy € Zy1, the distance from zy to Zi1,¢ is greater than

Ro(z0,7) := 7| fo(20)| exp(LoT),

then, every solution to ‘H does not have a jump from q = 0 to ¢ = 1 within a time
T after a jump from q = 1 to ¢ = 0. Similarly, if, for each z1 € Z1_,9, the distance

from z1 to 2.1 Is greater than

Ri(z1,7) :=7|f1(z1)] exp(L17),

then, every solution to H does not have a jump from q = 1 to ¢ = 0 within a time 7

after a jump from ¢ =0 to q = 1.

Proof. Take 7 > 0. Suppose that for each zy € 2.1, the distance from zg to 21,9
is greater than Ry(zp, 7). By Lemma 2.4 with f := fp, the time it takes a solution
to H to travel a distance Ry(zp,7) from any point zy in 2,0 is at least 7. By
assumption, the distance from zy to Zy.1 is greater than Ry(zp,7), so no solution
from Zq,0 can reach Zp_1 in a time t < 7.

After a switch to ¢ = 0, a solution is in Z1,,9 and for a switch to ¢ = 1 to occur,
the solution must be in Zy,,1. Then, the solution must travel for a time greater than
T before it Zy_,1 where a switch to ¢ = 1 may occur. Therefore, the time between a

jump to ¢ = 0 and a jump to ¢ = 1 is greater than 7. ]

Lemma 2.5 leads immediately to Theorem 2.3, which asserts a minimum time
between all switches and thereby establishes that maximal solutions to H exist for

all t > 0.

Theorem 2.3. Suppose that B is a C' barrier function of K for 2 = fo(2); the
vector fields fy and f; are globally Lipschitz continuous with Lipschitz constants
Ly and Lq; the threshold functions &y, 01, 6y, and 01 are continuous and satisfy
the inequalities in (2.7); and there exists T > 0 such that for all z° € Zy_,, and

2t e Zi 0, the following hold:

120 — 21 > 7| fo(2°)] exp(LoT), (2.13)

120 = 21 > 7| f1(z") | exp(L17). (2.14)
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Then, for every solution ¢ to ‘H in (2.6), and each pair of jump times t; and tj41
in dom(yp), we have that t; 1 —t; > 7. Furthermore, if ¢ is a maximal solution, then

sup, dom(p) = co.

Proof. Because fy and f; are globally Lipschitz continuous, maximal solutions to
Z = fo(z) and z = fi(z) exist for all ¢ > 0, so no solutions have a finite escape time.
By Lemma 2.3 with the given assumptions, every maximal solution to H is complete.
By Lemma 2.5, every solution to H does not have a jump within a time 7 after

another jump. Therefore, every maximal solution ¢ to H exists for all ¢ > 0. O

The following example illustrates Theorem 2.3 with a system that has un-

bounded solutions.
Example 2.4. Consider the plant

z
i=fe(zu)= ||, 2=(a,m) €RY uER
u
with admissible set K := {z € R? ’ z <0}, certified controller ko(z) = —|z],
barrier function B(z) := za, uncertified controller ki(z) := |z1|, and threshold
functions dg(z) := —2 — 2|z | and 61(2) := —1 — |z1|. The threshold functions 6y and

01 have no effect because Bj(z) = |z1| > 0. Thus, the switching sets are

201 = {(21,2’2) e R | 29 < —2 — 2‘21|},

Ziso ={(21,22) € R" | 20 > —1 — |z1]}.

By Theorem 2.2, K is forward invariant for H. We can apply Theorem 2.3 to
show that solutions exist for all ¢ > 0 and the time between every pair of jumps
is longer than 7 :=0.25sec. The vector fields fy and f; are globally Lipschitz
continuous with Lipschitz constants Ly = L; = 1. Take any points 2% := (29, 28) €
Zos1 and 2! = ( %, z%) € Z10. Using the geometry of Zy,1 and Zi,.9, and the

fact that 7exp(Lor) = T exp(L17) = 0.25exp(0.25) < %, we find

0
zi|+1 1
9 = a1 2 LS 2t i) exp(zon),
1
zi|+1 1
|20 — 2| > | 1\’/5 > §|z%| > 7| f1(2Y)| exp(L17).
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Figure 2.5. A solution ¢ to H in Example 2.4 (left) and the corresponding
switching criteria for ¢ (right).

Take any z(1) = (zil),zél)) € 0Z01. Thus, B(z(V) = §o(2(V) = —2 — 2|z§1)|. By
the Lipschitz continuity of B and 41, for all 2/ € R? such that |2 — 2| < R(z(), 1),

1
B() - BEW) < RV, 1)Ls < 5l

1
61(=') = 51z < R, 1)Ly, < gl

Using triangle inequalities and substitution we find B(z’) < §1(2'), so 2’ is not in
0Z150. This shows that B(z') < d1(2'), so 2’ is not in 0Z1,,9. Therefore, (2.13)
and (2.14) are satisfied, so Theorem 2.3 asserts that every solution to H exists for all
time ¢t > 0. A solution to H is shown in Figure 2.5 and the corresponding switching

criteria are shown in Figure 2.5. o

It is important to note the effects of discrete sampling in the supervisor. If the
supervisor only checks the switching conditions periodically (instead of continuously)
with some sample time T > 0, then the set K is not, in general, forward invariant
for H. In particular, for Example 2.4, solutions that start with ¢(0,0) in 0K x {1}
will leave K due to the supervisor applying k1 over the interval [0,7s), before the
first update. If, however, the threshold functions dy and 6y are chosen such that the
distance from Zy,; to R™ \ K is farther than the system can travel in time T, then

solutions that start in Zy_,; will never leave K.

Conclusion

In this chapter, we designed a supervisory hybrid control algorithm that switches

between a given barrier-certified controller that renders a desired set forward invari-
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ant and an uncertified controller that may not. The resulting hybrid control strategy
guarantees forward invariance while preferentially using the uncertified controller.
Our approach allows for advanced controllers, such as neural networks and MPC, to
be safely used while avoiding the difficult task of constructing barrier functions for
them.

The next chapter considers a similar system as was considered here, but with
the goal of ensuring uniform global asymptotic stability. Chapter 4 provides results
for extending the strategy in this chapter to hybrid plants with hybrid controllers,
including systems with set-valued dynamics. Among other uses, that extension can

be applied to use discontinuous static feedback controllers.
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Chapter 3

Uniting Feedback for Asymptotic
Stability with Static Controllers

In this chapter, we present a hybrid control strategy for rendering a set uniformly
globally asymptotically stable using uniting feedback to switch between two static
feedback controllers. Omne controller is Lyapunov-certified, which we exploit to
allow us to opportunistically use the second controller, which is uncertified, while
retaining the guarantee of asymptotic stability. This chapter introduces important
ideas for ensuring convergence with uniting feedback and serves as a stepping stone
to Chapter 4 which handles the general case of a hybrid plant with hybrid controllers.

As in Chapter 2, we consider a continuous time plant
zZ = fo(z,u) (3.1)

with state z € R"® and input v € R™. Let A4, C R™ be a given nonempty set we
want to render globally asymptotically stable. Let kg,x1 : R® — R™ be given
static feedback controllers. For ¢ € {0,1}, we write the closed-loop system using
the feedback control law u = k4(2) as 2 = fq(2) := fe(z,Kq(2)). We assume that
ko renders Ap globally asymptotically stable, as asserted by the existence of a

differentiable Lyapunov function V;, as formalized in Assumption 3.1, below.

Assumption 3.1 (Lyapunov Conditions). For Z = fy(z) and a nonempty compact

set Ap, there exists a differentiable function V5 : R™ — R>( such that
(L1) There exists ag, ay € Ko such that
o1(|z]a) < Ve(2) < ao(|z]4) Yz eR™
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(L2) There exists a lower semicontinuous function ¢ : R™ — R>q that is positive

definite with respect to Ap such that

(VVa(2), fo(2)) < —o(z) VzeR" o

The function V, in Assumption 3.1 is called a Lyapunov function' of A, for
Z = fo(z). Condition (L2) is sufficient for Ap to be globally asymptotically stable
for 2 = fo(z). If Ap is compact, then Assumption 3.1 is sufficient for Ap to be
uniformly globally asymptotically stable for 2 = fy(z). If Assumption 3.1 is satisfied
by 2 = f(z, ko(z)) with Lyapunov function V5, we say that kg is a Lyapunov-certified
controller.

In this chapter we design a supervisor for switching between g and k1, as

shown in Figure 3.1, such that
1. Ap is uniformly globally asymptotically stable,
2. the time between jumps is lower bounded by a positive constant, and
3. the uncertified controller 1 is preferred over the certified controller k.

The resulting closed-loop system is hybrid, which we model as in (1.3).

Hybrid Control Strategy
> Switching
Logic
> Ko q
L1 Py
> K1 Plant

Figure 3.1. The switching logic passes ¢ as an output to a switch, which deter-
mines whether kg or k1 is applied to the plant.

3.1 Hybrid Control Strategy

Our hybrid control strategy uses the plant state z € R™, the logic variable

q € {0,1} (described above), and an auxiliary variable v > 0. The purpose of each

!There are many varieties of Lyapunov function in the literature, so this should not be taken

as one of many competing definitions.
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variable is summarized here:
e 2 € R™ is the state of the plant. Our goal is to steer z asymptotically to Ap.

e ¢ € {0,1} determines the current feedback controller. When ¢ = 0, then

u = Ko(z) is used and when ¢ = 1, then u = £1(2) is used.

e v € R>q is used to measure whether V;(z) is converging fast enough. When
using the k1 controller, V5 (z) may increase because k1 is not Lyapunov-certified,
so we impose v as an upper bound on V;(z), thereby restricting how much V;(2)
can grow (or fail to decrease) before triggering a switch to ¢ = 0. During flows
v decreases, converging to zero (per the dynamics of v designed in Section 3.2).

Because v converges to zero, Vp(z) will be squeezed to zero also.

The state of the closed-loop system is then
x:=(z,v,q) € X :=R"™ x R>o x {0,1}, (3.2)
and the set that we want the closed-loop system to asymptotically stabilize is
A={zeX|ze A, v=0} =A, x {0} x{0,1}. (3.3)
The core idea of our hybrid control strategy is as follows:

1. The auxiliary variable v acts as an upper bound on V;(z). The dynamics of v

chosen such that v converges to zero.

2. The system switches from ¢ = 1 to ¢ = 0—that is, from the uncertified con-

troller 1 to the certified controller ko—when Vi (z) > v.2

3. The system switches from g =0 (the certified controller k) to ¢ =1 (the
uncertified controller) when V;(z) is less than v with a sufficiently large gap
or buffer between the values. The size of the buffer between V5 (2) and v that
is required to switch is defined by a function z — d(z) such that §(z) > 0 for
all z € R™. We call § a buffer function.

2Technically, the system is permitted to switch when Vi (z) = v and must switch when Vi (z) > v
or Vp(z) =v and Vi(z) would increase relative to v. These technicalities are handled by the
mathematical analysis, but unimportant in practice since V;(z) = v is numerically unlikely to occur,

except at Vo(z) =v =0.
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At each switch, v is set to v* = max{Vs(2), v}, causing v to increase if V5 (%) is
larger than v, otherwise v is not changed. Between switches, v evolves according to

0 = fu(z,v), where f, is designed to force v to converge to zero. In particular,
b = fu(z,v) ;== —ytanh(v)oo(z) — p(v — Va(2)), (3.4)

where v € (0,1], p > 0, and o9 is the bound on the rate of change of V; given in
the Lyapunov condition (L2). The parameters v and pu affect the rate at which v
converges. The term —pu(v —Vp(2)) pulls v toward Vi (z), which helps v to “catch up”
if V4(z) has dropped quickly, or causes v to grow if it is initialized less than Vi (z).
The term —+ tanh(v)oy(z) pulls v toward 0, which ensures that v converges to 0 if
Vp(2) stagnates at some nonzero value. When v = 0, f,(z,v) must be nonnegative,
to avoid pushing v below zero, so the hyperbolic tangent tanh(v) is used as a sigmoid
function that goes to zero as v — 0. The specific criteria for switching are defined,

as follows.

e While the feedback controller kg is applied to the plant, due to ¢ being equal
to 0, we monitor Vi(2), §(z), and v. If ever Vi(2) + 6(2) < v, we allow a
switch from ¢ = 0 to ¢ = 1, since there is a sufficient buffer to safely use the
uncertified controller. Conversely, if Vp(z) + d(2) > v, then the system holds

g = 0 since there is not enough of a buffer.

e While the feedback controller x; is applied, due to ¢ being equal to 1, the
values of V5 (z) and v are monitored. The system switches from ¢ =1 to ¢ =0
if ever Vi (2) > v, since this indicates that k1 has eliminated the buffer between
Vi (z) and v. While ¢ = 1 and either Vi (z) < v, the system flows, holding ¢ = 1,

meaning the system continues to use k1.

After each switch to ¢ = 1, a subsequent switch back to ¢ = 0 indicates that x
caused Vp(2) to either increase or decrease less quickly than v over an interval of
time. The buffer between V5 (z) and v upon a switch to ¢ = 1 permits the uncertified
controller to increase the value of V;(z) briefly. The assumptions on f,, however,
ensure that v converges to zero, so Vp(z) is either squeezed to zero or a switch to
g = 0 is eventually triggered when V;(z) = v occurs.

Before we formulate the hybrid closed-loop system, we demonstrate the switch-

ing logic with a toy example.
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Plant State

Switching Criteria

0.9 Ko only
K1 only
08 Switched

Figure 3.2. Trajectories of z (left) from Example 3.1 using ko only, x1, and
opportunistic switching between k¢ and k1, and trajectories of ¢, v, Vo(2) +
d(z), and Vi (2) (right), which determine switches.

Example 3.1. Consider the plant Z = u with z,u € R and controllers ky(z) := —z
and r1(z) := —2zsin(1/(z + 0.1)). The controller kg is certified to render the set
Ap := {0} UGAS by he Lyapunov function z — Vi(2) := 322 with o(2) := 22. For

the supervisor parameters, let v :=1/2, u:= 2, and 6(2) := |z|?>. Figure 3.2 shows
solutions to Z = ko(z) and 2 = k1(z) (without switching), and to 2 = k4(z) with
q switching according to our hybrid control strategy.® Initially, the solution with
the feedback k1 decreases quickly, but it fails to converge to zero, instead becoming
stuck above z = 0.2. On the other hand, the solution with the certified feedback
ko converges to the origin. For the solution with switching, v reaches V;(z) around
t = 6sec, which triggers a switch to kg. After t = 6sec, Vi(z) decreases quickly until

the buffer between Vi and v is larger than §(z), triggering a switch back to k1. ©

3Simulations are computed in MATLAB with the HyEQ Toolbox [14].
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3.2 Construction of the Closed-Loop System with Static
Feedback

We are now ready to define the hybrid closed-loop system. If ¢ = 0, jumps occur

when x = (z,v,q) is in
Doy :={(2,v,0) € X | Vo (2) + d(2) < v} (3.5)
and flows occur when z is in
Co :={(2,v,0) € X | Vip(2) + 0(2) > v}. (3.6)
Similarly, if ¢ = 1, then the system jumps when z is in
Diso :={(2,v,1) € X | Vi(2) > v} (3.7)
and flows when z is in
Cy:={(z,v,1) € X | Vp(2) <w} (3.8)

The jump set is then defined as D := Dg,1 U D10 and the flow set is C' := Cy U C}.
Note that the flow set is the closed complement of the jump set, i.e., C = m

At each jump, z is constant, since the plant state is continuous in time; v is
set to v+ = max{V;(z),v} to record the of Vi (z) if it is larger than v. Due to the
design of Dy,,1 and D0, the value of v after a switch to ¢ = 0 is always V5 (z) and
the value of v does not change at a switch to ¢ = 1. The mode q is toggled to the
opposite value in {0,1}. During flows, z evolves according to 2 = fp(2,K¢(2)), the
auxiliary variable v evolves according to © = f,(z,v), and the logic variable ¢ is held
constant (¢ = 0).

The construction above leads to the hybrid closed-loop system H = (C, f, D, g)
with state z = (z,v,q) € X and data given by

fq(2)
f(z) = | f,(z) Ve e C:=CyUC
- 0 (3.9)

z

9(x) = |max{Vip(2),v}| Vo€ D :=Dys1UDio

1—gq
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Proposition 3.1. Suppose that
1. fp, Ko, K1, and § are continuous;
2. fp and kg satisfy Assumption 3.1 for Ay with Lyapunov function V;, and
3. 8(z) >0 forallze R, v>0, and u >0
Then, the set A in (3.3) is UGAS for H given in (3.9) and for each solution ¢ to H,
sup + dom(p) = o0,
and there exists a minimum dwell time dyin, > 0 between switches.

The proof Proposition 3.1 is conducted by constructing a new Lyapunov function

for the closed-loop system, namely
V(z) := max{V;(2), v}.

We defer the proof until Chapter 4 where we consider a more general case of the

control strategy in this chapter.

Example 3.2 (LQR). Consider the nonlinear

. 12| 2 0 2 1

zZ= + min{|z|,1} z+ u, (3.10)
-2 1 4 -1 3 4
=:A =:Asy =B

and the set Ap := {0}. This system behaves like 2 = A1z + Bu near the origin
and like 2 = (A; + A2)z + Bu far from it. The origin of (3.10) is UGAS for
ko(z) == [ > Y ]#. For ki, we linearize (3.10) about the origin and use the linear
quadratic regulator (LQR) feedback that solves the following infinite-horizon optimal
control problem:

u

minimize / 2(8)[2 + u(t)|? dt
0 (3.11)
subject to 2z = A1z + Bu.
The LQR feedback is
—1.82 —0.50

k1(z) == — z.
—-0.61 —0.87
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Figure 3.3. Trajectories for the plant and supervisor states in Example 3.2
starting from zo := (11,2) and v := 30.

Figure 3.3 shows a solution to the hybrid closed-loop system using f, from (3.4)
with v =2 and g = 4, and §(2) = 15|z|> + 1073, The switching logic uses r; near
the origin, reducing |u|. The buffer between v and V;(z) allows Vi (2) to briefly slow
without triggering a switch to ¢ = 0. The switch is followed by a spike in control

effort, a period of faster convergence, and a subsequent switch back to g = 1. o
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Chapter 4

Uniting Feedback with Hybrid
Controllers and a Hybrid Plant

In this chapter, we extend the hybrid control strategy that allows for uniting
feedback between a certified controller and one that is uncertified (in some sense)
to the case of systems with hybrid controllers and plants with set-valued dynamics.
Specifically, we extend the strategy in Chapter 3 for uniting feedback to achieve
asymptotic stability from the case of pure feedback (“memoryless”) controllers, to a
strategy for plants and controllers modeled as hybrid systems with inputs, including

set-valued dynamics given by differential inclusions and difference inclusions.

4.1 Uniting Feedback for Hybrid Plant with Hybrid

Controllers

In this section, we consider the case where the plant, certified controller, and
uncertified controller are all hybrid inclusions with inputs, as described in [3]. The
closed-loop system H, depicted in Figure 4.1, is composed a plant Hp, controllers
Hy, and Hg,, a supervisor Hs, and a switch. The system is designed under the
assumption that Hy, is certified to achieve some property whereas Hy, is uncertified.
The state of the closed-loop system is x := (z,10,71,v,q) where z € R"™ ny € R,
m € R™  and (v,q) € R™ x {0,1} are the states of the respective subsystems Hp,
Hy,, Hy,, and Hs. To allow for restricted state spaces for each subsystem, we define
Ero CR™ xR™, & C R™, and V C R™ such that (z,m0) € &, m € &1, and

v € V. The closed-loop state x has dimension n := np +ng+ny +ng+ 1 and belongs
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to a set X C R"™ defined as
X =& px & xVx{0,1}. (4.1)
To facilitate discussion of the separate modes, let
Xo = {(z,m0,m,v,q) € X | ¢q=0} and X :={(z,m0,m,v,q) € X|qg=1}.

The subsystems are written as

" Z € Fo(z,u) (z,u) € Cyp input: u (4.22)
zt € Gp(z,u) (z,u) € Dp. state: z
o € Fio(z,m0)  (2,m0) € Cxy input: z
Hio 4 13 € Gio(2z,m0)  (2,m0) € D, state: (4.2b)
ug = Ko(z,Mo)- output: ug
m € Fy,(x) =€ inputs: z, n9, v, ¢q
Hiy : 417 € Gy, (x) z € Dy, state: n; (4.2c)
up = K1(x). output: u;
R _ -
Qf = ful@) x € Cs .
Hs q: - ’ : MPULSE 2, Mo, T (4.2d)
vt _ gv(T) v e D, state: v, q.
Lle7] [t

The output ¢ € {0,1} from Hg determines whether the plant H; receives its input

from Hy, or Hy,. The supervisor’s flow and jump sets are defined as
CS = (SQ X {0}) U (81 X {1}) and DS = (So._>1 X {O}) ] (81,_>() X {1}),

where Sp,1 and 81,0 are called the switching sets of Hg and Sy and Sp are called
the hold sets of Hg. The switching set Sp.,1 and S1.,9 determine where g switches
from 0 to 1, and from 1 to 0, respectively. The hold set Sy determines when the
supervisor is allowed to continue using ¢ = 0, if ¢ is already 0, whereas &1 determines
where Hg will continue using ¢ = 1. The functions f, and g, define the dynamics of
the supervisor’s auxiliary variable, v. One choice of supervisor to achieve uniform

global asymptotic stability is given in Section 4.2.
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Figure 4.1. Feedback diagram for the hybrid closed-loop system #H using a hybrid
plant Hp, hybrid controllers Hy, and Hy,, and supervisor Hs.

The controller Hy, will be called the certified controller because we assume the
existence of a (barrier or Lyapunov) certificate function for the closed-loop system
formed from Hp and Hg,. On the other hand, Hy, will be called the uncertified
controller, because no such assumption is made.

By passing (z, 1o, v, q) to Hy,, we permit the uncertified controller to be designed
with it full knowledge of the state of all of the subsystems. In practice, the inputs
used by Hg, will typically be limited to z, but allowing Hy, access to the full state
of the closed-loop system allows designers to exploit knowledge of other subsystems.
We have two examples of how this can be useful. If the uncertified controller is
a learning-based controller, then the certified controller can be used as an expert
demonstration to perform online training of the uncertified controller while g = 0.
Alternatively, if the uncertified controller is computationally expensive, then it may
be advantageous to stop the computations of the control values while ¢ = 0 (when
the certified controller is used) and only run expensive computations when ¢ = 1.

Since each subsystem Hp, Hy,, Hk,, and Hg has different sized inputs, states,
and outputs, it is notationally convenient to standardize the dimensions of the data
for each subsystem. To this end, we define k : X — U such that k(x) gives the

control value at any = := (2,10, 71,v,q) € X, selecting the control from Hy, and Hy,
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depending on the value of ¢ according to

{Ho(z,no) ifg=0

wle) = k1(x) if g =1.

(4.3)

For each subsystem, we define the closed-loop (CL) flow maps F5" : X = R™,
F X =R FE X =2 R™and FU: & = R™ x {0} as

FS*(x) :== Fp (z, m(w)), FISOL(:E) = Fx,(z,m0), (4.4)
fo(z
F}SlL(I) = Fy, (), F&(z) == (() )] (4.5)
Similarly, we define
(G (2, 5(2)) ] N
TIO GK() (Za 770)
GSL(J:) = m ’ G}ig (JZ‘) = m ’ (46)
v v
- . i - . _
Mo 7o
G%(I) = GKl (:(;) , GSL(SL‘) = n (4.7)
v g\,(l')

To simplify the construction of the closed-loop system, we will impose that
dom(Fp) =Cpr and dom(Gp) = Dy,

which be achieved by restricting the domain of given functions. As a result of this

assumption,

Fo(z,u) # @ <= (z,u) € Cp.

For x ¢ dom(f,), we define F<*(x) = @ and for = ¢ dom(gy), we define G§*(z) = @.
It is worth noting that vector produced by each F " matches the state dimension
of the subsystem %, whereas the output of each G{" matches the dimension n of the
entire closed-loop system. This difference arises from the fact that the state of all of
the subsystems flow at the same time, but jump individually, so, for example, F*

only defines the flow for the plant Hp as 2 € FF"(z), whereas G5~ defines how all of
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the subsystem states jump, according to 2 € Gp(x), but all of the components in
x are unchanged except z.

The closed-loop subsystem flow and jump sets are given by

Cot={z e X | (z,k(x)) € Cp}, CFf :=Cky x &1 x V x {0,1},
Dt :={x € X | (2,k(x)) € D}, Dg::= Dy, x & xV x{0,1},
C}?? = Ok, CSL =Gy,

(4.8)

Dyt = Dy, Dg" = Dsq.
The closed-loop system is

5. 107 Cy'NC NGy NCSY,  F(z) = Ft (x) x Fg (o) x Figy (x) x FS* (),
D:=D"UDUDUDS",  G(x):=G (x) UG (z) UG () UGS (2).

(4.9)

The closures in the definitions of CS* and DS" are necessary to ensure the sets are

closed, since k1 is not assumed to be continuous. Compare the set
{z € X | (2,k(x)) € Dp},

which may not include all of its boundary points (causing it to not be closed),
even if Cp is closed, due to discontinuities in k1. By the construction of each G¢*,
along with (B3) in Assumption 4.1 (below), we have that dom(G{"*) = D" for
each x € {P, Ko, K1,S}. Thus, the state 7, of subsystem x only jumps according to
ny € G (x) if x € DS, More compactly, let S := {P, Ko, K1,S}. Then,

F(z) = H F*(x), C(z):= ﬂ cot, G(z) = U G (x), D(z):= U DS

*€S *€S *€S *€S

It is convenient to define the closed-loop system composed of only the plant Hp
and the certified controller Hy,, since Hg, is, by assumption, certified to produce

some property in this system.

. -Fp(z,ﬁo(zaﬁo))
Fro(z,m0) = o) (4.10)
-Gp(z,fﬁo(zaﬁo)) z
Grxo(z,m0) = 4.11
0(2;m0) _ " U Cr (2.10) (4.11)
Cpyo i= {(2,170) ‘ (z, /{0(2,7]0)) € Cp, (z,m0) € C’KO} (4.12)
Dryo = {(z,m0) ‘ (2, k0(2,m0)) € Dy or (2,m0) € Dy, }- (4.13)
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The closed loop system formed from #Hp and Hy, (without any switching between

controllers) is

2, o) € Fpyo(z, z, € Chy
oo (2, 0) € Frao(z,m0)  (2,10) € Crxo @10

(2% 1) € Gexo(z,m0)  (2,m0) € Dpxo.

Example 4.1 (Systems in Chapter 3). We can model the closed-loop system pre-
sented Chapter 3 using the model presented above. The plant in Chapter 3 is a
continuous-time system and the controllers are static feedback controllers, which we

write as
He: {z” = Fp(z,u) == fr(z,u), Hio' {uo =rko(z) and Hy;: {ul =k1(z2)-

The dynamics for Hy, and Hy, are omitted because ng = ny = 0. The supervisor
Chapter 3 has an internal state, and would be written as in (4.2d) with f, given

in (3.4), gv(z,v) := max{Vp(z),v} and

Sos1 = {(2,0) | Va(2) +0(2) < v} S10 = {(2,0) | Ve (2) = v}
So = {(z,v) | Ve(2) +6(2) = v} S1={(zv) | Ve(2) < v}

The certified closed-loop system Hp.o in (4.14) reduces to

Heeo {2 = Fruo(2) = folz, mol2). °

The next several sections establish certain desirable properties for the closed-
loop system H in the case of a generic supervisor. In Section 4.1.1, H is regularized
to produce a system H that satisfies the hybrid basic conditions under given assump-
tions. Sections 4.1.2 and 4.1.3 establish the existence of solutions for all ¢ > 0. By
establishing these fundamental properties in the generic case, we can utilize them for
specific choices of supervisors, as we do in Section 4.2 where we design a supervisor

for global asymptotic stability.

4.1.1 Regularity of the Closed-loop System

We want to keep the assumptions on Hy, as weak as possible, so we do not
impose any sort of continuity assumptions on x;, Fx, and Gg,. As a result, H

may violate the hybrid basic conditions (Definition 1.2). Analyzing systems without
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the hybrid basic conditions is difficult, however. To mitigate, we perform system
regularization to construct a new system H such that H satisfies the hybrid basic
conditions, and every solution to A is also a solution to H. The second point
is important because it allows us to prove certain properties for H (e.g., global
asymptotic stability) and infer that H has the same property.

In particular, we define the regularized system as H = (C, }?’, D, C:‘) with F and
G defined identically to F and G except that Fgh, Gg&, Fir, G, are replaced by

the following regularization:

Fi*(z) ifg=0
>0
G (z) ifg=0
Gt (z) = M GGz + 0B)) ifg=1, (4.15b)
>0
Fgi(x) = () conv (F (= + 0B)), (4.15¢)
5>0
G (@) = () (G (x + 0B)). (4.15d)
5>0

To allow us to use a uniform notation for all of the functions and sets, we also write
F/LCC\L = F" and C/JS\L = G for each x € {Ko,S}. The functions P/}?\L, P/’{ZL, ég\h,
and éﬁ\% are OSC (see [4, Lemma 5.16]), and F/}S\L(ﬂv) and F/}ETL(:L‘) are convex for each
x € X. The necessary properties of the remaining functions and sets are achieved
via assumptions. In particular, we impose the following assumptions on Hp, Hg,,

and Hy, to ensure that 7 satisfies the hybrid basic conditions (Definition 1.2).

Assumption 4.1. The subsystems Hp, Hy,, Hx,, and Hs in (4.2) satisfy the fol-

lowing.
(B1) (Ensure CUD = X):
(2,6(z)) €CoUDy Y= (2,m0,m1,0,q) € X

CKO U DKO - 51)70; CKl U DKl - X, and CS U DS - X

(B2) (Ensure C and D closed): The sets &1, V, C,, and D, are closed for each

* € {P,Ko,K1,S}.
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(B3) (Ensure dom(F ) C and dom(G) D):

dom(kg) = &g, dom(ki) =X,
dom(Fp) = Cp, dom(Fy,) = Ck,, dom(Fy,)=Cg,, dom(fy)=Cs,
dom(Gp) = Dy, dom(Gy,) = Dx,, dom(Gk,) = Dx,, dom(gy) = Ds.

(B4) (Ensure F and G are OSC): The functions f,, and g, are continuous, and the
maps (2'7770) = FP(Z7HO(2:7770))7 (27770) = GP(Z7HO(Z7770))7 FK07 and GKO are
OSC.

(B5) (Ensure F' and G are locally bounded): The functions k1, F, and G, are locally

bounded for each x € {P, Ko, K1 }.

(B6) (Ensure F' is pointwise—convez): The set Fp(z,u) is convex for each (z,u) € Cp,

and Fy,(z,1n0) is convex for each (z,19) € Ck,. o

Under the assumptions of Assumption 4.1, we assert basic properties of the

closed-loop system.

Lemma 4.1. Suppose Hp, Hy,, Hx,, and Hs satisfy Assumption 4.1. Then, H
satisfies the hybrid basic conditions (Definition 1.2).

The proof of Lemma 4.1 is in Section B.1.1.

4.1.2 Existence of Solutions

In this section we prove three results to establish the existence of solutions from
cach point in X. Specifically, we prove G(D) C C UD = X (Lemma 4.2), and
F(z)NTe(z) for all 2 € C\ D (Lemma 4.3). The following assumption ensures that

solutions to H cannot jump out of X.

Assumption 4.2. For each x = (z,19,11,v,q) € X,

(9z,m0) € Cx, U D, Vg, € Gp(z, k(x)), (4.16)

(2, 9ny) € Cxy U Dy, Y, € Gxo(2,M0), (4.17)

(z 10> Gy > ¥ q) € Cx, U Dy, Van, € Gk, (x), (4.18)
(2,m0,m, 9u(x), 1 — q) € Cs U Ds. (4.19)
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Lemma 4.2. Suppose Hp, Hy,, Hx,, and Hs satisfy Assumptions 4.1 and 4.2. Then,
CUD=X and G(D)CX.

The proof of Lemma 4.2 is in Section B.1.3.
To ensure that flows are viable for H at all points in C'\ D, we impose the

following conditions on the subsystems.

Assumption 4.3. The subsystems Hp, Hg,, Hx,, and Hg satisfy the following.
(V1) (Ensure viability of (z,m0) when ¢ =0): For all (z,m0) € Ck, \ Dko,
Fero(z,m0) N Tey, (2,m0) # 95
(V2) (Ensure viability of (z,10) when ¢ = 1): For all (z,1m0,m1,v,1) €Cx, \ (S150x{1}),
(z,m0) € int(Cxk,);
(V3) (Ensure viability of m): For all x € Cx, \ Dx,,
Fy, (z) NTey, (m) # 25
(V4) (Ensure viability of v): For all z € Cs \ Ds,
fo(x) € Tey(x);
(V5) (Ensure Te(x) can be split): For all x = (z,m9,m1,v,q) € C'\ D,
To(x) = Te,, (z,m0) x Ty, (m) x Tey(v) x {0} (4.20)

Assumption (V5) allows us to separate the tangent cones of Cy,, Ck,, and Cs
allowing us to handle them individually. One might be surprised that T (x) could
be written without reference to Cp. The reason is that (4.20) is only assumed to
hold for x € C'\ D. If z is in the boundary of C$", then it must be in the boundary
of C (not in Dg") and Tee(z) = To(x).

Lemma 4.3 (Viability condition). Suppose Hp, Hy,, Hy,, and Hs satisfy Assump-
tion 4.1 and Assumption 4.3. Then, for each x € C \ D, there exists an open
neighborhood U of x such that

F)NnTe(@')#£2  va'eUnC.
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Proof. Take any x := (z,m0,m1,v,q) € C'\ D. The set D is closed (Lemma 4.1), so
there exists an open neighborhood U of z that is disjoint from D; that is, UND = &.
Take any 2 € U N C. By (V5),

Te(x) = Toy, (2,m0) % Ty, (m) x Teo(v) x {0}
Substituting the definition of F' and distributing the intersection operation produces
Fo(z, k()
FKO (Z’ 770)
x (Fi (2) NTey, (m))
x ({fv(@)} N Tey(v))
x {0}.
By (V3) and (V4), Fx, (z) NT¢,, (m) and {fy(2)} N T, (v) are nonempty. Thus, all

(F(x)NTe(x)) = N Tey, (z,m0) (4.21)

that remains is to show that

Fo(z,k(x))
NTec. (2,
F (2.10) Cio (2:10)

is nonempty. We consider ¢ = 0 and ¢ = 1 by cases.

Case 1. Suppose ¢ = 0. Then

Fo(z,6(2)) | _ | Fr(z 60(2,m0)) | _ Fovo(z.10).
Fy,(z,m0) Fyo(2:m0)
By (V1),
Fro(z:m0) N Ty, (2,m0) # 9,

completing this case.

Case 2. Suppose ¢ = 1. We picked x to not be in D, so z & S10 x {1} (since
S150 € Dy € D). Thus, (z,7m9) € int(Cyk,) by (V2). But the tangent cone at an

interior point of a set is the full tangent space, namely

Tey, (z,m0) = R™ x R™.

Therefore,
Fo(z, Fy(z, Fy(z,
p(2, k(z)) ﬂTCKO (2,10) = p(2,m1()) A (Rnp % Rno) _ (2, k1(2)) '
FKO(ZaT/O) FKO(Z?UO) FKO(Z’TIO)
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The set Fp(z,k1(z)) = FS*(x) is nonempty because 2 € C§* = dom(F"). Similarly,
the set Fx,(z,mo) is nonempty because (z,m9) € Cx, = dom(Fy,) per (B3). O

By combining Lemmas 4.1-4.3—along with an assumption that solutions do
not have finite escape time during flows—we are able to establish the existence of
solutions and prove that all maximal solutions are complete. Recall that say that

2 [to, T) — R™ with o < T has a finite escape time T if lim; ~p|z(t)| = oo.

Lemma 4.4 (Maximal Solutions are Complete). Suppose Hp, Hy,, Hx,, and Hs

satisfy Assumptions 4.1-4.3, and that no solution to
ieF(z) zeC

has a finite escape time, where F is given in (4.15). Then, for each xy € C U D,
there exists a non-trivial solution to H in (4.15) starting at xo and every maximal

solution to H is complete.

Proof. Our proof uses [3, Prop. 2.34]. By Assumption 4.3, we have that #H satisfies
the viability condition (VC) of [3, Prop. 2.34] for each z € C'\ D. Since F(z) D F(z),
we immediately have that 7 also satisfies (VC) for each z € C'\ D.

Because 7 satisfies the hybrid basic conditions (Lemma 4.1) and (VC) holds
at each point in C'\ D, every maximal solution ¢ to H satisfies exactly one of the

following cases [3, Prop. 2.34]:

(M1) ¢ escapes to infinity in finite time.
(M2) ¢ leaves C U D.

(M3) ¢ is complete.

By assumption, (M1) does not occur. Furthermore, it was shown in Lemma 4.2
that G(D) C CU D, so (M2) does not occur. By elimination, only (M3) is possible,

therefore every maximal solution is complete. ]

4.1.3 Ensuring Minimum Dwell Times

In Lemma 4.4, we showed that maximal solutions are complete, but this means
that ¢ + j — oo in the domain of solutions—there is no guarantee, yet, that the

solution exists for all ordinary time, since j may approach infinity on its own. For
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our chosen hybrid system model to be practical, however, we must ensure that there
is a positive minimum dwell time between jumps, ensuring that the solution does not
chatter and exists for all ordinary time ¢t > 0. The following assumption introduces
conditions that prevent the subsystems from jumping too frequently. Before we state
the assumption, however, we must introduce additional notation. To allow us to

map back from vectors or sets in X to the subsystem states, we define a projection

W RE A3 RS P RN )
z

map 7, for each x € {“2”, “ny”, “m”, “v”, “q" } as
(27770)77177)7 Q) — 77*(2’77707 m,v, Q) =k
For a set B C X, the image of B under 7, is m(B) := {* | (2,10, m,v,q) € B}.

Assumption 4.4. There exists dyi, > 0 such that

dist(7,(Dp), Gp(Dp)) > dpmin, (4.22)
diSt(ﬂ'no (DK0)7 GKO (DKO)) > din, (4’23)
diSt(Wm (DK1)7 GKl (DK1>) Z dmin. (424)

In the following result, given a solution ¢ to H and * € {P,Ko,K1,S}, we say

that (¢,7) € dom(p) is' a Hy-jump time if
o(t,j) € D and  o(t,j+ 1) € GLH(p(t, 7))
Lemma 4.5. Suppose Hp, Hy,, Hk,, and Hs satisfy Assumptions 4.1-4.4 and
DsNGSH(Ds) = @.

Then, for each compact set K C X, there exists A > 0 such that for every solution
¢ toH in (4.15) with range(y) C K, the following hold:

1. For each » € {P,Ko,K1,8} and every pair of distinct H,-jump times (t1, j1)
and (tg,]é) in dom(‘P>7
|t2 — t1| > AT'

(Informally: Ar is a minimum dwell time between jumps for each subsystem

ofﬁ.)

LA minor technical note: We have defined our closed-loop system so that one subsystem at a
time jumps. Nevertheless, it is possible for a time (¢,5) € dom(¢) to be a H.-jump for multiple x’s.

How? Consider z — Gi*(z) = {z}, 2 — G (z) = {z}, and a Hp-jump from z¢ € DF* N Diy.

Ko
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2. For all (t1,j1) and (t2,j2) in dom(yp),

[to —t1| < Ar = |2 —j1| <Ay =4

Proof. Let f := sup{|f| 1 fe ﬁ'(K)} We have that f is finite because Fis locally
bounded (Lemma 4.1) and K is compact.

Take dpin > 0 from Assumption 4.4. The set Dg N K is compact and C/JS\L is
continuous (since (/;‘g\L = GJ", by definition), so C/r'g\L(DSﬁK ) is compact. Furthermore,

ég\L(DS N K) and Dg N K are disjoint, by assumption, so
dy := dist(Ds N K, G$*(Ds N K))

is positive. Let d := min{ds, dmin} and Ap := d/f, which are also both positive.
We want to show that distance between D" and C/JS\L(DSL) is at least dmin. Take
any

T = <Z777077717U7Q) S DgL and g = (9z:77077717U7Q) € GlgL(DgL)

We have z € 7,(Dp) and g, € Gp(Dp), so

|z — g| = |z — g.| > dist(Dp, Gp(Ds)) = dist(Dp, Gp(Dp)) > dpin.
Since this holds for all x € DS* and g € C/JS\L(DSL), we have that

dist(DS*, GEE(DEY)) > dynin.

—

Similarly, we can find dist(Dg}, GRhq(Dg})) = dmin for ¢ € {0,1}. Thus, for each
* € {P7 Ko, K1, S}:
dist(DS* N K, GSH(DS N K)) > d.

Take any solution ¢ to H with range(¢) C K and any * € {P,Ko,K1,S}. For
each jump time (¢, ) € dom(yp), the subsystem state of H, jumps (is non-constant)
only if (¢,7) is an H,-jump time. Thus, between any distinct pair of H,-jump times
(t1,71) and (to,jo2), the solution must flow a distance of at least d at a velocity no
more than f, therefore,

to — t1] > Ar.

Thus concluding the proof of Item 1.
Item 2 follows directly. Per Item 1, each subsystem can jump at most once
within any interval of length A, so solutions to H can jump at most Ay := 4 times

(once per subsystem) in the same interval. O
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4.2 Supervisor Design for Global Asymptotic Stability

We now return to the problem of rendering a nonempty compact set Ap to be
UGAS. Our goal is to design a hybrid supervisor Hs that switches between Hy,
and Hy, while ensuring that Ap remains UGAS despite sometimes exploiting Hy,. To
do so, we will extend the design of the supervisor developed in Chapter 3 to the more
general setting of this chapter. We assume the existence of a Lyapunov function V;
that certifies, via Corollary 1.1, that Ap is UGpAS for Hp.o (Assumption 4.5).
Additionally, sufficient conditions are assumed to ensure that all maximal solutions
to Hp.o are complete and switching is not too frequent.

In contrast to Section 3.1 where A, was taken as a subset of the plant’s state
space, we now want to account for the state 79 of Hg, since it may be necessary
to ensure that the joint state (z,79) of Hp and Hy, converge to a given set. Thus,
we let Ap be a subset of C, U Dk, C R™ x R instead of just R™. The following
assumption gives Lyapunov conditions asserting that Hy, is a Lyapunov-certified

controller for the plant Hp.

Assumption 4.5. The set Ap C & and the closed-loop system Hp,o in (4.14)
satisfy the following:

(L1) Ap is compact and nonempty;
(L2) There exists a continuous function V, : R™ x R™ — R>q such that

e V} is Clon an open neighborhood of Cy,

e V5 is positive definite on & o with respect to Ap;
(L3) there exists a € Ko such that a(|(z,m0)]4,) < Ve(2,m0) for all (z,1m0) € Ep o;

(L4) there exists a continuous function ¢ : & 9 — R>( that is positive definite on

Ep o With respect to Ap, and
sup L, Ve(2,m0) < —00(2,m0) Y(2z,m0) € Cpro;
(L5) For all (z,m9) € &0 and (z,u) € Dy,

‘/P(gzvn(J) < ‘/P(Zan()) \v/gz € GP(Zau)-
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For all (z,m0) € Dx,,

VP(Zagno) < VP(Z>770) vg’l]() € GK0(27770)‘ <

Remark 4.1. Condition (L5) imposes that V; is nonincreasing at jumps for any input
value u (regardless of whether u is produced by kg), and V; is also nonincreasing for

jumps in the value ny according to the dynamics of Hy,.

The supervisor’s state variable v is assumed to be any nonnegative real number,
so the state space is V := R>o. When ¢ = 0 and there is a sufficient buffer between
Ve (z,m0) and v, then the supervisor will trigger a switch from ¢ = 0 to ¢ = 1. When
q=1,if Vix(z,m9) > v ever holds, then the supervisor switches to ¢ = 0. In particular,
a continuous positive function (z,79) — 0(z,710) > 0 defines a state-dependent buffer
required between Vi(z,79) and an auxiliary variable v that is required before a
switch to ¢ = 1 is permitted. The supervisor switching and hold sets must satisfy

the following inclusions:

So D {(z,m0,m1,) | Va(z,m0) + 6(2,m0) > v}, (4.25a)
Sos1 C {(2:m0,m1,v) | Ve(2,m0) + (2, m0) < v}, (4.25D)
St C{(z,m0,m,v) | Velz,m0) < v}, (4.25¢)
Si0 D {(2:m0,m1,v) | Ve (z,m0) > v} (4.25d)

You may sometimes simply choose the switching and hold sets using equality in (4.25),

but having flexibility may be of use in the following ways:

1. Picking a restricted switching set Sp—,1 (and larger Sp) may be desirable to
avoid switching to Hy, at times when Hy, is not expected to perform well.
Alternatively, one may wish to ensure that there is a minimum dwell time when
q = 0 before switching to the uncertified controller by introducing an auxiliary
timer variable 7 > 0 to the system with 7 = 1, we can impose a minimum

dwell time T" > 0 by picking
'SO’—>1 = {(2777077717U7T) | ‘/1)(27770) + 5(27770) <wv, T2 T}

2. Picking an expanded switching set S1,,0 (and smaller S1) can be necessary to

force the system back to the certified controller. For example, if Hy, would
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cause (z,7p) to move out of &, we can ensure viability by choosing Si0
to cover the boundary. Specifically, S0 should be chosen to satisfy (V2) in
Assumption 4.3.

To define the dynamics of v, we define f, and g, for all (z,79,v) € &0 X R>p as

Fo(z,m0,0) 1= =y tanh(v)oo(2,m0) — p(v — Ve(2,m0)) (4.26)
gv(z,mo,v) := max{Vp(z,m0), v}. (4.27)

The term —p(v — Vo(z,m0)) pulls v toward Vi (z,79), which helps v to “catch up”
if Vo(z,m0) has dropped quickly, and allows v to grow if v is initialized less than
Ve(z,mp). The term —rtanh(v)og(z,7n0) pushes v toward zero to prevent v from
stopping if Vi (z,m0) = v # 0. Since —oo(z,m0) < 0 for (z,m0) & Ap, we multiply
o(z,m0) by tanh(v) so that f(z,no,v) is nonnegative when Vi (z,19) = v # 0. This
ensures U > 0 when v =0 is already on the boundary of R>g. One important

property of f, is that it is nonnegative for v = 0, ensuring that f,(z,n9,0) € Ty(0):

fv(z, 1o, 0) >0 V(Z, 770) € EP’O- (4.28)

For the closed-loop system, we want to ensure that (z,79) — Ap and v — 0,

which is to say that  converges to the set
A=A x & x {0} x {0,1} C X.

To this end, we define a Lyapunov function candidate V of A. Let V : X — Rxq be
defined for all x = (z,m9,m1,v,q) € X by

V(z) := max{V;p(z,m0), v}. (4.29)

The following results establish properties on V' that are required by Corollary 1.1
so that we can apply that result to prove that A is UGpAS. In Lemma B.1, we
assert that V' is a Lyapunov function candidate with respect to A for H. We then
construct a function o in (4.30) that is LSC and positive definite on C' with respect to
A (Lemma 4.6) such that —o(x) is an upper bound on the rate of change of V along
flows in H (Lemma 4.7). In Lemma 4.8, we show that V' is nondecreasing across
jumps for solutions to H. Altogether, these results give us that V is nondecreasing

at jumps and strictly decreasing during flows outside of A. To show use these results
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to prove A is UGpAS, we must show that jumps do not occur too often, so the
strict decrease during flows has sufficient time to produce convergence. Establishing

a bound on the frequency of jumps is left until Section 4.1.3.

Assumption 4.6 (UGAS Supervisor). The supervisor Hs satisfies v € (0,1], u > 0,

and ¢ is continuous and strictly positive. o

Let x +— o(z) be defined for all z € X’ by

o(x) = { oo(zm) i Ve(zm) > (4.30)

_fv(zan(b U) if %(2, 770) S .

We will show that o is LSC, positive definite with respect to A, and
sup Lr(z) < —o(x).

Lemma 4.6. Suppose that Ay and Hp,o satisfy Assumptions 4.5 and 4.6. Then, o
is LSC and positive definite with respect to A on C.

Proof. Since og and f, are continuous, the only points where o can discontinuities is
where Vi (2z,m0) = v. Take any x := (z,19,11,v,q) € X such that Vi(z,19) = v. We
have that

o(x) = —fu(z,m0,v) = ytanh(v)oo(z,m0) < oo(z,m0),

where the inequality holds because 0 < vtanh(v) < 1 for each v > 0 because
€ (0,1] and tanh(v) € [0,1). Thus, liminf,_,, o(2') = o(z), so ¢ is LSC at x and
since this holds for all z, we have that o is LSC everywhere.
Next we prove the positive definiteness of o. Take any x := (z,n9,11,v,q) € C.
If z € A, then Vi(z,1m9) = 0 and v = 0, so, by construction of f, in (4.26),

O‘(J}) = _fv(zaUO/U) =0.

Thus, o(x) = 0.

Alternatively, suppose = ¢ A and consider the following cases.
Case 1. Suppose Vp(z,m9) > v. Since V; is assumed to be positive definite with
respect to Ap, we have (z,m9) € Ap. Thus, o(x) = o¢(z,m9) > 0, since oy is positive

definite with respect to Ap.
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Case 2. Suppose Vi (z,1m9) < v. Then,

o(x) = —fulz,m0,v) = ytanh(v)oo(z,m0) + p(v — Va(z,m0)).-

The first term, ~tanh(v)og(z,m0) is nonnegative, whereas p(v — Vi) > 0. Thus,
o(x) > 0.

Case 3. Suppose Vp(z,m0) = v. Since x ¢ A, we must have Vp(z,10) = v > 0, so
(z,m0) ¢ Ap and og(z,m9) > 0, by positive definiteness. Thus, vy tanh(v)og(z,19) > 0
and p(v — Vi(z,m0)) = 0.

Therefore, o is positive definite with respect to A on C. O

The next result establishes that for each solution ¢ to ﬁ, the function (¢,7)
Ve(p(t, 7)) decreases along each interval of flow in dom(y) while ¢ is outside \A.

Lemma 4.7. Suppose that Ay, and Hp.o satisfy Assumptions 4.5 and 4.6. Then,
the Lyapunov function candidate V' in (4.29) and the regularized flow map F defined
in Section 4.1.1 satisfy

sup ﬁﬁmTCV(x) < —o(x) Vo e C. (4.31)

Proof. Take any x := (z,m9,m,v,q) € C. If 13'(:17) NTe(x) is empty, then

L~

FmTCV(x) = —00,

so (4.31) holds. Suppose, instead, that ﬁ(:v) NTc(zr) # @. We want to show that
(¢, f) < —o(z) for each ¢ € 8°V(z) and each f € F(x) N Te(x). Take any such ¢
and f. We write the components of f as f := (fs, fny, fo1, [0, 0), where

f: € FSL('T)7 fT]o S Fé}(m) = FKO(ZvnO)a fm S F}SlL(l‘), and f, = fv(ZaWO,U)-

Evaluating the generalized gradient of V', we find

{lo5, of, o, 1 0} if Vi(2,m0) <v

0°V(x)= conv{[()jlP 0;0 OL 1 OJT,[VVPT(Z,UO) OL 0 OJT} if Vp(z,mp)=v
{[VVPT(Z,WO) O,TL1 0 O]T} if Vo(z,m0)>0.

(4.32)

(The gradient VV; exists because V5 is assumed to be CL)

Consider the following three cases.
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-
Case 1. Suppose Vp(z,m9) < v. Then, ( = [OILP OEO 021 1 0} is the unique

element of 9°V(x), so

<C7 f) = <1? fv(zanOaU» = fv(%ﬁoav)-

Since Vip(z,m0) < v, we have that f,(z,nm9,v) = —o(x), per the definition of o
in (4.30).

-
Case 2. Suppose Vi (z,1m9) > v. Thus, ( = [VVPT(Z,UO) ()I1 0 0| is the unique
element of 9°V (x) and

<C’ f> = <VVP(Z’770)7 (fZafno»'

We have that Vp(z,m9) > v, so @ € C1 (recall C; = {x | Vi(z,m0) < v}). Since
x € Cs C C, we must have z € Cy and ¢ = 0. Thus, @(az) = Fu(z,k0(2,m0)), so
foxo = (fz, fro) € Frxo(z,m0) and (z,m0) € Cpxo. From the definition of L, V5,

(VVa(z,10); (f2: o)) € Lo Ve(2,m0)-
By the continuous-time Lyapunov condition (L4) in Assumption 4.5,
sup Lr,.,Ve(z,m0) < —0o(z,m0)-
Finally, since o(x) = oo(z,m0) for Vi(z,m0) > v, we arrive at the desired inequality:

<f7 C> < sup EFPXU‘/P(Z7770) < _00(27770) = —O'(l').

Case 3. Suppose Vo(z,m0) = v. This case is more difficult because 9°V () is not a

singleton. We have that
CG@OV(w):conv{[OJL—P 0l 0l 1 0], [VVJ(z,n) 0] 0 o]T}. (4.33)

Since ((, f) is linear in ¢, the maximum value of (¢, f) is attained at one of the

endpoints of the convex hull in (4.33):
¢, f)< max{<[0;lrp oL or 1 0], f>, <[VVPT(Z,770) or 0 o], f>}
:max{<l, Folzm0,0)), (VVi(2,m0), (fz,fn0)>}. (4.34)
From the definition of o, we see
(1, fulz,m0,0)) = fulz,m0,0) = —o(z).
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To show (VVi(2,m0), (fz, fno)) < —o(x), we will consider ¢ = 0 and ¢ = 1 separately.
Suppose g = 0. Then, (f, fn,) € Fexo(z,m0), so by (L4),

(VVa(z,m0), (for fro)) < —00(2,m0) < fulz,m0,0) = —0 (),

since _fv(za Mo, U) = vtanh(v)ao(z, 770) < O-O(za 770)

Suppose ¢ = 1. For this case, we must use the fact that f € T (x). Calculating T (x)
directly is difficult but unnecessary. Instead, we find the tangent cone to Cg, which
contains T (x) because C'(z) C Cs. Since ¢ = 1, we have x € C;. Furthermore, since
Cp and C are separate components of Cy (i.e., separated by a positive distance), we

have that T, (x) = T, ().

The set C7 can be written as
C1 = {(z,m0,m,v) | Ve(z,1m0) — v <0} x {1},
Thus, for every w = (w,, wyy, Wy, , Wy, 0) € Te, (),
(Va(Ve(z,m0) —v), w) = (VVe(2,m0), 0, —1,0), w) <0. (4.35)
Rewriting (4.35) as separate inner products, we get
(VVe(z,1m0), (w2, wyy)) — (L, wo) = (VVe(z,m0), (wz,wp,)) —wy < 0. (4.36)

Since f € T¢,(x), we can pick w, = f,, wy, = fy,, and w, = fu(2,m0,v) and

substitute in (4.36),

(V‘/}(Z,no), (fz:fno» - fV(Z77707U) <0.

Rearranging the prior equation, we find
(VVi(z,m0), (fzs fro)) < fulz,m0,v) = =0 ().

Thus, (¢, f) < —o(x), completing the proof. O

Next, we prove an analogous result for jumps, namely that V' (z) is nonincreasing

at jumps.

67



Lemma 4.8. Suppose that A, and Hp.o satisfy Assumptions 4.5 and 4.6. Then, the
Lyapunov function candidate V' in (4.29) and the regularized jump map G defined
in Section 4.1.1 satisfy

V(g)<V(z) VzeD,VgeGx)

Proof. By Lemma B.1, V is a Lyapunov function candidate with respect to A for
H. Take any x = (2,70,m1,v,q) € D and ¢ := (g2, 9no> 91+ Gv- 9q) € é(x) We want
to show V(g) < V(). Since g € G(z), we must have that 2 € DS and g € @(x)
for some x € {P,Ko,K1,S}. Thus, we consider, individually, each of the four cases
given by * € {P, Ko, K1, S}.

Case 1. Suppose x € DS" and g € @(.I) From the definitions of D5" and C/JIC,\L, we
have that g, € Gp(z,u) for some (z,u) € Dp. By (L5),

Ve(92,m0) < Vo(z,m0).
Since gy, and v are constant when z jumps (i.e., gn, = 1o and g, = v), we have that
V(g) = ma’X{VP(927gn0)7 gv} = maX{VP(gzvn())a U} S maX{%(zan0)7 /U} = V(JJ)

Case 2. Suppose x € D and g € C/lﬁ\g(x) From the definitions of D and é%,
we have (2,m0) € Dxy, 92 =2, gny € Gxo(2,M0)s gy =m, and gy =v. By (L5),
Vo (2, Gny) < Vi(z,m0). Thus,

V(g) = min{Ve (92, gno ), g} = min{Ve(2, gy ), v} < min{Ve(z,m0), v} = V().

Case 3. Suppose z € D" and g € éﬂ\%(x) From the definitions, we have x € Dy,
9> =2, gn, = Mo, and g, =v. Thus, V(g) = V(x), since V only depends on z,nq,

and v, which are not changed.
Case 4. Suppose x € Dg and g € C/;S\L(x) Then,

9> =2, Gno =10, and g, =max{Vp(z,m0),v}.
By substitution, we find

V(g) = max{Vs(g2, gy )s v}
:max{%(z,no), max{Vp(z,m0), v}}
= max{Vs(z,m0), v}
=V(x).
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Therefore, V(g) < V(). O

Combining the prior results, we can prove A is UGAS for 7-AL, which immediately

implies that A is UGAS for H, since every solution to H is a solution to .

Theorem 4.1 (UGAS). Suppose that Hp, Hy,, Hx, , and Hg satisfy Assumptions 4.1—
4.4, and that Ds N GS"(Dg) = @ and &; is compact and nonempty. Suppose, fur-
thermore, that Ap and Hp,o satisfy Assumptions 4.5 and 4.6. Then, the set A is
UGAS for H.

Proof. The set A is compact and nonempty because Ap and £ are compact and
nonempty by assumption Assumption 4.6. By Lemmas B.1, B.3, and 4.6-4.8, we
have that V in (4.29) is a Lyapunov function candidate with respect to A for #;
the function o in (4.30) is LSC and positive definite on C' with respect to A; the
function « in (B.1) is class-Koo; and conditions (1.8a)—(1.8¢) in Theorem 5.1 are
satisfied. A bound on jump frequency as required by (1.9) in Theorem 5.1 remains
to be shown.

Take any r > 0. We want to show that there exists A7 > 0 and Ay > 0 such
that for each solution ¢ to H with |p(0,0)|4 < r, and for all (to,jo) and (t1,71) in
dom(y) such that |t; — tp| < Ap, we have that |j1 — jo| < Ay. To apply Lemma 4.5,
we must construct a compact set K C X such that K is forward pre-invariant for H

and A+ rB C K. Consider
K:={zeX|V(z) <supV(A+rB)}, (4.37)

where V(A + rB) is a set in R, so sup V(A + rB) is the supremum of that set. The
set A + rB is compact because A is compact. Let V* := sup V(A + rB). Since V
is continuous, V(A + rB) is bounded, so V* is finite. Thus, K is the V*-sublevel
set of V. The sublevel set of a continuous function is closed, so K is closed. Every
sublevel set of V' is forward pre-invariant, as a consequence of (1.8b) and (1.8c)
(which imply that V' is nonincreasing along flows and jumps, respectively), so K
is forward pre-invariant (Proposition 5.7). Finally, to show that K is bounded, we

use (1.8a) which gives that for all z € K,

allz)a) < V(x) < V™
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Then, using the fact that « is invertible and a~! is strictly increasing, we have
that |z|4 < o }(V*). In other words, K is contained within the compact set
A+ a H(V*)B and (as shown earlier) is closed, so K is compact.

Per Lemma 4.5, there exists A7 > 0 such that for each solution ¢ with ¢(0,0) €
K and each (t1,j2) € dom(p) and (t2,j2) € dom(yp),

to—t1] <Ar = |j2—5i] <Ay =4

Then, it follows from Proposition 5.5 that (5.18) in Theorem 5.1 holds. Therefore,
by Theorem 5.1, the set A is UGpAS for H.

To move from UGpAS to UGAS, we will show that all maximal solutions are
complete by applying Lemma 4.4. We need to show that no solutions to (13' ,C) have
a finite escape time, but this follows immediately from the fact that A is compact

and UGpAS. Therefore, by Lemma 4.4, every maximal solution to H is complete

and A is UGAS for H. O
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Chapter 5

Relaxed Lyapunov Conditions for

Hybrid Systems

During the development of the results in Chapters 3 and 4, we found that
existing Lyapunov theorems for hybrid systems were insufficient for our needs. In
particular, we tried to use [3, Thm.3.19(b)] to prove that our uniting feedback
strategies rendered Ap to be UGAS. For our purposes, however, [3, Thm.3.19(b)]
was difficult to apply, however, because it required the construction of a continuous,
positive definite function p such that —p(|z|4) is an upper bound on sup LzV (x).
In particular, we found that our analysis would be benefit by relaxing the continuity
assumption to merely lower semicontinuity and by writing the bound as a function
x directly, instead of |z|4 the distance from x to A. To alleviate these difficulties,
we developed the results presented in this chapter, which have also been published

in [16].

5.1 Introduction

In several Lyapunov-like theorems found in the control theory literature, as-

sumptions are imposed on a function h : R” — R in the form
W) < —plala) Vo ER, (5.1)

where |z| 4 is the distance from z € R™ to a set A, and p : [0,00) — [0, 00) is continu-
ous and positive definite. E.g., for a system & = f(z) with a differentiable Lyapunov
function V, we would use h := V, where V(z) := (VV(z), f(z)). Examples of as-
sumptions in the form (5.1) include the hybrid Lyapunov theorem [3, Thm. 3.19(3)],
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(robust) control Lyapunov functions [3, Defs. 10.2 and 10.14], and input-to-state sta-
bility (ISS) Lyapunov functions [17], [18]. In some results, such as Theorems 4.1
and 4.9 in [19], assumptions are given without using the distance function in the
form

h(z) < —o(z) VreR", (5.2)

where o : R” — [0,00) is continuous and positive definite with respect to A, but
such existing results assume A = {0}.

In this chapter, we relax the assumptions on Lyapunov functions for the
case where A is compact. This work builds upon the hybrid Lyapunov theorems
[4, Thm. 3.18] and [3, Thm. 3.19]. In particular, [3, Thm. 3.19] asserts that a given
set A is uniformly globally asymptotically stable with respect to a given hybrid
system H under given assumptions. In this chapter, we relax the assumptions of
[3, Thm. 3.19] by i) relaxing bounds on the rate of change of V' that are given as a
function of the distance from A, as in (5.1), to only a function of the state, as in (5.2),
ii) allowing for bounds to be lower semicontinuous instead of continuous, iii) relaxing
the typical Ko upper-bound on V', and iv) simplifying conditions on hybrid time
domains when V' is merely nondecreasing during flows or across jumps. We prove our
results in the context of hybrid dynamical systems, with the results for discrete-time
and continuous-time systems following as special cases. Along the way, we also prove
several auxiliary results relating to finding lower bounds for positive definite lower
semi-continuous functions that may be useful in other contexts. Throughout this
chapter, we use the notation “p” to denote positive definite functions on R>y and “o”
to denote positive definite functions on R™ with respect to A (i.e., p € PD(0) and
o € PD(A)).

The remainder of this chapter is structured as follows. Section 5.2 contains
insertion theorems that assert the existence of functions between constraints. Sec-
tion 5.3 presents our main result, a Lyapunov theorem to show that compact sets are
UGAS for hybrid systems, which relaxes results in [3], [4]. In Section 5.3.1, simplified
conditions are provided for establishing bounds on the amount of flow versus the
number of jumps in a hybrid time domain. Section 5.3.3 presents corollaries of our
hybrid Lyapunov theorem for the special cases of continuous-time and discrete-time
systems. Section 5.3.2 provides results for establishing bounds on solutions via

sublevel sets of Lyapunov functions.
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5.2 Insertion Theorems

In the field of topology, an insertion theorem asserts the ability to insert a
function between two other functions. An example is the Katétov—Tong insertion
theorem [20], which allows for the insertion of a continuous function between any
USC function £ : R — R and LSC function u : R — R such that £ < u. In this section,
we introduce results for inserting positive definite functions between zero and another
positive definite function. These results are used, in Section 5.3, to relax conditions

such as (5.1) and (5.2).

5.2.1 Insertion Theorems for Positive Definite Functions

Our first result shows that given any LSC function o.sc € PD(A), we can

construct a Lipschitz continuous function oo € PD(A) such that o¢ < 0.

Proposition 5.1. Consider a closed set X C R", a compact set A C X, a function

ousc : X = R>q, and any £ > 0. Let o¢ : X — R>o be defined by

oo(z) = géf/v(ﬁ\x* — x| 4 opsc(z”)) Ve e X. (5.3)

If o15¢ is in PD(A) and LSC, then o is in PD(A), {—Lipschitz continuous, and
oo(x) < orse() Ve e X. (5.4)

Proof. First, we will establish that for each z € X, the objective function x* —
llx* — x| + ouse(z*) attains a minimum for some z* € X and that the minimum
point is within a ball with radius opgc(xg) centered at zp. Take any 2y € X and let
K := xy + o1sc(20)B, which is compact, and take any 1 € X' \ K. Since x; is not
in K,

llxy — xo| > ovse(xo)-

Using the fact that oy gc(x1) > 0, we find
lxy — xo| + orse(x1) > Ll — xo| > orse(To)-
Thus, for all zy € X and z; € X'\ K,

5‘1‘1 - 330| + oise(1) > orse(o),
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so excluding all such points x; from the domain of the infimum does not change the
value of the infimum. In other words, restricting the domain of the infimum to K
does not change the value of o (xo):

(llzo — 2|+ ousc(2)) = inf  (Olwo — 2| + ors0(2¥)).

7c(0) = 2 EXNK

inf
T*eX
An LSC function restricted to a compact set always attains a minimum, so there

exists z* € X N K such that
oo(xo) = llxg — *| + orse(z”). (5.5)

Furthermore, since z* is a minimum point, the objective function cannot be

smaller at xg, so we establish that (5.4) holds:
oc(zo) = o — =¥ + orse(x”) < (€|$0 — xo| + JLSC(xO)) = o1sc(z0)-

Next we establish that o is positive definite with respect to A. If xg € A, then
oc(xo) = ousc(zo) = 0. Suppose, instead, that xy € A. Then, z* in (5.5) must either

be xg or not xg. If x, = xg, then

oo(xo) = lxo — ™|+ orsc(x™) > 0.
—_————— ——
=0 >0
If * # xg, then
oo(xo) = lxo — ¥+ ors0(x™) > 0.
—_————— ——
>0 >0
Therefore, o¢(xg) > 0 for all g ¢ A, thereby proving o is positive definite with
respect to A.
Next, we will prove o¢ is f—Lipschitz. Take any zg € X and z1 € X. Because

the minimum is attained on X N K, there exists xj € X N K such that
oc(wo) = Llwg — xo| + oLsc(xp)-

Additionally,

oo(x1) < Lllay — x1| + owse(x])-

Therefore,
oc(x1) —oc(zo) <l|zg—x1|+0oLsc(zg) — (ﬁ\mé—x(ﬂ —|—O’LSC(CL'8)) =Llxy—x1|— L2y —T0)-
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By the inverse triangle inequality
|25 — 21| — |2§ — w0l < [|ag — 21| — |2g — wol| < (2§ — 21) — (2§ — w0)| = |21 — ol-
Therefore,
oc(x1) — oc(xo) < l)w1 — ).
The values xy and z1; were arbitrarily chosen from X, so we can switch them,
producing
O'C(.T()) — O'C(.Tl) = —(O’C(.CCl) — O'C(x())) S 5‘1’0 — a:1| = 5‘1’1}1 — $0’.

Therefore, we have established that o is Lipschitz continuous with Lipschitz con-
stant £, since

loc(z1) — oc(zo)| < lz1 — 0] Vag, 21 € X. O

Example 5.1. To see why o4¢ is assumed to be LSC in Proposition 5.1, consider

0 : R>9 — R defined for all z > 0 by

o(z) i {x(l — ) if x €0,1)

1 if x> 1.

Although o is positive definite with respect to A := {0}, it cannot be lower bound
by a continuous function in PD(A) because o is not LSC at 2 = 1 and

liénﬁi{lfo'(a:) = 0.
In particular, for any continuous function o¢ : R>9g — Rx>¢ such that o¢(z) < o(x),
it must be that o¢(1) = 0 because o is squeezed to zero by o as = approaches 1

from the left. o

The next result allows us to weaken assumptions in the form of (5.1), with p

continuous, into an inequality in the form of (5.2) with o LSC.

Lemma 5.1. Consider a continuous function o¢ : R" — R>¢ and a compact set

ACR" Ifo. € PD(A), then
7= prso(r) == inf{oe(x) : |z|a =71} Vr >0 (5.6)
is LSC, positive definite, and satisfies
pisol|zla) < oo(z) Vo eR™ (5.7)
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Proof. Let D : R>9 = R" be defined by
r—D(r):={z eR": |z|s =1} Vr > 0.

Since A is compact, the set D(r) is nonempty and compact for all 7 > 0.1 Further-
more, since o is continuous and D has compact values for each > 0, the restriction
of o¢ to D(r) attains a minimum value, therefore

PLSC(T) = ﬁfenl;%) Jc(x) Vr > 0.

Next, we prove ppsc is positive definite and satisfies (5.7). Take any r > 0. If
r =0, then |z|4 = r implies = € A, s0 psc(0) = min{o¢(z) | z € A} = 0, since o
is identically zero on A. Suppose, instead r > 0. Since o is positive outside A and
D(r) is disjoint from A, we have that pso(r) > 0. Therefore, p;s¢ is positive definite.
Take any x € R™. Then, we find pgc satisfies (5.7):
prsc(|z|4) = min  o(2') < oc(x) Va € R™. (5.8)
x'€D(|xw|a)

Next, we prove pigc is LSC. For all » > 0, let
M(r) = {Zmin € D(7) | 0c(Tmin) = prsc(r)},

which is the (nonempty) set of points that minimize o¢ in D(r).
To prove lower semicontinuity at each r1 > 0, we want to show that for all € > 0,

there exists 0 > 0 such that for all 7, € R>,
11 — 72| £ 6 = prsc(r2) > prsc(r1) — €.

Take any 71 > 0 and let K, := A+ (r; +42)B C R™. Since o is continuous
and K, is compact, the restriction of oy to K, is uniformly continuous. From the
definition of uniform continuity, for all € > 0, there exists d > 0 such that for all
z1,T9 € K,

|LL'1 - ZE2| < 0 = |Uc($1) — GC($2)| <e.

Without loss of generality, suppose § < 42 (so that D(ry) + 6B C K, ). Take any

ro > 0 such that |r; — ra| < 6. We will show pisc(r2) > prsc(ri) —e.

'To see why compactness is important, consider that if A := R", then D(1) = @.
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Take any zmin € M(r1) and z, € D(r1). From the definition of M(r1) and (5.8),

Uc(xmin) = pLSC(’xmin|A) = PLSC(‘ﬂfr|A) < UC(JUT)-
Consider D(r2). Since |r; —ra| <4,
D(re) C D(r1) + 6B.

Take any x2 € D(r2). Because of the uniform continuity of o¢ on D(r2) C D(r1) +

0B C K, and because min,cp(r,) 0c(z) = prsc(r1),
o6(22) > prsc(r1) — €.
Since this holds for all zo € D(rq), we have that

prsc(re) = min  oc(r2) > prse(r) — e.
xQED(TQ)

Therefore, pyge is LSC. ]

Remark 5.1. One may suspect that we can relax that assumption in Lemma 5.1 that
o¢ is continuous to merely lower semicontinuous. This remains an open question,
however. The proof approach we have used necessitates continuity of o, because
we use the fact that continuity on a compact set implies uniform continuity. The

analogous claim for lower semicontinuity on a compact set is false.
The next example shows a case where the function prg¢ in Lemma 5.1 is merely

LSC—not continuous.

Example 5.2. Consider A := {—1,1} C R, and let o¢(z) := |2? — 1] for all z € R.
Then, for all r > 0,

) r(2—r) if r <1
r)=qlz" =1 |xja =15 =
Prsc(T) {’ | @4 } {T(Q—I-T) if r>1,
SO prsc jumps from PLSC(l) =1to pLSC(l'Om) > 2. ¢

The following result asserts that for every LSC function o5 € PD(A) with A
compact, we can construct a continuous function p. € PD(0) that—when composed

with the distance from A, as in (5.1)—is a lower bound on oygc¢.
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Proposition 5.2. Consider a compact set A C R™. For each LSC function o :
R™ — R>¢ in PD(A) and each ¢ > 0, there exists an (-Lipschitz continuous and

positive definite function pc : R>9 — R>( such that

Proof. Suppose o3¢ € PD(A) is LSC. By Proposition 5.1, there exists a continuous
function o, € PD(A) such that

oo(z) < oge(z) Ve R™

By Lemma 5.1, there exists an LSC and positive definite function pygc € PD(0) such
that
pLsc(’x‘A) S Uc(x) Vaﬁ S RTL

Again, by Proposition 5.1, for any ¢ > 0 there exists an ¢-Lipschitz continuous

function po € PD(0) such that

Thus, for all z € R™,
pe(|r|a) < prsc(|z|a) < oc(r) < ouse(T). O

5.2.2 Insertion Theorems for Class K., Functions

This section shows that for any nonempty compact set A and continuous func-

tion V : R™ — R, there exists o € Ko such that
V(z) < a(lz|a) Ve dom(V). (5.10)

The following lemma establishes that any continuous function pe on R with pe(0) =0

can be upper bounded by a class-Ko, function.

Lemma 5.2. Consider a continuous function p¢ : R>g — R>q. If pc(0)=0, then

there exists a smooth function o € Ko, such that

pe(r) <a(r) Vr>0. (5.11)
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Proof. We define o : R>g — R>¢ for each 7 > 0 by
a(r) == sup |r—1r'| + pc(r’).
r'el0,r]

The function « is continuous by [21, Prop. 2.9] because ' — |r — /| + po(r') is
(single-valued) continuous and r — [0, 7] is (set-valued) continuous.
At zero, a(0) = pc(0) = 0. To see that « is strictly increasing, take any ro > 0

and 71 > r9. Then, since |r; — 9| > 0,
a(ry) > |r1 — ro| + pc(ro) > a(ro).
Finally, we see that lim,_,o, a(r) = oo because for all r > 0,
a(r) > |r—0[+ pc(0) =r.
Therefore, « is a class—K, function. O

Lemma 5.2 leads naturally to the following lemma that we use to eliminate the

Koo upper bound in Lyapunov theorems, such as [3, Thm. 3.19], when A is compact.

Lemma 5.3. Consider a closed and nonempty set X C R", a compact and nonempty
set A C X, and a continuous function V : X — Rxg. If V(z) = 0 for all z € A, then
there exists o € Koo such that V(z) < a(|x|a) for all x € X.

To see why the conclusion in Lemma 5.3 does not generally hold if A is un-

bounded, consider A :=R x {0} and (z1,x2) — V(x1,22) = (|z1| + 1)|x2|.

5.3 Lyapunov Theorems for Compact Sets

In this section, we present a Lyapunov theorem with relaxed assumptions for
showing that a compact set is UGpAS for a hybrid system. The following definition

establishes the class of functions permissible as Lyapunov functions.

Definition 5.1 ([3, Def. 3.17]). Consider a hybrid system H = (C, F, D,G) on R”
and a set A C R™. A function V : dom(V) C R" — R is a Lyapunov function candi-
date with respect to A for H if C U D UG(D) C dom(V), V is positive definite on
C U D UG(D) with respect to A, V' is continuous, and V is locally Lipschitz on an
open neighborhood of C. o
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A key part of any Lyapunov-like theorem is establishing an upper bound on
the change in a Lyapunov function candidate V. For hybrid systems, the following

functions provide upper bounds on the rate of V' during flows and across jumps.

Definition 5.2. Consider a hybrid system H = (C, F, D,G) on R", a nonempty set
A C R", and a Lyapunov function candidate V' with respect to A for H. Recall that

Tc(x) is the contingent cone of C' at . We define

uc(x) == sup Veo(x, f) Ve e C (5.12)
feF (2)NTe(x)

up(z) := sup V(g) —V(x) Vz € D. (5.13)
9€G(x)

The suprema are defined as —oo if the domains are empty (that is, if F'(z) N To(x) = @,

then u¢(z) = —00). o

For any solution ¢ to H and all (¢1,j1), (t2, j2) € dom(yp),
to Jo—1
V(p(ta, j2)) =V (p(t1,51)) < / uc((t, j(1)) dt + > up (0(t(), 5)),
t Jj=j1
where j and ¢ are defined for all (¢, j) € dom(yp) by
g t(j) :==min{t" | (t',j) € dom(p)} and ¢+ j(t) :=min{j"| (¢,5") € dom(p)}.

The main result of this chapter, which follows the structure of [3, Thm. 3.19(3)],
is presented next. In particular, Theorem 5.1 provides sufficient conditions for a

compact set to be UGpAS.

Theorem 5.1. Consider a hybrid system H = (C,F,D,G) on R", a nonempty
compact set A C R™, and a Lyapunov function candidate V with respect to A for H.
Suppose there exists a1 € Ko, such that

ar(|z)a) <V(z) Yxe CUDUG(D). (5.14)
Then, the set A is UGpAS for H if any of the following conditions hold:

(a) Strict decrease during flows and jumps: There exist LSC functions o.,04 €

PD(A) such that

uc(z) < —oe(x) Ve e C (5.15)
up(z) < —oq4(x) Vz € D. (5.16)
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(b) Strict decrease during flows, nonincreasing at jumps: There exists an LSC

function o, € PD(A) such that
uc(z) < —oe(x) Ve eC (*5.15)
up(z) <0 Vx € D, (5.17)

and, for each r > 0, there exist v, € K and N, > 0 such that for each solution ¢
to H with |¢(0,0)|4 € (0,7],

t>y(t+j)— N (t7) € dom(ep). (5.18)

(c) Strict decrease at jumps, nonincreasing during flows: There exists an LSC
function o4 € PD(A) such that

uc(z) <0 Ve e C (5.19)

up(z) < —og4(x) Vx € D, (*5.16)

and, for each r > 0, there exist v, € Ko and N, > 0 such that for each solution ¢
to H with |¢(0,0)|4 € (0,7],

J =t +74) = Ne V(t,j) € dom(e). (5.20)
(d) This item is skipped to keep the enumeration consistent with [3, Thm. 3.19].

(e) Bounded flow time: There exist A € R and an LSC function o4 € PD(.A) such
that

uc(z) < AV (z) Ve e C (5.21)
up(z) < —oq4(x) Vx € D, (*5.16)

and, for each r > 0, there exists T, > 0 such that for each solution ¢ to H with

‘90(070)’«4 € (O,'I“],
dom(y) C [0,T;] x N. (5.22)

(f) Finite number of jumps: There exist an LSC function o. € PD(A) and a

continuous function X : R>¢g — R>o with A(0) = 0 such that
uc(z) < —oe(x) Ve e C (*5.15)
V(g) < XV (x)) Yo € D, Vg € G(z), (5.23)
and, for each r > 0, there exists J,. € N such that for every solution ¢ to H,

dom(p) C R x {0,1,...,J.}. (5.24)
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Proof. We will apply [3, Thm. 3.19(3)] to prove each case. By assumption and
Lemma 5.3 with U/ := CUDUG(D), there exist ay, as € Ko satisfying [3, Eq. 3.26]:

ar(z|a) < V(x) < as(|z]a) Ve e CUDUG(D).

Suppose that there exists an LSC function o. € PD(A) that satisfies (5.15). By
Proposition 5.2, there exist a Lipschitz continuous function p. € PD(0) such that
pe(|x|a) < oc(z) for all z € R™. Therefore, under the assumption that there exists
an LSC function o, € PD(A) such that (5.15) holds, then there exists a continuous
function p. € PD(0) such that [3, Eq. 3.27] holds:

uc(z) < —oe(x) < —pe(|x) ) Vz e C. (5.25)

By a similar process, we find if there exists o4 € PD(.A) such that (5.16) holds,
then there exists a continuous function pg € PD(0) such that [3, Eq. 3.28] holds.

(a) By assumption, there exist LSC functions o.,04 € PD(A) such that (5.15)
and (5.16) hold. Then, as shown above, there exist continuous p., pg € PD(0)
such that [3, Egs. 3.27-3.28] hold. Therefore, by [3, Thm. 3.19(3a)], the set A
is UGpAS.

(b) By assumption, there exists an LSC function o. € PD(A) such that (5.15)
holds. Then, as in part (a), there exists p. € PD(0) such that [3, Eq. 3.27]
holds. By assumption, [3, Eq. 3.28] holds with p. = 0.

Additionally, by assumption, for each r > 0, there exist v, € Ko and N,. >0
such that for each solution ¢ to H with |¢(0,0)|4 € (0,r], and for all (¢,7) €
dom(yp), t > v, (t 4+ j) — N,. By Lemma B.7 (in Section B.2.1), for all 7" > 0
and (t,j) € dom(yp) with t +j > T,

t> 'YT(T) - Nr~
Therefore, by [3, Thm. 3.19(3b)], the set A is UGpAS.

(c) By assumption, there exists a lower semicontinuous function o4 € PD(A) such
that (5.16) holds. Then, as in part (a), there exists pg € PD(0) such that
[3, Eq. 3.28] holds. By assumption, [3, Eq. 3.27] holds with p. = 0.

Additionally, by assumption, for each r > 0, there exist 7, € Ko, and N, >0
such that for each solution ¢ to H with |p(0,0)|4 € (0,7], and for all (¢,5) €
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dom(y), 7 > 7 (t 4+ j) — N,. By Lemma B.8 (in Section B.2.1), for all J >0
and (t,7) € dom(p) with t + 5 > J,

j > 77“(']) - Nr~
Therefore, by [3, Thm. 3.19(3c)], the set A is UGpAS.
(d) This case is omitted.

(e) The inequality [3, Eqs. 3.28] is satisfied, as shown above in (a). Equation (5.21)
is satisfied by assumption. Take any r > 0 and take T, > 0 such that for each
solution ¢ to H with |¢(0,0)|4 € (0,7],

dom(yp) C [0,7;] x N.
Thus, for every solution ¢ to H,
£(0,0)[a € (0,7], (£,)) € dom(p) = t<T,,
thereby satisfying all of the assumptions of [3, Thm. 3.19(3e)].

(f) The rate inequalities in this case are either true by assumption or can be shown
via the methods above. By Lemma B.9 in Section B.2.1, the given assumption
on J, is equivalent to the assumption on the existence of v € K and J > 0 in

[3, Thm. 3.19(3f)]. Therefore, A is UGpAS for H per [3, Thm. 3.19(3f)]. O

The next example Theorem 5.1 can be applied to prove that a set is UGpAS

without needing to construct a bound on u¢ in the form of (5.1).

Example 5.3 (Bouncing Ball). Consider a bouncing ball modeled as in [4, Ex. 3.19]
with height x; > 0 and vertical velocity x2 € R. The bouncing ball is modeled as
the hybrid system H := (C, F, D,G) with state z := (x1,22) € R? and dynamics

given by
_m
F(x) = VI’GCZ:{$€R2‘LE1>O}
-
- . 2
G(x) = Vo e D:={z R’ |z =0,z2 <0},
—>\l'2
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where v > 0 is acceleration due to gravity and A € [0, 1) is the coefficient of restitution
when the ball hits the floor. The sets C' and D are not closed, so (A1) of the hybrid
basic conditions is violated. To show that A := {(0,0)} is UGpAS, we take the

Lyapunov function candidate
x = V(x1,22) := (14 0atan(zz)) (ac%/2 + vz1)
where 6 := (1 — X?)/(2+ 2X?). Equation (5.14) holds with
s+ ai(s) ==t min {s%/4, ys/V2}.

Since V is continuously differentiable and F is single valued, we have that for

all x := (z1,29) € C,
uc(z) = (VV(z), F(z)) = —~0 (x%/Q + ’yxl)/(l + x%) )

Thus, uc is continuous and negative definite with respect to A, and o, := —uc
satisfies (5.15). For each x := (0,22) € D,
2
up(z) = [)\2 -1- H(atan()\a:g))\Q + atan(ajg))} ?2,
which is continuous. For any = € D \ A, we have

¢9(atz’;m(—)\:v2))\2 —atan(zg)) < O +1) <A —1<0,

S0 up is negative definite. Thus, o4 := —uy, satisfies (5.16). Therefore, by Theo-
rem 5.1, (0,0) is UGpAS for H. o

As we saw in Examples 5.3 and 5.4, if u¢ and u, are negative definite and USC,
then we can simply use the functions oo = —u¢ and o = —up for the assumptions
in Theorem 5.1. This approach holds in general if we introduce additional (weak)
assumptions on F' and G, which are a subset of the hybrid basic conditions. In
particular, F' is assumed to be locally bounded and OSC, as in (A2), but not

assumed to have convex values. The assumptions on G match (A3).

Proposition 5.3. Consider a hybrid system H = (C, F, D, G) on R", a compact set
A C R", and a Lyapunov function candidate V' with respect to A for H. Suppose F' is
OSC and locally bounded, and u is negative definite with respect to A. Then, . =
—ug Is LSC and satisfies (5.15), and there exists a continuous function p € PD(0)
such that uc(z) < —p(|x|4) for all x € R™.
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Proof. First, we will show u is (single valued) USC. By [22, Prop. 2.1.5], the Clarke
generalized gradient 9°V is USC, and, since it has closed values, it is OSC. The
function F is (set-valued) USC because it is OSC and locally bounded. From the
definition of u¢, the value of uq(z) is the maximum of a continuous function (the
inner product) over USC set-valued maps. Additionally, F' and 9°V have compact
values. Therefore, uq is USC [21, Prop. 2.9].

Let prsc := —uc, which is positive definite and LSC. By Proposition 5.2, there

exists o : R" — R>( that is continuous and positive definite such that
pollala) < —uc(z) Va € R™.
Therefore, flipping the signs, we find
uc(x) < —pollz|a) Vo eR™ O

Proposition 5.4. Consider a hybrid system H = (C, F, D, G) on R™, a compact set
A C R", and a Lyapunov function candidate V with respect to A for H. Suppose
that GG is OSC and locally bounded, and uy, is negative definite with respect to A.
Then, o4 = —uy, is LSC and satisfies (5.16), and there exists a continuous function

p € PD(0) such that up(z) < —p(|x|4) for all x € R™.

5.3.1 Simplified Assumptions on Hybrid Time Domains

In Theorem 5.1, the conditions on the hybrid time domain of solutions given
in (5.18) of case (b) and (5.20) of case (c) are rather non-intuitive and are often
difficult to show. Thus, in Propositions 5.5 and 5.6, we provide sufficient conditions
for (5.18) and (5.20), respectively, that are easier to check while remaining general

enough to apply to most systems that satisfy (5.18) or (5.20).

Proposition 5.5. Consider a hybrid system H and a nonempty closed set A. Sup-
pose that for each r > 0, there exist A > 0 and A j > 0 such that for every solution ¢
with [(0,0)|4 € (0,7] and for every (o, jo), (t1,j1) € dom(g),

[t1 —to| < Ar = [j1 — Jo| < Ay (5.26)

Then, for each r > 0, there exist N, > 0 and ~, € K, such that for each solution ¢
to H with |¢(0,0)|4 € (0,7],

t>v(t+7)—N.  V(t j) € dom(yp). (*5.18)
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Informally, the assumptions of Proposition 5.5 state that for every solution that
starts within a given distance of A, there exists a bound A; on the number of jumps

that can occur during any time interval a given length Ar.

Proof for Proposition 5.5. Take any r > 0. By assumption, there exists Ay > 0 and
A > 0 such that (5.26) holds for every solution ¢ with |©(0,0)|4 € (0,r], and for

every (to,jo), (t1,J1) € dom(ep).
Take any solution ¢ to H such that [©(0,0)|4 € (0,7]. We will show that

A
J<Ay+ A—Jt Y(t, ) € dom(ep). (5.27)
T

Let T := sup,dom(p). If T'=0, then (5.27) follows directly from (5.26) with
to = t1 = 0. Suppose, instead, that T" > 0. For each i € N, let 7; :=iAp. Let Z C N
be the set of all ¢ € N such that 7, < T'. For each ¢ € Z, let

7; :=sup{j | (¢t,7) € dom(yp), t € [, Tit1]}- (5.28)

Let (to,jo) = (0,0) € dOHl(gD) By (526), |j1 —j0| = jl S AJ fOI‘ all (tl,jl) S
dom(y) such that |t; — to| < 71 since 71 = 6T'. Thus, 75 < Aj. For each i € 7\ {0},

we have
Jie1 = max{j | (t,7;) € dom(y)},
since j is nondecreasing relative to t for (¢,j) € dom(y), and 7; < T (from the

definition of Z), so the supremum in (5.28) is over a compact set and a maximum is

attained with ¢t = ;. Thus,
Ji—Jio1 <Ay VieI\{0}. (5.29)
Combining j5 < Ay and (5.29), we find
7 < AF+iAg Viel. (5.30)

For each ¢ € 7 and each t € [r;, 7;41], substituting i6T for 7; leads to i < t/dT.
Thus, from (5.30), we find

A
7 < Ay + FJt Viel, Vte [Ti,TiJrl]. (5.31)
T

For each i € 7 and each (t,j) € dom(p) such that ¢ < 7,41, the definition of 7,
in (5.28) gives us that j < 7;. Since, for every (¢, ) € dom(yp) there exists ¢ € Z such
that t € [1, Ti41], so j <7; < Ay +tAy/Ap, thereby proving (5.27).
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Adding t to both sides of (5.27) produces

A A
b+ <t+Ay+ it=(1+ 22 )t+ Ay V() € dom(p).
At Ar

Therefore, via algebra,

Ar : ArAy
t> (=Lt +j) - —2=L
_<AT+AJ>( 7) Ar+ Ay
Therefore, (5.18) holds with N, := ArA;/(Ar+ Ay) and v, : R>g = R>q defined
by

Ar
SH’YT-(S) = m S.

The function , is linear with a positive coefficient (since Ap > 0 and Ay > 0), so

Y € Koo- O
The analogous result with flows and jumps switched is presented next.

Proposition 5.6. Consider a hybrid system H and a nonempty closed set A. Sup-
pose that for each r > 0, there exists Ar > 0 and Ay > 0 such that for every solu-
tion ¢ to H with |p(0,0)|4 € (0,7] and for all (to, jo), (t1,j1) € dom(p),

i1 —Jol £ Ay = |t1 —to| < Ar. (5.32)

Then, for each r > 0, there exist v, € Ko, and N, > 0 such that for each solution ¢
to H with |¢(0,0)|4 € (0,7],

Jj= ’Yr(t +]) — Ny V(t,j) € dom(@)' (*5'20)

Proof. Take any r > 0. By assumption, there exists Ap >0 and Ay > 0 such

that (5.26) holds for every solution ¢ with |¢(0,0)|.4 € (0,7], and for every (o, jo) €

dom(y) and (t1,71) € dom(y).

Take any solution ¢ to H such that [¢(0,0)|4 € (0,7]. We will show that

t<Ar+ iij V(t,7) € dom(yp). (5.33)

Let J := sup;dom(yp). If J =0, then (5.33) follows directly from (5.32) with

jo = j1 = 0. Suppose, instead, that J > 0. For each i € N, let m; := iA;. Let

T C N be the set of all ¢ € N such that m; < J. For each ¢ € Z, let

t; :==sup{j | (t,7) € dom(yp), t € [m;, mit1]}. (5.34)
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Let (to,jo) = (0,0) € dom(go). By (5.32), |t1 - to‘ =1t < Ay for all (t1,j1) S
dom(y) such that |j; —jo| < mq since m; = Ajy. Thus, tg < Ap. For each i € T\ {0},
we have

ti—1 = max{t | (t,m;) € dom(¢p)},

since ¢ is nondecreasing relative to j for (t,j) € dom(p), and m; < J (from the
definition of 7), so the supremum in (5.34) is over a compact set and a maximum is

attained with j = m;. Thus,
f-fii<A;  VieT\{o. (5.35)
Combining ¢y < Ar and (5.35), we find
t, <Ap+iAp Viel. (5.36)

For each i € Z and each j € [m;, m;11], substituting iA; for m; leads to i <
j/Ay. Thus, from (5.36), we find

_ A
t; < Ap+ FT] Yiel, Vje [mi,mHﬂ. (5.37)
J

For each i € Z and each (t,j) € dom(p) such that j < m; 1, the definition of ¢;
in (5.34) gives us that ¢t < ¢;. Since, for every (¢,j) € dom(y) there exists ¢ € Z such
that j € [m;, mit1], so t <t; < Ap +tAp/Ay, thereby proving (5.33).

Adding j to both sides of (5.33) produces

A A
thj<t+ A+ Tt= (142 )t+ Ay V() € dom(yp).
Ar Ar

Therefore, via algebra,

A ArA
jz<J>u+ﬁ—'FJ-
Ar+ Ay Ar+ Ay
Therefore, (5.18) holds with N, := ArA;/(Ar+ Ay) and v, : R>g — R>q defined
by

A
s () = (AT—I—JAJ)S

The function , is linear with a positive coefficient (since Ay > 0 and Ay > 0), so

Y € Koo O
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5.3.2 Bounded Solutions from Lyapunov Functions

Prior to applying Theorem 5.1 (or other related results, like [3, Thm. 3.19]) to
establish uniform global pre-asymptotic stability, it is sometime useful to establish
bounds on solutions. In this section, Lemma 5.4 provides sufficient conditions for

the sublevel sets of a Lyapunov function candidate V' to be forward pre-invariant.

Lemma 5.4. Let H := (C, F, D,G) be a hybrid system on R" with F and G set
valued. Suppose that H satisfies the hybrid basic conditions (Definition 1.2) and
G(D) c CUD. Let V : R" — R>g be a Lyapunov function candidate [3, Def. 3.17]
for a closed set A C R™ with respect to H. Suppose that ve and uy, defined in (5.12)
and (5.13) satisfy

vo(r) <0 and wup(x) <0 VoeR"™ (5.38)

Then, for each r > 0, the r-sublevel set of V,
Ly(r) :=={z € dom(V) | V(z) <r}
is forward pre-invariant.

Proof. Take any r > 0. To show that Ly (r) is forward invariant, we will use
x> Bo(x)=V(z)—r VYxeR"

as a barrier function of Ly (r) relative to H allowing us to apply [5, Thm. 4] to
conclude Ly (r) is forward invariant. The function B, is a barrier function candidate
[5, Def. 3] for Ly (r) because Ly (r) = {x € R" | B,(z) < 0}.

We will show [5, Eq. 12] is satisfied. Take any x € D N Ly (r) and any n € G(z).
By assumption, up(z) <0, so V(n) — V(x) < 0. Using the fact that V(z) <r (be-
cause = € Ly (r)), we find V(n) < V(z) <r, so B.(n) =V(n) —r < 0. Therefore,

B,(n) <0 Vxe DNLy(r), Vne G(z).
Next, we will show [5, Eq. 28] is satisfied. Take any z € C. We want to show

Ceglo%)%x)@, n) <0 Vne€ Fp(z):=F(z)NTe(x). (5.39)

If Fr(z) is empty, then (5.39) is vacuously true. Suppose, instead, that Fr(z) # &
and take any n € Fr(x). Since V and B, differ by a constant, their generalized deriva-

tives are identically equal: 0°V = 0°B,. Furthermore, vo(z) < 0 by assumption,
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since « € C, so

L) = L) < <0.
gegf%’fm@ ) Ceggavfx)@ n) < vo(w)

Therefore, (5.39) and, consequently, [5, Eq. 28] are satisfied.
Equation 13 in [5] is satisfied by assumption. Therefore, by [5, Thm. 4], Ly (r)

is pre-forward invariant. ]

Although Lemma 5.4 asserts that sublevel sets of a Lyapunov function candidate
are forward pre-invariant, under the given assumptions, it can still be the case that
solutions are unbounded if A is unbounded. Under the assumption that A is compact,
the following result establishes bounds on the growth of solutions that start within

each fixed distance from A.

Proposition 5.7. Let H := (C, F, D, G) be a hybrid system on R"™ with F' and G set-
valued maps. Suppose that H satisfies the hybrid basic conditions (Definition 1.2)
and G(D) C CUD. Let V : R®* — R>o be a Lyapunov function candidate [3,
Def. 3.17] for a compact set A C R™ with respect to H. Suppose that ve and uy
defined in (5.12) and (5.13) satisfy

vo(z) <0 and wup(x) <0 VoeR"™ (5.40)

Then, for all r > 0, there exists M, > 0 such that for every solution ¢ to H with

l(0,0)|a <7,
lo(t,5)|a < M, V(t,7) € dom(p).

Proof. Take any r > 0. Let V. := max V (A+rB). The set A+7B is compact and V/
is continuous, so the maximum is well-defined. Let Ly (V;) := {:U e R"” ‘ Vix) < VT}
be the V,-sublevel set of V. For all g € A+rB, we have V(x¢) < V., so g € Ly (V;.).

Therefore,

A+7rB C Lv(‘/T).

We will show that Ly (V}.) is bounded and forward pre-invariant relative to H, thereby

establishing our conclusion.
Let M, := o' (V;) and take any 2, € Ly (V;). Thus, V(x) < V;. Furthermore,

a1(Jzua) < V(zy), so ai(|zr|a) < V;, which implies

zla < o' (V) = M,.
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Since this holds for all z;, € Ly (V;),
Lv(vr) C {13 Hala < Mr} = A+ M,B.

This implies Ly (V) is bounded because A is compact. The set Ly (V;) is forward
invariant by Lemma 5.4.

Let ¢ be any solution to H with |p|4 < r. We have that V(¢(0,0)) < V;, so

©(0,0) € Ly (V;). By the pre-forward invariance of Ly (V}), the solution ¢(¢,5) is

in Ly (V;) for all (¢, ) € dom(y). Since Ly (V,) C A+ M,B,

lo(t,j)|a < M,  V(t,j) € dom(p). O

5.3.3 Continuous-Time and Discrete-Time Systems

The following corollaries are special cases of Theorem 5.1 for continuous- and

discrete-time systems.

Corollary 5.1 (Continuous-time Lyapunov Theorem). Consider compact set A C R,

a continuous-time system on C' C R"
teF(x) zeC, (5.41)

and a Lyapunov function candidate V' with respect to A for (5.41). Suppose there
exists aq € Koo and an LSC function o, € PD(A) such that

a1(Jzla) <V(z) and uc(z) < —oc(z) VzeC.
Then, A is UGpAS for (5.41).

Corollary 5.2 (Discrete-time Lyapunov Theorem). Consider compact set A C R™,

a discrete-time system on D C R"
T e€G(x) zeD, (5.42)

and Lyapunov function candidate V' with respect to A for (5.42). Suppose there
exists a1 € Ko and an LSC function o4 € PD(A) such that

ar(|zl4) < V(x) Ve € DUG(D)

up(x) < —ogq(x) Vx € D.
Then, A is UGpAS for (5.42).
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The next example illustrates how Theorem 5.1 can be used to show that a

compact set is UGpAS for & = F'(x) with F' discontinuous.

Example 5.4. Consider the continuous-time system
t=F(z):=—|z] zeC:=R,

where |z] is the largest integer m such that m < z and [z] is the smallest integer
n such that n > . The |-] function is USC and [-] is LSC. Let A := [0,1] and
consider z — V(z) := |z|%. We find that

= {2
(|x].a) 2] if x <0,

which is neither LSC nor USC. Let

(@) = {|»’C|A(1 —[z]) ifz>0
(lzla) 2] if z < 0.

We see —o. is USC, so o. is LSC. For = <0, uc(z) = —o.(z), and for = >0,
—|z] > 1—[x], so uc(x) < —o.(z), thus (5.15) holds. It can be easily checked that
oc. € PD(A). Therefore, A is UGpAS for & = F(z), by Corollary 5.1. o
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Chapter 6

Conical Transition Graph (CTG)

In Section 4.2 and Chapter 3 we considered methods for using a Lyapunov-
certified controller as a backup controller, allowing one to safely deploy an uncertified
controller. The advantage of this approach is that it allows one to construct a
Lyapunov function once, perhaps for a simple, well understood controller and reuse
to provide guaranteed properties for other controllers. The downside of this approach
is that it still requires constructing one Lyapunov function, which can be difficult
even for simple systems. In fact, one is often unsure whether the construction of a
Lyapunov function is a futile endeavor, since it may be unclear whether the system
is stable in the first place. In this chapter, we introduce a method for algorithmically
checking stability and instability in a class of hybrid systems we call conical hybrid

systems [23].

6.1 Introduction

For continuous- and discrete-time systems, local asymptotic stability can be
determined by linearizing the system and checking the eigenvalues of the resulting
Jacobian matrix. For hybrid systems, however, the same ease is currently unavail-
able. In the conical approximation of a hybrid system, the flow and jumps sets are
approximated by tangent cones, and the flow and jump maps are approximated by
constant or linear approximations [4, Ch. 9]. It was shown in [24, Thm. 3.3] that
the conical approximation of a hybrid system can be used to determine if a point
is pre-asymptotically stable. Namely, if a point is pre-asymptotically stable with
respect to the conical approximation, then the center of the approximation in the

original hybrid system is locally pre-asymptotically stable. (The prefix “pre-” indi-
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cates that some maximal solutions may terminate in finite time due to the solution
leaving the region of the state space where it is permitted to evolve.) The utility
of [24, Thm. 3.3] is currently limited, however, by the fact that it is still generally dif-
ficult to show that the origin of a conical approximation is pre-asymptotically stable.
The purpose of this chapter is to close this gap by introducing the conical transition
graph (CTG) as a tool to determine asymptotic stability in conical approximations.
Thereby, we can establish local asymptotic stability in non-conical hybrid systems.

A graph-based approach is used in [25] to determine Lyapunov and asymptotic
stability of a class of hybrid systems called piecewise constant derivatives (PCD).
In a PCD system, the state space is partitioned into polyhedral regions with a flow
vector field that is constant within each region but not necessarily continuous on
their boundaries. The class of systems considered in the present work is more general
in that the hybrid systems permit jumps in the value of the state and transitions
between modes.

While there are limited results for analyzing stability of hybrid systems via
conical approximations, there are numerous other approaches for stability analysis
in the literature [26, 27] and [4, Thm. 7.30]. Lyapunov functions are a powerful and
flexible tool for proving many types of stability properties, including stability of sets,
finite-time stability, Zeno stability, and input to state stability [15, 28]. For hybrid
systems where asymptotic stability of a limit cycle is of interest rather asymptotic
stability of an equilibrium point, Poincaré maps have been used in hybrid systems
to prove convergence of solutions to limit cycles [29, 30, 31]. Discrete graphs! have
been used to evaluate stability of switched dynamical systems including discrete-
time linear systems [32], discrete-time nonlinear systems [33], and continuous-time
linear systems [34]. In contrast to the existing methods for switched systems, the
present work is (to the best of our knowledge) the first graph-theoretic approach
to analyze asymptotic stability in non-switched hybrid systems (i.e., systems where
components of the state vector may range over a continuum at jumps). In the
context of reachability analysis, [35] introduced conical abstractions as a graph-
based method to compute infinite-horizon reachable sets for linear hybrid automata.

The biggest drawback of the Lyapunov function method is that Lyapunov functions

!Throughout, we use graph in the sense of discrete graph—that is, a set of vertices connected

by edges or arrows.
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are often difficult to construct. There have, however, been advances made for
algorithmically constructing Lyapunov functions. For hybrid systems defined by
polynomial functions, Lyapunov functions can be constructed numerically via sum-
of-squares (SOS) programming [7, 36, 37, 38, 39, 40]. Lyapunov functions can also
be generated for non-polynomial systems by modeling non-polynomial functions
as polynomials plus a disturbance, as done in [7] for barrier certificates, or by
transforming the system into a polynomial system as done in [38] for continuous-
time systems. The SOS approach to constructing Lyapunov functions is powerful
but suffers from two limitations. Firstly, SOS requires solving a semidefinite program
(SDP) that grows quickly as the dimension of the hybrid system and the degrees of
the polynomials increase. While there are efficient algorithms for solving SDP’s, the
size of the optimization problem can make them computationally expensive for high-
dimensional hybrid systems. Secondly, since SOS is a numerical approach, it requires
the hybrid system to be fully defined, numerically—it cannot have any unspecified
parameters. This inhibits using SOS to reason about parameters, limiting its utility
for, e.g., designing an asymptotically stabilizing feedback law.

An alternative algorithmic approach to determine stability-like properties is via
reachability analysis. The idea behind this approach is to use numerical reachability
tools for hybrid systems [35, 41, 42, 43] to approximate the reachable set for solutions
starting nearby an equilibrium and thereby assess stability numerically.

The conical transition graph is designed to simplify the analysis of asymptotic
stability of isolated equilibria by creating a simplified representation of ways that
solutions to a hybrid system can evolve continuously (called flows) or evolve discretely
(called jumps). Collectively, we refer to flows and jumps as transitions. In particular,
the CTG is a directed graph with set-valued weights assigned to each arrow. Each
vertex in the CTG represents either the origin 0,, € R™ or a point in the unit sphere
S*~1 C R™, where each point v € S*~! acts as a representation of all the points
in the ray {rv|r > 0} spanned by v. In this way, we consider the projection of
R™ onto S"~! U {0,}, as shown in Figure 6.1. Roughly speaking, each arrow in
the CTG represents the ways that solutions to a hybrid system, as projected onto
S"~1u{0,}, can transition (flow or jump) between points in S*~1U{0,,}. The weight
of each arrow contains all possible relative changes in magnitude that a solution can

exhibit when it undergoes the transition. Asymptotic stability can be determined
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from the products of walks through the CTG. Products converging to zero indicate
convergence of solutions to the origin.

This chapter extends the author’s previous work, [23], in two ways. First, this
chapter defines and analyzes conical hybrid systems with modes—allowing switching
between several regimes. To aid in analysis, we introduce in this chapter the concept
of a CTG-simulation of a solution to a hybrid system. By showing a correspondence
between solutions and CTG-simulations, we show that the CTG of a hybrid system
can be used to determine asymptotic stability. Beyond the results in this chapter,
CTG-simulations may be a useful theoretic tool in future work for using CTG’s in
reachability analysis.

Second, we describe how to reduce the size of a conical transition graph by
an “abstraction” that groups together sets of vertices. By applying this method to
conical transition graphs with large—possibly infinite—numbers of vertices, we can
reduce intractable computational problems into problems that are solvable.

The remainder of this chapter is organized as follows. Preliminary concepts and
notation are introduced in Section 6.2. In Section 6.2.1 we introduce conical hybrid
systems with modes, and in Section 6.2.2 we describe the important radial homo-
geneity property of conical hybrid systems. We briefly describe two applications of
conical hybrid systems in Section 6.3. Conical transition graphs are introduced in
Section 6.4. Our results, in Section 6.5, demonstrate how to use a conical transition
graph to determine pre-asymptotic stability in conical hybrid systems. Section 6.5.1
describes CTG-simulations, which is a useful tool in the subsequent theoretical devel-
opments. Our stability and pre-asymptotic stability results are found in Section 6.5.2.
Section 6.6 describes our approach to reducing the size of CTG’s by creating an

“abstract” CTG that groups together vertices.

6.2 Preliminaries

The unit sphere in R” is denoted by S*~! := {l‘ ER™: |z| = 1}, and the unit

sphere plus the origin is written as

Spti=s""1u{0,}. (6.1)
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Figure 6.1. The evolution of solutions to a hybrid system on R? (left) are
reduced in the CTG (right) to discrete transitions on S?, which we label as
flow arrows and jump arrows. In the right image, solid blue curves indicate
continuous-time flows projected onto S2.

The normalized radial vector function nrv : R® — Sg_l is defined for each v € R™ as

if 0y,
nrv(v) := o/l 1 vE (6.2)
0p, if v=0,.
The following properties of the nrv function are used in this work.
Ve e R": x = |z|nrv(z). (6.3)
VzeR"and r > 0: nrv(rz)=nrv(x). (6.4)

Ve € R" and A € R™": nrv(Az) = nrv(nrv(Az)) = nrv(A nrv(z)).  (6.5)

Let S C R™ be nonempty and let = € S. The contingent cone Ts(x) is the set of
all vectors v € R™ such that there exist a sequence of positive real numbers h; — 07
and a sequence of vectors v; — v such that x + h;v; € S for all i € N (see [1]). For
any S C R" and z € S, the contingent cone of S at z is a cone, meaning that for all
x € Tg(z) and all & > 0, we have that ax € Ts(z).

For any = € R", we write the open ray from the origin through x as
ray(z) := {ax € R" | a > 0}
and the corresponding closed ray as
ray(z) := {ax € R" | a > 0}.
Given a cone K C R and any =z € R",
re K < rayz C K.
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We write the conical hull of x1,x2,...,2, € R" as
cone(xy, T, ...,Tp) = {a1x1 + apxy + -+ - + apxy, | o > 0.

Given a set S C R™ and linear map A € R"*"  then the transformation of S by A

is defined as

AS :={Az e R" |z € S}.

6.2.1 Conical Hybrid Systems

Definition 6.1 (Conical Hybrid System with Modes). Let Q := {1,2,..., Nq} be
a finite set of modes, let £ C Q x Q be directed edges (transitions) between modes.

Consider a hybrid system H with state z := (¢,2) € Q x R™ in the form

0
i=f(q,2):= veci={ |1 cOxR"|zeCy
q(2) | Z]
' || 3e:=(q,q)€E ] I¢€Q
rTE€G(q,2):= 1 xeD:= 4 €OxR" ,
Aez | |s.t. zeD, z s.t. zED(qu/)

(6.6)
where for each mode ¢ € Q and edge e := (¢, ¢’) € £, the function z — f,(2) is linear
or constant, A, € R™™", the set C; C R" is a closed cone that defines the region
where z is allowed to flow while in mode ¢, and for each ¢’ € Q, the set D, C R"
is a closed cone that defines the region where z is allowed to jump from mode ¢ to
mode ¢'. If (¢,¢') € &, then D, = @.

Since ¢ does not depend on t, we write it as a function of j only when it occurs
as a component of hybrid arcs, that is, j +— ¢(j). When mode g has linear flows, we

write 2 = Ayz, where A, € R"*", whereas when mode ¢ has constant flows we write

z=fq o

A diagram of a conical hybrid system with two modes is shown in Figure 6.2.

Example 6.1 (Conical Hybrid System with Modes). As an example of a hybrid

system with modes, we consider a conical hybrid system H in R? with two modes,
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22 o Mode g=1

Figure 6.2. A conical hybrid system with two modes. Mode ¢ = 0 (left) has
constant flows and mode ¢ = 1 (right) has linear flows.

Q := {0, 1}, where mode ¢ = 0 has constant flows and mode ¢ = 1 has linear flow

modes. For mode 0, let flows be defined by 2z = f; := [_01] and

CU = {(21,22) S ]R2 ‘ Z2 > 21, 21 > 0}7

and let
D(070) = D(O,l) = {(Zl, ZQ) | 21 = 22, 21 Z 0}

After a jump from ¢ = 0 to ¢ = 0, the value of z is given by 2T = A0,0)%, and after
a jump from ¢ = 0 to ¢ = 1, it is given by 2zt = A(0,1), where
0 0 0 0

A(070) = and A(O,l) = s
A O A O

with A\g > 0, A; > 0. Thus, at jumps, z is mapped to the zz-axis.

For mode ¢ = 1, let 2 = Az where

-2 4

Al = s
-2 -1

and C7 := R2?. The jump set is defined as the ray from the origin with an angle
0(—m/2,7/2) from the z-axis, i.e., D) := W[g‘l’sg] The jump map from g =1
to ¢ = 0 is defined by

sinf —cosf

A = ;

cosf sinf
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which takes any vector z € Dy o) to A(1,0)z € {0} xR>q (the 22-axis). The transitions
between modes are £ = {(0,0),(0,1),(1,0)}. Based on the choices of parameters
Ao, A1, and 60, the set O := Q x {0,,} will be asymptotic stable or unstable. The
techniques introduced in this chapter reduces the problem of checking stability into

analyzing a discrete graph. o

6.2.2 Properties of Conical Hybrid Systems

An important property of conical hybrid systems, formalized in Proposition 6.1,
below, is that their dynamics are radially homogenous—that is, a conical hybrid
system behaves the same way at all distances from the origin, except for scaling

effects.

Proposition 6.1. Given a conical hybrid system with modes H, let

(t.5) = o(t.4) = (a(t. 1), 2(t, 7))

be a solution to H. Then, for each r > 0, the hybrid arc (t,7) +— ¥, (t, ) defined by

. q(j7) .
er(t,j) = | Vlen(t),j) € dom(p) (6.7)
rz(on(t), )
is also a solution to H, where «, is a class-K function defined, for all (t,7) € dom(yp),
by
t
or(t) = [ dn(a(r)) ar (63

and

. 1/r if ¢(j) is a mode with constant flow
5,.7) i= { / ) (6.9)

1 if ¢(7) is a mode with linear flow.
The effect of §, in (6.8) is that in modes with linear flow, the time v, spends
traversing an interval of flow matches ¢, but in modes with constant flow, the time

is dilated by a factor r.

Proof. First, we show that «, is class-K. From the definition, «,(0) = 0 and «,
is continuous. Since ¢, is strictly positive, c, is monotonically increasing, so a, is
class-KC.

Let J := sup; dom(yp), and let t1, ta, ..., t; be the jump times of ¢. For ease of

notation, let to := 0 and, if J is finite, let ¢;41 := sup, dom(p). For each jump time
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t; in dom(ip), the hybrid times (¢;,7 —1) and (¢;,5) are in dom(¢p), so (a; 1(t;),j—1)
and (o, '(t;),7) are in dom(z,) (a, is invertible because it is class-K). Therefore,
t;- = o, }(t;) is a jump time in dom(¢,) for each j € {1,2,...,J}.

Since o, (and ;1) is strictly increasing, [t;,¢;+1] is an interval of flow in dom(i)
if and only if [}, ;] is an interval of flow in dom(v,). For each (¢, j) € dom(s,), let
(t,7) = 2 (t,j) :=rz(n(t),7), so that (¢, ) = (¢(j), 2r(t,5)). Since z(tj,j — 1) €
D 4(5-1),90)) @nd D4(j-1),q(;)) 18 & cone, we have that

2t j—1) = rz(ar(af(tj)), j— 1) =rz(tj, § — 1) € D(g(j-1),905))-
Therefore, ¥,.(t;,j — 1) € D, so ¢, satisfies (1.5a). Similarly, since C;) is a cone
and z(t,j) € Cy for all t € (t;,tj41), we have that 2,.(¢,5) € Cy and thus ¢..(t, j) € C
for all t € (,1},,). Therefore, v, satisfies (1.6a).

Now that we have established the jump times and intervals of flows of ¥,., we

want to show that 1, satisfies the jump and flow conditions in (1.5) and (1.6). Take
any j € {1,2,...,J}. By (1.5b),

q(7)
z(tj,J)
so, from the definition of G in (6.6), 2(tj,J) = A(g(j—1),()?(tj>J —1). Thus, at
t = a;(t)),

So(tjaj) = € G(‘P(tjaj - 1))7

) ) )
rz (o (a1 (t))), §) Ag(-1),40)) (rz(tj,5 = 1))

y) is a cone and z(t;,j — 1) is in Dg(j—1)

wr(t;wj) =

Since D(g(j—1) ())> then 7z(t;,j — 1) is

,a(j Nl

also in D(4(j—1),q(j))- Therefore, ¢,.(t;,7) is in the set G(wr(t;,j — 1)) as required
by (1.5b).

If tj 41 > t;, then [tj,¢;41] is an interval of flow for ¢, so for all t € (t;,t;41),

Z(tvj) = fq(Z(t,j))-

(Since fy is linear or constant, we have that if 2 = f,(2) for almost all ¢ € (¢;,%;41)
then it, in fact, satisfies the ODE for all ¢t € (¢j,tj41)). From Definition 6.1, the
mode ¢(j) has either linear or constant flows. Suppose, first, that ¢(j) has linear
flows. Then, for all t € (t;,tj41),

d

%(z(tvj)) = AQ(j)Z<t7j)-
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Applying the chain rule to t — z,.(t,j) = rz(a,(t), j), we find

) ) d ) Lda,
(9) = - (r2(an0), 1) = Agyyr(an(), )
since day/dt(t) = 0,(q(j)) = 1 by applying the fundamental theorem of calculus

to (6.9). Thus, v, satisfies (1.6b) in the case of linear flows.

(t) = Aq(j)Zr(tv ])a

Suppose instead ¢(j) has constant flows. Then, for all t € (¢;,t;41),

d
%(Z(tjijﬂ)) = faG)-

Applying the chain rule to t — z(«,(t),7), we find

da, _ qu(j)

d
() = (rz(an(t),5)) =y —- (1) = fa(p):

-
since da, /dt(t) = 0,(q(j)) = 1/r. Thus, 1, satisfies (1.6b) in the case of linear flows.
Therefore, 1, is a solution to H. ]

6.3 Applications of Conical Hybrid Systems

In this section, we introduce one application of conical hybrid systems.

6.3.1 Sampled Linear Systems

Example 6.2 (Linear System with Sampled Control). Conical hybrid systems can
be used to model and analyze linear control systems with sampled control updates.

Consider the linear control system
2 = Az + Bu,

with state z € R™ and input u € R™. Suppose u is updated with period T according
to u := Kz, where K € R™*™. One way to model such as system as a hybrid system
is to use a timer variable 7 € [0, 7] where 7 = 1 and triggering events to update the
input when 7 = T', and resetting 7™ = 0. Such an approach results in a non-conical
hybrid system, because the set of 7-values where jumps are triggered is non-conical.
As an alternative, we propose using a timer variable 7 := (71,72) € R? where T

evolves according to

7=Mr, with M := ,
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where w := 7/T. When 7 starts with 7 € (0,00) x {0}, it takes time T for 7 to
reach (—oo,0) x {0}. Thus, to achieve periodic sampling, we will update u™ = Kx
and 77 = —17 whenever 7 € (—00,0) x {0}. (The } causes 7 to converge to 0,,
which is convenient for showing the origin is asymptotically stable.) A representative

trajectory for 7 is shown in Figure 6.3.

T2

C

A

[ 7(t, )

Figure 6.3. An example trajectory for the timer variable 7 in Example 6.2.

The closed-loop system has state
z:=(z,u,7) € X :=R" x R™ x R?,

and can be written as a conical hybrid system (without modes):

z [ Az + Bu
u| = 0 xeC:={(z,u,m1,72) € X |12 >0, T#(0,0)}
7 | M
2] [ 2
ut| = | Ku reD:={(z,u,m,m) €X|m <0, =0}
a |—37

Various adjustments to this example could allow for modeling systems that have

nondeterministic delays between samples and switching between modes. o

6.3.2 Conical Approximations

One application of conical hybrid systems are as approximations of non-conical
hybrid systems. Such approximations are called conical approzimations. The follow-
ing assumption is necessary for the conical approximation of a hybrid system H to

be well-defined at a point xz, € R™.
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Assumption 6.1. For a given hybrid system H := (C, f, D, g) and z, € R™, suppose
that the following conditions hold:

1. If z, € D, then g(z.) = 7, and g is continuously differentiable at x..
2. If z, € C, then f is continuous at x,.

3. If z, € C and f(w4) = 0,, then f is continuously differentiable at z.. o

Definition 6.2 ([4]). Given a hybrid system H = (C, f, D, g) and a point z, € R"

that satisfy Assumption 6.1, the conical approrimation of H at x, is

i = f(z):= f(@), if f(2.) # 0 r€C:="To(x
e /@) {Ac(w—x*), if f(z.) =0, =i tete), (6.10)
T = g(z) == Ap(z — z4), z € D :=Tp(xs),

where A¢ and Ap denote the Jacobian matrices of g and f at x,, respectively:

of
ox

(xx) and Ap:= @(x*) o

A =
¢ ox

The following result establishes local pre-asymptotic stability in a hybrid system

via pre-asymptotic stability in its conical approximation.

Theorem 6.1 ([24], Thm. 3.3). Suppose a hybrid system H and a point x, € R"
satisfy Assumption 6.1. Let 7 be the conical approximation of H at x,. If0, is pAS
for #, then x, is locally pAS for H.

6.4 Conical Transition Graph

This work relies on definitions from graph theory, provided in this section.

See [44] for details.

Directed Graph A directed graph G = (V, . A) consists of a set of vertices V and
a set of arrows A. Each arrow in G starts at some vertex v; € V and ends at some
vertex vo € V. We write an arrow from vy to vy as v1 — vs. In a directed graph, an
arrow can have the same start and end point (v; = vg), in which case it is called a

loop.
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We also allow for multiple arrows that have the same start and end points. To
distinguish between such arrows, we assign each arrow a label. An arrow with the
label “L” is written as a* = v1 X vo. In this work, we use only two labels: “F” and
“3,” which stand for “flow” and “jump.” Thus, for vi,ve € V, there can be at most
two distinct arrows vy £y v9 and vy Ly vo. If the label is irrelevant for a particular
point of discussion, then it can be omitted.

A weighted directed graph G = (V, A, W) is a directed graph (V,.A) that also
includes a weight function W that defines a weight for each arrow in A. In a typical
weighted graph, the weight function assigns a real number to each arrow, but in
this work we use set-valued weights. Thus, the weight function is a set-valued map
W : A = R that maps each arrow a in A to a set of real numbers W(a) C R.

Given a graph G = (V, A, W), a walk w through G is a finite or infinite sequence
of arrows in A. A walk of length K € {1,2,...} U {oo} is written

w = (ag, a1, ..., Ag_1) =V —> V] = V2 = -+ = Uk,

such that a; = vy — vgyq foreach k=0,1,..., K — 1.

We define the weight of a walk w as the cumulative Minkowski set product of the
arrows in w. For any sets A, B C R, the Minkowski set product of A and B is defined
in [45] as AB := {ab| a € A,b € B}. For a finite-length walk w = (ag, ag,...,an_1),

the set-valued weight of w is

N1 € Woay)
Ww) =< [] & : (6.11)
k=0 Vk=0,1,...,N -1

If we let K = oo, then W(w) may not be well-defined because the infinite product
[y 7% in (6.11) may not converge. For this chapter, however, it is sufficient to
define W(w) if and only if [[;° 7 converges to 0 for every choice of {ry}. For an

infinite-length walk w := (ag, a1, ag,...), we have that W(w) = {0} if and only if
lim []r= (6.12)

for every sequence {ry}32, with 7, € W(ay) for all k£ € N.
For an arrow a € A, we have that Y/ (a) is a set of real numbers, so we can write
the supremum weight of a as sup W(a). Similarly, for a walk w, we define sup W(w)

is the supremum weight of w.
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Remark 6.1. Given a walk w := (ag,a1,...,ay) through a graph with set-valued
weights, the supremum weight sup W(w) is not always equal to the product of the

supremum weights of the arrows. That is, in some cases

supW(w) # (sup W(ag)) (sup W(ay)) - - - (sup W(an)).

For example, if W(ap) = {0} and W(a;) = (1,00), then supW(w) = 0 but the
product (supW(ag))(supW(a;)) = 0 oo is undefined. Thus, it is important that

the supremum is evaluated after computing the product.

The CTG is designed to be a simplified representation of a conical hybrid
system H to facilitate the analysis of pre-asymptotic stability. To this end, we exploit
properties of conical hybrid systems, along with assumptions on the continuous
dynamics of the hybrid system, so that the CTG can be used to establish that the
origin of H is pAS. In particular, we exploit two simplifications.

In a conical hybrid system, Proposition 6.1 asserts that the distance a solution
starts from the origin of does not affect the way it can evolve (aside from scaling
effects). Thus, if we consider any ray from the origin and allow every point in the
ray to evolve according to the dynamics of H, then that ray is (in a sense) preserved.
Using this observation, the first simplification in the CTG comes from using the
nrv function to map R"™ to Sgil so that each single point p € Sgil represents every
point in ray(p).

Mapping R" to Sg_l reduces the dimension by one and—more importantly—
allows for recurrent walks through the CTG despite convergence of solutions (see
Figure 6.1). For example, suppose that for some v € S*~!, a solution ¢ to H

repeatedly enters ray(v). That is, ¢(tx, jx) € ray(v) for a sequence of hybrid times
{(tk‘a]k’)} in dom(@) Then,

v =nrv(p(ty, 1)) = nrv(p(tz, j2)) = - - -

Furthermore, the set of possible rays that ¢ can transition into from ¢(tx, ji) € ray(v)
via a single jump or flow is the same at every hybrid time (¢, ji) in the sequence.
Exploiting this information allows us to uncover patterns in the behavior of H.

By collapsing R” to Sg_l, however, we lose information about the magnitude
(norm) of solutions. Instead, the weight of each arrow in the CTG typically contains

every possible relative change of magnitude that a solution (¢,7) — ¢(t,j) can
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exhibit as (¢, 7) — nrv(p(t, 7)) moves from the arrow’s start vertex to its end vertex
(both in S§~1) via a single jump or a single interval of flow.

The second simplification arising from the CTG is that it allows us to partition
the analysis of pre-asymptotic stability by considering separately solutions that are
eventually continuous and solutions that are not eventually continuous. A hybrid
arc is called eventually continuous if it has an interval of flow after the last jump
time in its hybrid time domain. The aspects of eventually continuous solutions that
are relevant to pre-asymptotic stability in H = (C, f, D, g) can be determined by
analyzing the continuous-time system (C, f). In particular, our results assume that
0y, is pAS for (C, f)—which is necessary for 0, to be pAS for H and can be verified
using methods from continuous-time system analysis. Thus, the CTG is a tool for
analyzing the behavior of solutions that are not eventually continuous.

Assuming that 0, is pAS (and thus stable) for (C, f) has the added benefit
that if we can show that a given solution converges to 0, at jump times, then we
can establish asymptotic convergence without analyzing the trajectories of solutions

during intervals of flow. This is shown in the following lemma.

Lemma 6.1. Let H = (C, f, D, g) be a conical hybrid system with modes. Suppose
that O = Q x {0,} is stable for (C, f) and let ¢ be any solution to H with
sup; dom(p) = oo. Then,

lim |¢(t;,j)lo =0 = lim [p(t,j)|o =0,
J—00 t+7—00

where each t; is the jth jump time in dom(y).

Proof. Let ¢ be any solution to H with sup; dom(p) = oo. Let t1, to, ..., be the

jump times of ¢ and suppose that
lim |(t;,5)|a = 0.
Jj—o0

Take any € > 0. We want to show that there exists (¢, ;') € dom(p) such that
lo(t,7)|a < € for all (¢,7) € dom(y) such that t +j >t + 5.

For each j such that [tj,¢;11] is an interval of flow in dom(y), the function
t — ¢(t, j) is a solution to (C, f) for all t € [tj,t;11]. By the stability of O for (C, f),
there exists § € (0,¢) such that

lp(tj, )la <0 = |o(t,j)la<e Ve [ty tj]. (6.13)
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Since j — ¢(t;,7) converges to O, there exists j° € N such that [¢(t;,j)|a < 0
for all j > j'. Let t' := t;. Thus, from (6.13), we have that |¢(t,7)|4 < € for all
(t,7) € dom(p) such that t +j > ¢ + ;. Since € > 0 was arbitrary, we can take
€ — 0, thereby establishing that

Jim [t )l =0. =

As a consequence of Lemma 6.1, when determining whether persistently jumping
solutions converge to O (e.g., to establish pre-asymptotic stability), we can ignore the
interior of intervals of flow and only focus on showing that the solution at jump times
converges. By doing so, we treat flows as discrete transitions that take solutions
from their values immediately after a jump to their values immediately before the
next jump. This effectively ignores the ordinary time required to traverse the flow
because it is irrelevant for determining pre-asymptotic stability. Based on this fact,
we generalize a flow that takes a solution ¢ from z® € R™ to 2 € R™ in mode
q € Q as a flow arrow (¢, nrv(z@)) & (¢, nrv(z®)) in the CTG.

We design the CTG as a directed graph with set-valued weights with vertices
that live in Q x Sg_l. Each tuple v := (g, s) in Q X Sg_l is a vertex in the CTG if it
is possible for a solution to H to jump from or to v (i.e., if v € DUg(D)). An arrow
points between vertices vy := (g1, s1) and v2 := (g2, s2) in the CTG if a solution to H
can move directly from s; in mode ¢; to ray(vz) in mode ¢y by a single jump or a
single interval of flow. Each arrow is labeled by the type of transition it represents
(either flow or jump). The weight of the arrow v — vy typically stores the relative
change in the magnitude of a solution that starts at v; and ends in ray(vs) (except if
s1 = 0y, in which case the weight stores the absolute change—but the occurrence of
such cases is limited). By multiplying together the weights of all the arrows in each
walk through the CTG, we can analyze the relative change in distance of solutions

from the origin (see Proposition 6.5, below).

Definition 6.3 (Conical Transition Graph). Let H = (C, f, D, g) be a conical hybrid
system on R™ with modes Q. Let £ := {“J”, “F”} be a set of labels (J stands for jump
and F stands for flow). The CTG of H is a weighted, directed graph G = (V, A, W)
where V C Q X Sg_l is a set of vertices, A C V2 x L is a set of arrows between

vertices, and W : A = Ry is a set-valued weight function that assigns a set of
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o

Figure 6.4. Conical transition graph for H in Example 6.3.

nonnegative weights to each arrow. The set of vertices is defined as
V:=(Dug(D))n(QxS§). (6.14)

For each v := (¢, s°) € YN D, and each (¢%,2%) € g(v°), and for s® := nrv(z®);

a jump arrow &' = v° L v® points from v to
v? = (¢%, s%) = (¢, nrv(4es?)), (6.15)
where e := (g7, ¢?). The weight of a’ = v® L v is the (singleton) set
W(a') := {|29]} = {|4es°|}. (6.16)

There is a flow arrow a" = v©® Lo from v = (¢,5?) € VN g(D) to

v® = (gq,s%) € VN D if for some 7 > 0, there exists a function £ : [0, 7] — R™ such

that
£(0) = s© (6.17a)
E(t) = fy(&(t)) Vit e (0,7) (6.17b)
£(t) € Cy vt € (0,7) (6.17¢)
nrv(€(r)) = s, (6.17d)
The weight of a is
W(a") == {|&(7)] | €: [0,7] — R" satisfies (6.17) for some 7 > 0}. (6.18)

That is, for each solution ¢ : [0, 7] — R™ of (6.17)—which has |£(0)| = 1 (if [s?] = 1)
or [£(0)] = 0 (if |s@| = 0)—the magnitude of £ at time 7 is an element of the weight
set: |£(7)] € W(a"). o

Note that each verter in a CTG is a tuple containing a mode ¢ € Q and a vector

v € R" with v € S~
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If an arrow a := v; — vy points from vy := (g1, s1) € V to vg := (g2, s2) € V with
s1 # On, then the weight of a is the set of all of the possible relative changes in the
magnitude of a solution that transitions from ray(s;) in mode ¢; to ray(sz) in mode
g2 via a single jump or interval of flow (the mode can change only for jump arrows.
For a flow arrow, ¢ = ¢2). On the other hand, if s; = 0,, then the weight of a is
the set of all of the possible absolute changes in magnitude for a transition from 0,
to ray(se) via a single jump or interval of flow (the relative change of distance is
undefined because the initial distance 0 would be in the denominator).

In the following example, we consider a conical hybrid system with a single
mode, so we omit the logic variable. In particular, we will consider only mode ¢ = 0
from Example 6.1. To simplify the exposition, we will omit the mode variable “¢”

during this example.

Example 6.3. Consider the following conical hybrid system on RZZO (the non-

negative quadrant of R?) with a single mode:

1 2
flx):= Ve e C:={zeRy |z >z},
0 >
H: - (6.19)
0
g(z) == Vo€ D:=tay[}] = {z € Ry | 22 = 21},
Yx1 B
with v > 0. We will construct the CTG for H. Let vy := [‘” and vy 1= %H], SO
g(D) =tayv; and D = tay vy. Thus, the set of vertices is
V= ({On} Uray v1 Uray vg) N Sgil = {0, v1,v2}
and the set of arrows is
A={0,2L0,, va Lv1, v 5 wva}.
~ Vv
Jump arrows Flow arrow
The CTG of H is depicted in Figure 6.4. o

Example 6.4 (Example 6.1, cont.). Now, we will consider the full conical hybrid
system H with modes from Example 6.1. By examining Figure 6.2 and the data of
the system, we find that the vertices in the CTG are

(0,00) w0 = (0, []), 01 := (0. mev[1]), (1, 0n) w2 o= (L, [§]), 0 = (1 [§2]),
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and the arrows are

» Un i) sy Un ), 1a0n i)(oa On)a Uoiﬂ)l, (6 20)
v1 L v, v L v, vy 5 3,
v3 L v

There is not a flow arrow from wv3 to v2 because flow arrows must start in G(D), nor

is v9 X v9 because flow arrows must end in D. o

The need for the weights to be set-valued comes from the fact that there may
be multiple solutions to (6.17) with different final magnitudes, |£(7T)|, as in (6.18).
The following example presents a conical hybrid system with a flow arrow that has

a non-singleton weight.

Example 6.5. Consider the following conical hybrid system:

T () :=—-1 x€C:=R>,
H

xt

g(x):=z/2 x € D :=R>.

Every maximal solution to H evolves by a non-deterministic combination of flows
and jumps until it reaches 0,,, at which point it must jump from 0,, to 0,, forevermore.
Thus, 0, is pre-asymptotically stable for H.

The vertex set of the CTG is V = {0, 1} and the arrow set is

A={0%0,1%1,150,151}.
Consider, in particular, the arrow 1 £ 1. For all T' € (0, 1), the function

g: [O,T] — RZO

t—&t):=1—t
satisfies (6.17) with v©@ :=1, v® := 1, and
ET) = 1-T € (0,1).

Thus, 1 £ 1 is a flow arrow in the CTG with set-valued weight W(1 5 1) = (0,1). ©
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Whereas non-singleton weights for conical hybrid systems with constant flows
are typically continuous intervals, such as (0,1), for conical hybrid systems with
linear flows, non-singleton weights are infinite sets of discrete points, as shown in

the next example.

Example 6.6. Consider the conical hybrid # = (C, f, D, g) on R? with dynamics

given by
f(z) = Ax Vz € C := R?
—x
g(z) == ! Vo € D :=Tay|[}],
0
where A := [1’ —71] and v € R. The vertex set for the conical transition graph is

Fo[1

V = {0p, [(1)], [_01 ] }. It can be shown that there are two jump arrows 0,, 2 0,, and
[(1)] N [51], and one flow arrow [*01} LN [0] (recall that the start of a flow arrow

must be in g(D) and the end must be in D). The weights for the jump arrows are
W(0n % 0,) = {0} and W([§] 2 [']) = {1}.

Solutions to (6.17) for the flow arrow a" := [§] 5[] are given for each

T € {m,3m,bm,...} by

t
ts €)= exp(yt)| | veeo,T).
—sint

At t =T, the magnitude of £ is |{(T')| = exp(yT’). Thus, the weight of a is
W(a") = {exp(yT) | T = =, 3w, b7, ...}. o

In addition to having a non-singleton weight, the flow arrow 1 £ 1 in Example 6.5
illustrates an exceptional case that we must consider. In Example 6.5, the origin
is pAS for H, so we want every infinite-length walk through the CTG to have
weight {0} (see Theorem 6.2, below). But, the weight of w := 151515 ...
is actually W(w) = [0,1). To see W(w) contains (0, 1), take any s > 0 and let
re = exp(—s/2F*1), which is in W(1 5 1) = (0,1) for each k € N. Then, by

selecting {7}, in (6.11), we compute
oo
H ry =exp(—s/2—s/4—s/8— ) =e € (0,1).
k=0
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Alternatively, selecting r := 1/2 € W(1 5 1) results in [];2,1/2 = 0. Hence,
W(w) = [0,1). The crux of the problem is that by repeatedly traversing the loop
151, the walk w represents a solution that flows part of the way to the origin,
then flows a little more, and a little more, ad infinitum, without ever jumping. As
indicated by the weight W(w), we can construct such as sequence of flows that will
converge to 0, but also sequences that converge to any value in [0,1). Fortunately,
any finite sequence of consecutive flow arrows can be replaced by a single flow arrow,
whereas any infinite sequence of flow arrows represents a solution that never jumps,
so we analyze it using continuous-time methods instead of the CTG. Therefore, we

exclude walks with consecutive flow arrows from consideration.

Definition 6.4 (Well-formed Walk). We say that a walk w through a conical tran-
sition graph G is well-formed if no pair of consecutive arrows in w are both flow
arrows. That is, w = (ag, a1,...,ay_1) is a well-formed walk through G if for every

i€{1,2,...,N — 1}, either a;_; or g; is a jump arrow. o

Remark 6.2. A well-formed walk may include consecutive jump arrows.

6.5 Establishing Pre-asymptotic Stability via the CTG

This section presents a result that allows for pre-asymptotic stability of O :=
Qx{0,} (the combined origins of all of the modes) to be established by analyzing the
CTG. For O to be pre-asymptotically stable, O must be forward invariant. Forward
invariance of O can be easily checked for a conical hybrid system, as asserted by the

following result.

Proposition 6.2. The set O := Q x {0,} is not forward invariant with respect to
conical hybrid system H if and only if it has a mode q. € Q with constant flows and
foe € Cqo \ {0}. Furthermore, if O is not forward invariant, then there exists a
complete solution ¢ to H such that

li t,j = Q.
t+glgoo|(‘0( 7])‘@ oo

Proof. Suppose O is not forward invariant. From the definition of g in (6.6), we
find g(O) C O, so solutions to H cannot leave the origin at jumps. Thus, for some

gc € Q, solutions to H can flow away from the origin. Flows in ¢ are either linear or
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constant. In both cases, the flow map is Lipschitz continuous, so solutions are unique.
If flows are linear, then f,.(0,) = 0,, so all solutions to that start in {go} x {0,}
remain in {gc} x {0,,}. Hence, flows cannot be linear. Similarly, if flows are constant
and f,, = 0y, then solutions cannot leave the origin, so we must have constant flows
with fq. # Op.

It remains to be shown that f,, € C. If f,, € C, then any solution to 2 = f;,
from 2(0) = 0,, immediately leaves Cy,, so solutions to H cannot flow from the origin,
contradicting our assumption that the origin is not forward invariant. Therefore,
fao € Cac\ {0},

To prove the converse direction, suppose mode ¢. has constant flows and

foo € Cq. \ {05}. Then ¢ : R>g x {0} — R”™ defined by

©(t,0) == (qc,tfq.) Vt>0

is a complete solution to H. (Since f,, € Cy. and Cy, is a cone, tf,, is also in Cy,

for all t > 0.) Finally, since f;, > 0, we have that |p(t, )]0 — oo. O

For a simple illustration of Proposition 6.2, consider H on R"™ with a single
mode ¢ that has constant flows 2 = f7 and a flow set consisting of a single ray,
C :=ray f;, where f; € S"—!. We have fq € C, so, by Proposition 6.2, the set O is
not forward invariant for H. The hybrid arc ¢ : R>¢ x {0} — {¢} x R" defined by
o(t,j) == (q, tf;) for all (¢, ) € dom(yp) is a complete solution to H that leaves 0,

and limy4j00|¢(t, j)|0 = oo.

6.5.1 CTG Simulations

This section establishes a correspondence between solutions to a conical hybrid
system and walks through the CTG. For each solution, there is a unique walk
called the CTG-simulation of that solution (Definition 6.5). That a CTG-simulation
is, in fact, a walk through the CTG is asserted in Proposition 6.3. Conversely,
Proposition 6.4 asserts that for every well-formed nonempty walk through the CTG
of a hybrid system that starts and ends with a jump arrow, there exists a solution
that the walk simulates. This section is concluded with Proposition 6.5, which shows
that the relative change in the magnitude of a solution is an element in the set-valued

weight of the solutions CTG-simulation.
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Definition 6.5 (CTG Simulation). Let H be a conical hybrid system with modes Q
and conical transition graph G. Consider any solution (¢, j) — (¢, ) := (q(j), z(t, ]))
to H that jumps at least once. Let J := sup; dom(yp) € {1,2,...,00}. Let to :=0
and let ¢; denote the jth jump time of ¢ for each j € {1,2,...,J}. Let Ky := 0 and
for each finite j € {1,...,J}, let K; be the cumulative number of jumps and intervals
of flow in ¢ between (t1,0) € dom(yp) and (¢;,j) € dom(p). Let hg := (£1,0), and
for each k € {1,..., K}, let hy be the first hybrid time among

(t1,1), (t2,1), (t2,2), ..., (ts,J —=1), (t5,J) (6.21)

that does not occur among hg, h1, ..., hx_1. We denote the t-component of h; as
mr(hi) and the j-component as m,(hy), i.e., hy = (mr(hi), 7 (hi)). Note that for
each k € {0,1,..., Ky — 1}, either m;(h) = my(hiy1) and 7rp(hg) < mp(hgt1), or
my(hg) < my(hiy1) and mp(hy) = mo(hgg)-

We say that

. Vi V) = Lk 1)
w= (vo Lv1 L ... —L g, 1) —L5vK,)

is the CTG simulation or the G-simulation of ¢, where {vk}fz"o is a sequence in

Q x Syt defined as
v := (q(he), nrv(z(hy))) Vk€{0,1,..., K} (6.22)

and {Kk}kK:"a ! is a sequence of labels in £ defined by

e {J if 7y (h1) > m(hi)
k=

: Vk e {0,1,...,K;—1}. (6.23)

o
Remark 6.3. A CTG simulation of a solution ¢ is a representation of ¢ with “snap-
shots” of the solution projected onto Sg_l by the nrv function before and after each
jump. Such a simulation does not say anything about how ¢ flows before the first

jump or after the last jump.

Lemma 6.2. Suppose H := (C, f, D, G) is a conical hybrid system with modes Q
and transitions €. For any (¢°,2°) € D and (¢%,2%) € G(¢%, 2°), let s° := nrv(z°)

and s® := nrv(2?). Then,
09 = (q®, s@) evnD, v¥:= (q@, 369) e VNG(D),
and @’ := v° 2,09 is a jump arrow in the CTG of H.
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Furthermore, if (t, j) — ¢(t,j) = (q(j), 2(t,j)) is a solution to H, then for each

jump time t; in dom(yp),

(GG — 1), nrv(2(ty,5 — 1)) 2 (a(5), nrv(=(t;,))) (6.24)
is a jump arrow in G.

Proof. Take any (¢°,2°) € D and (¢%,2%) € G(¢°,2°). It follows immediately
from the definition of the jump set that e := (¢, ¢®) € € and 2 € D,. Since D, is
a cone, s° :=nrv(z°) is also in D, so v® := (¢°,s°) e VN D.

Next, we will show that v® := (¢®,s?) is a vertex in V N G(D) (specifically,
v® € VNG(D)), where s := nrv(z?). Let

. 59 /| Aes®| if Acs® #£0,

2* =
s if A.s© =0,.
Since s° € D, and D, is a cone, we have that z* € D, so (¢°, z*) € D. Then,
Az = 5%,
To see why, first suppose that A.s® # 0,,. Then,
Az = Ae(57/|Aes®|) = nrv(Aes”) = nrv(4e2°) = 5%,

where the penultimate equality is a result of (6.5). On the other hand, if A.s® = 0y,
then A.z* = 0, = s%. Therefore, v® € G(¢°, 2*), so v® is in G(D) and V.

To finish the proof, we must show that v® 2L v® is a jump arrow in the CTG
of H. Using the definitions of s and 2%, we have that s® = nrv(z®?) = nrv(A.2°).
By linearity, A.2° = [2°|A.s%, so nrv(A.2°) = nrv(A4.s”). Therefore, per (6.15),
v°® — 0¥ is a jump arrow.

Finally, (6.24) is a jump arrow in G since ¢(t;,j — 1) € D at each jump time ¢;.
O

Lemma 6.3. Consider a conical hybrid system H = (C, f, D,G) with modes Q
and transitions €. Let (t,5) — ¢(t,j) = (q¢(4), 2(t,j)) be any solution to H with
Jjump times t; and J := sup; dom(p). For each interval flow [t;,t;1] in dom(yp), if
je{1,2,...,J —1}, then

(a(7), nrv(2(t5,5))) 5 (a(), nrv(2(tj+1,))) (6.25)

is a flow arrow in G.
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Proof. Let (t,5) — ¢(t,5) = (q(j), 2(t,j)) be a solution to H. Without loss of
generality, suppose J > 1 (otherwise the conclusion is vacuously true). Take any
Jje{l,2,....,J —1}. Let 29 := z(tj,7), s = nrv(2?), 2 = 2(t;41,7), and
s = nrv(z").

Then, ¢(t;,7) € G(p(t;,j — 1)), so v@ := (g(j),s?) is a vertex in V. Similarly,
o(tjy1,7) € D, so v := (q(j),s?) is in V.

To show that v'© £ v is a flow arrow, for 7 := 1t —t;, let £ : [0,7] — R" be
defined by

2(t+t;,5)/]|z©@ if |2©@
b &) = {zgtitj,jiﬂ | if}z(o) ign

Since [tj,t;41] is an interval of flow, 7 is positive. We will check each condition
in the flow arrow conditions (6.17). Equation (6.17a) is satisfied because £(0) =
nrv(z@) = s, From the flow condition (1.6b) of hybrid solutions, we have that
2(t,j) = fq(2(t,j)) for almost all ¢t € [t;,t;41]. Since f; is either constant or linear,
t — 2(j,t) is the unique solution to & = f,(z) and 2(j,t) = f,(2(j,t)) for all
t € (tj,tj4+1) (rather than merely almost all). Therefore, (6.17b) is satisfied:

d¢ dz
T =+ 1) = [+ 1) = £,6®) VEe 0,7,

By (1.6a), ¢(t,j) € C for all t € (tj,tj11), so z(t,j) € Cq for all t € (t;,tj41)
and

£(t) e Gy Yt (0,7),

satisfying (6.17c).
Finally, (6.17d) is satisfied:

nrv(z /]2]) if |29 #0
nrv(z®) if 2] =0

nrv(§(T)) = {
= nrv(z?) = 5.
Therefore, v© £ v is a flow arrow in G. O

Proposition 6.3. Consider a conical hybrid system H with conical transition graph

G. For any solution ¢ to H, the G-simulation of ¢ is a well-formed walk through G.

Proof. Let w be the G-simulation of ¢, and let {Kj}}']:m {vk}kK:JO, and {Ek}szJo_l be

defined as in Definition 6.5. We write the components of ¢ as p(t, ) = (q(j), z(t,j)).
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To show that w is a walk through G, we must show that each vy is a vertex in V,
and for each k£ € {0,1,...,K;} that vy — vi41 is an arrow in G. The values of
K always increment by +1 or +2, i.e., K(;41) € {K; + 1, Kj + 2}. Thus, for each
Jj €10,1,...,J}, we need to show that vk, € V and (if j < J) that vk, 41 € V.
Furthermore, we need to show VK; KK_]} Uk;+1 1S an arrow in A If K(j+1) = K; + 2,
we also need to show v Kj+1 % VK42 is an arrow in A. We will consider separately
the cases of K(j 1) = K;j+1and K1) = K; +2.
Take any j € {0,1,...,J}.
Case 1 (K1) = K; +1). Suppose K(;;1) = K; + 1, which requires that either
Jj=0ort; =t;11. For the case where j = 0, there is a jump arrow in G from
vy = (q(O), nrv(z(tl,()))) to vy = (q(l), nrv(ty, 1)) per Lemma 6.2, since ¢; is

a jump time in dom(yp). Similarly, if ¢; = ¢4, then

(a(5), nrv(2(t;,4))) = (a(3), mrv(2(tj+1, ) € D,

S0, again by Lemma 6.2, there is a jump arrow in G from
VK; = (Q(J)7 HTV(Z(tj,j))) to VKt — (Q(j + 1)7 HI"V(tj+1,j + 1))

Case 2 (K1) = K; +2). Suppose K(j;1) = K; +2. From the definition of K}, it
follows that j € {1,2,...,J — 1} and [t;,tj41] is an interval of flow in dom(yp).
By Lemma 6.3, there is a flow arrow in G from vk, = (q(j), nrv(z(t;,4))) to
VK41 = (q(j), z(tj+1,j)). Additionally, because t; 1 is a jump time, there is

a jump arrow in G from
U(Kj—i-l) to U(Kj+2) = UK(j+1) = (Q(j + ]-)a DI‘V(tj+1,j + 1))7
per Lemma 6.2.

Therefore, we have shown that each vy is a vertex in ¥V and each step in w is an
arrow in A, so w is a walk through G. Furthermore, each flow arrow in w is followed

by a jump arrow, as shown in Case 2, so w is well-formed. O

Proposition 6.4. Consider a conical hybrid system H with modes Q and conical
transition graph G. For some K € {1,2,...,00}, suppose that

) ‘ ‘ b1
w = (vg Lyvp Ay - D)

is a well-formed walk through G with £y = J and if K < oo, then {(y_yy = J. Then,

there exists a solution ¢ to H such that w is the G-simulation of .
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Proof. Let J be the total number of jump arrows in w. For each finite j €
{0,1,...,J}, let Kj be the index of the vertex in w immediately after j-many
jump arrows. That is, K; € N is the smallest number such that there are j jump
labels in {fo, {1, ..., lK;}.

For each finite k € {0,1,2,..., K}, let (qx,sk) := vp. We will construct a

sequence {cpj}}]:l of hybrid arcs in the form

(taj) = @j(taj) = (pj(j)v Zj(t’j))’ (626)

where dom(y;) and z; are defined below, and j +— p;(j) := gk, for each j €
{0,1,...,7}. By induction, we will show that for each j € {1,2,...,J},

(S1) if 7> 1, then ¢j is an extension of p;_1,

)

(S2) ;7 is a solution to H that jumps j times (i.e., sup, dom(p;) = j)

(83) nrv(z;(13,])) = sk, where Tj := sup; dom(¢;) is finite (and j = sup,; dom(¢p3)),

Oiger
(54) wj = (vo Loy gy By —(KJ—I))UKJ.) is the G-simulation of ;.

The following definition is used to construct ¢j. For each k € {0,1,..., K — 1}
such that ¢, = F, take 7, > 0 and & : [0,7x] — R"™ that satisfy the flow arrow
conditions in (6.17).

For the base case (j=1), let dom(y1) := {(0,0),(0,1)}, 21(0,0) := sp, and
21(0,1) := Agys0. Hence, ¢1(0,0) = (g0, 50) = vo and ¢1(0,1) = (ql, AeOso). Condi-
tion (S1) is vacuously satisfied because 7 = 1. Since vg 2Ly v; is a jump arrow, ¢1(0,0)
is in D. Thus, ¢; is a solution to H with one jump—satisfying (S2)—because
dom(¢1) has no intervals of flow and satisfies (1.5) at ¢t; = 0, the only jump time in
dom(¢1). Additionally, since (qo, So) 2 (q1, $1) is a jump arrow, (6.15) requires that
s1 = nrv(Ae,s0). Thus, nrv(z1(11, J1)) = nrv(21(0,1)) = s1 = sk, , satisfying (S3).
The walk w; = vg 2L v1 is the G-simulation of ¢ with hg = (0,0) and h; = (0, 1), as
defined in Definition 6.5, thus (S4) is satisfied, finishing the proof that the base case
satisfies (S1)-(54).

For the inductive case, take any j € {1,2,..., J— 1} and suppose that ¢j is
a hybrid arc that satisfies (S1)-(S4). We define ¢j;1 as an extension of ¢j, ie.,
dom(pj;) C dom(pjr1) and @511(t,j) = ¢;(t,j) for all (¢,j) € dom(y;), so (S1)

holds by construction. We define ;71 beyond the domain of (5 via three cases. In
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each case, we will define k© and k¥ and, for Cases 2 and 3, we also define £© and

k®. For the given definitions of k°, k%, k©, and k©, let
V¥ 1= e, s¥ 1= spe, and ¢® := qe for each ® € {0, ®, (0), (f)},
and e := (gxo, qgo).

Case 1 (jump arrow). Suppose (f; is a jump label. There are, jmany jump
arrows from vg to v, (by the definition of Kj) and it takes one additional
step vk, L vk;+1 for the walk w(; 1) to contain j+ 1 jump arrows, because
(g, = 3,50 K541y = Kj 4 1. Let k© := Kj and k9 1= K(5;1), We also define

ro = |25(T3,J)| and 1y := |Aes®| € W(v® % 0). Let

dom(pj11) := dom(pz) U ({T5} x {J; 7+ 1}),
and
2541(T5, 7+ 1) := roAes®.
Since v© 2 v® is a jump arrow in A, we have that (¢°,s”) € D. By prop-

erty (6.3) of the nrv function and (S3) from the inductive hypothesis,
25(15,5) = |25(T5, J) | v (25(15, ) = ros”.

Since D, is a cone containing s°, we have that z;(T3, j) € D, and thus ¢;5(T3,7)
is in D. Additionally,

i+1(T5, 7+ 1) = (¢% Ae(ros®)) € Glpi1(T5,]))-

Therefore, ;541 is a solution that jumps j+ 1 times, thereby satisfying (S2).
At the end of pji1, we have zj11(T541,7+ 1) = r9Aes®. By the definition of
a jump arrow in (6.15), s¥ = nrv(A.s®). Furthermore, s¥ = nrv(rgA.s®) =
nrv(2zj41(Ti41,J + 1)) because rg > 0 with rg = 0 if and only if s° =0, in
which case A.s” = 0,, also. Thus, (S3) is satisfied.

By (S4) in the inductive hypothesis, wj is the CTG-simulation of ¢j3, so (6.22)
and (6.23) are satisfied up to Kj and Kj — 1, respectively. For j+ 1, the
hybrid times ho, h1, ..., hk; defined in Definition 6.5 are the same as for j and
hr, ., = (T5+1,7+1). Using (S3), we find that

v? = (¢%, 59) = (pj+1(j+ 1), nrv (241 (Th41, 7 + 1))>,
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satisfying (6.22) for k = Kjy1. Finally, m(hk,,,) > m(hk;), so (6.23) is
satisfied for k = K31 — 1. Therefore, wjy1 is the CTG-simulation of 7,1, as
required by (S4).

Case 2 (flow arrow in mode with linear flows). Suppose lk; = F and qk; is
a mode with linear flows. Since {f; = F and w is well-formed, {11 is a jump
label, so K1) = Kj+ 2. Let k© = Kj, k¥ := K5+ 1, k° := K; + 1, and
k® := K;+2. From the definition of flow arrows, take 7 > 0 and £ : [0, 7] — R™
that satisfy (6.17) for v I v®. We also define ¢ := ¢© = ¢, ro := |2;(13,7)],
re = [E(T)] € W@ E0®) and 7, := |Aes”] € W(v® L 0®). The extension

of dom(yj) is defined as
dom(pji1) == dom(p;) U ([T3, 15 + 7] x {j,7+ 1}).

Thus, Tj41 = T5 + 7. The values of 2.1 are defined for (¢, j) € dom(pjp1) \
dom(yp;) as

zj1(t, J) == ro&(t = 15) Vt € [T}, Tj11] (6.27a)
2541 (L1, 7+ 1) := rorp Aes®. (6.27b)

Since £(t) € C, for all t € (0,7) and Cj is a cone, zj41(t, ) is also in Cy for all
t € (T3, T541), satistying (1.6a). Furthermore, the hybrid arc ;41 satisfies the
flow condition (1.6b) for all ¢ € (T3, Tj4+1):

dzj1
dt

) d

(t,j) = %(Toﬁ(t — 1)) = rofg(&(t — T3)) = roAg&(t — T5)

= Agro&(t = T3) = fo(z11(L, 7))
By the definition of flow arrows, namely (6.17d), nrv(£(7)) = s, so at the end
of the interval of flow (T3, Tjy1), we have z;11(T541,7) = 10é(7) € D,. Thus,
©i+1(T541,7) € D, satisfying (1.5a). Furthermore, (1.5b) is satisfied because
©5+1(T541,]) € G(@541(T541,])) because

2501 (T51, ] + 1) = roredes” = Ae(rorys”) = Ac(rolé(r)| nrv(§(7)))

= Ac(ro8(7)) = Aezzi1(Th11, ) (6.28)

Therefore, @541 is a solution to H that jumps one more time than j;, satisfy-

ing (S2).
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Let zg := zj41(15, J5) and 2y := 2zj11(T541, Jj+1). We want to show nrv(zy) =
s = Sk;+1. By definition, in (6.28), zf = rorpAes®. If rore > 0, then we have
that nrv(zy) = s, per (6.4), since s¥ = nrv(A4.s°).

On the other hand, if 7o = 0, then s = s = z; = 0,, and, because mode ¢
has linear flows, solutions cannot flow away from the origin, so rr = 0, zy = 0y,
and s = s° = 0,, so s% = nrv(4.s°) = nrv(0,) = 0,. Thus, nrv(zy) = s®.
Finally, if 7z =0, then s = s = 0, because [£(7)] = 0. Since s® =

nrv(Aes®) = 0, we have that

nrv(zg) = 59 = 0,.

Next, we want to show (S4), i.e., that wj;1 is the G-simulation of ¢j41, which
requires showing (6.22) holds for £ € {Kj;+ 1, K;+ 2}, and (6.23) holds for
k € {Kj; K;+1}. By assumption, wj is the G-simulation of z;. For zj1,
the sequence hg, hq,... ,hK(J_ 1) defined in Definition 6.5 has two more ele-
ments than the corresponding sequence for zj, namely h 1) = (T541,)) and
h(ize2) = Mkgeny = (Tir1,+ 1)

First, we will show that wj; satisfies (6.22) for k£ = K5+ 1. We have that

pi+1(hi+1) = pj+1(0) = axk;
because pj1(j) = qx; by definition for each j € {0,1,...,7+ 1}. But,
pi1(hr41) = Q1

because ¢ = ¢ = qx; = qx;+1 = ¢\, as required by (6.22) for k = Kj + 1.

For the z-component,

zir1(his11) = 2501 (Th41, J) = 10é(7)-

Suppose, first, that ro > 0. Then, by (6.4), Suppose, instead, that g = 0. In
this case, ¢ is identically zero because t — £(t) := 0, is the unique solution
to & = Agz from xg = 0,. Thus, nrv(reé(r)) = nrv(£(7)) = 0,. By (6.17d),
nrv(&(7)) = s, so

271 (hr41) = SKG41,

therefore (6.22) is satisfied for £ = Kj+ 1.
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Next, we will show that wj1 satisfies (6.22) for k = K;+2 = K(;,1). We have
that

pi+1(hK(j+1)) =p+1(J+1) = UK 511y

as required by (6.22) for k = Kj;+ 1. For the z-component,

zr1(hi ) = 21 (T4, ]+ 1)
We have already shown that (S3) holds, so nrv(zj41(hk ;,,))) = Sk ;,,,- There-
fore, (6.22) holds for k = K;,1).

Finally, (6.23) is satisfied for k = Kj because (k, = F and
T (hK5+1) > Ty (th)’
and is satisfied for k = K3+ 1 because €K5+1 =J and
Ty (hKJ_+1) > ”(l(thH)'
Therefore, w1 is the G-simulation of ¢j41, satisfying (S4).

Case 3 (flow arrow in mode with constant flows). Suppose (k, = F and g,
is a mode with constant flows. Since w is well-formed, {f;+1 = J and K1) =
K;+2. Let k9 := Kj, k" := K;+ 1, k° := K; + 1, and k% := K; + 2. From
the definition of flow arrows, take 7 > 0 and £ : [0, 7] — R that satisfy (6.17)
for v©@ & v, We also define ¢ := ¢@ = ¢, ro := |2;(T3,7)|, re := [&(7)] €
W(w® Eov®) and ry := [As%] € W(0© L o®). Let

dom(pz41) = dom(pz) U ([T3, Ty1] x {7, 7+ 1}),

where
ToT ifrg >0

T51 =15+
o / { T if ro =0.

The value of zj;1(t,j) is defined for (¢, j) € dom(pjt1) \ dom(y;) as

N ro&((t —T3)/ro) ifrg >0
zir1(t, 7) == vt e |15,T; 6.29a
51(t,7) { f(t—Tj) ifrg =0 [ J J+1] ( )
~ roTpAes® ifrg >0
231 (Thr1,j + 1) = { rFA ©  ifrg—0 (6.29b)
F<le - .

123



To show (S2), we will consider separately the cases ro > 0 and o = 0. Suppose,
first, that 9 > 0. Then, ;41 satisfies the flow condition (1.6b) for all ¢ €
(T3, Tyy1):

é’j+1<t,j) = %(Toé((t - Tj)/?“o))
= rofy(€((¢ ~ T3)/r0)) 2 ((t — T3 /o)
= fq(zj-i-l(t:j))'

If, instead, rg = 0, then,

Ga() = GEE-T)) = fy(zpn(6.9),

again satisfying (1.6b). In both cases, z;11(t,]) € Cq for all t € (T3, T541),
satisfying (1.6a).

By (6.17d) in the definition of flow arrows, nrv(¢(7)) = s € D,, so
2541 (T541,]) € De.

Thus, ¢j41(T5+1,7) € D, satisfying (1.5a). Furthermore, (1.5b) is satisfied at
the only jump time, T541, in dom(pj41) \ dom(p;) because zj41(T541,7+ 1) =
Aczi41(T541, ). Therefore, 541 is a solution to H that jumps one more time

than j, satisfying (S2).

Let 2 := 2741(75, J5) and z¢ := zj41(T541, J741). To prove (S3) holds, we must
show nrv(zy) = s¥ = sx. 1. From (6.29b), nrv(zy) = nrv(A.s”), which equals
5%, satisfying (S3).

Next, we want to show (S4), i.e., that wj;1 is the G-simulation of ¢jy1, which
requires showing (6.22) holds for £ € {K;+ 1, K5+ 2}, and (6.23) holds for
k € {Kj; K;+1}. By assumption, wj is the G-simulation of z;. For zj1,
the sequence hg, h1, ... ,hK(j 1) defined in Definition 6.5 has two more ele-
ments than the corresponding sequence for zj, namely Ay 1) = (T341,7) and
h(r;v2) = PK(yy) = (T5+1, ]+ 1). First, we will show that wjy satisfies (6.22)
for k = K5+ 1. We have that

pir1(hK;+1) = pi1(J) = ax;

124



because pjy1(j) = qx; by definition for each j € {0,1,...,7+ 1}. But,
pi+1(hr41) = Qrc41,

because ¢ = ¢¥ = qk; = qx;+1 = ¢, thereby satisfying (6.22) for k = Kj + 1.

For the z-component,

T‘[)f(T) ifrg >0

zi+1(hr; 1) = 2741(Th41, ) = { ) ifro=0

Thus, nrv(z;11) = nrv(£(7)). By (6.17d), nrv({(7)) = s, so
zjr1(hi4+1) = SK;41,

therefore (6.22) is satisfied for k = Kj;+ 1.

Next, we will show that wj1 satisfies (6.22) for k = K;+2 = K(3.1). We have
that

Pi+1(hK ) =P+ 1) = ak ;)
as required by (6.22) for k = Kj;+ 1. For the z-component,
zi1(hk i) =z (T, J+ 1)

We have already shown that (S3) holds, so nrv(zj41(hk ;,,))) = Sk ;,,,- There-
fore, (6.22) holds for k = K(j,1).

Finally, (6.23) is satisfied for k = Kj because (k, = F and
mr(hic1) > mr (b)),
and is satisfied for k = Kj + 1 because {1 = J and
s (hiczy) > i (hiye1).
Therefore, wjy1 is the G-simulation of ¢j1, satisfying (S4).

Thus, for the inductive case, ¢j41 is a hybrid arc that satisfies (S1)—(S4). Therefore,

by induction, wy = w is the G-simulation of ¢ ; = . O

The following result asserts that the weight of a solution ¢’s CTG-simulation
contains the relative change in the distance of ¢ from Q x {0,}. In other words,

the weights of CTG-simulations tell us how solutions move toward or away from

Q x {0,}.
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Proposition 6.5. Consider a conical hybrid system H with conical transition

graph G and a solution

(tmj) = C,D(t,j) = (C](]), Z(taj))'
Suppose ¢ jumps at least once and let

. ‘ ¢ Lk -1
w = (U0_0>’U1_1> ;)UKJ)

be the G-simulation of ¢, with J := sup; dom(y) and with Ky, K1, ..., K defined
as in Definition 6.5. Furthermore, let hg, hi, ..., hi, be the hybrid times associated
with the G-simulation of ¢, as defined in Definition 6.5, and for each finite k €
{0,1,..., K}, let

: 4 ¢ £k

be the truncation of w to the first k arrows.
Suppose that there does not exist a flow arrow (q,0,) s (¢, ") in w such that
s £ 0,. Then, for each finite k € {1,2,..., K },

|z(hi)| = |2 (ho)| for some 7, € W(wy). (6.30)

Proof. For each k € {0,1,..., K}, let (qx, sk) := vk, and if £ = J, then let ey :=
(qk, qr+1)- Let mo := |z(ho)|.

We proceed by induction over k. For the base case, consider k = 1. The first
arrow in a CTG-simulation is always a jump arrow. Let 71 := |A¢,S0] € W(vo L v1).

Since z(t1,1) = Ae,2(ho) and z(hg) = 7950, we have
|Z(hl)| = |Aeo7"050| =Tor1 = Tl‘Z(ho)‘.

Therefore, (6.30) holds for k = 1, proving the base case.

Now, suppose that (6.30) holds for k € {1,...,K; — 1}. That is, there exists
r € W(wy) such that |z(hg)| = ri|z(ho)|.

Suppose, first, that £, = J. Let rj_ | 1= |Ae, sx] € W(vgp £ vpq1). Thus, rpqq =

"1 € W(wpy1). Furthermore, z(hgy1) = Ae, 2(hs), so
|2(hi1)| = [Aey 2(hi)| = [Aeyrorksk| = rore| Ae, skl = Tﬁrkr;ngl =ToTk+1-
Thus, |2(hg+1)] = re+1]2(ho)| for 11 € W(wg41).
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Alternatively, suppose that £ = F. Let ¢ := qx = qra1. If rx, =0, then s, = 0,,
80 Sg+1 = 0y, also, by assumption, in which case f;(0,) = 0,. Since f, is Lipschitz
continuous, solutions to Z = fy(z), 2(0) = 0,, are unique, namely t — £(t) := 0,.
Thus, it must be the case that z(hxy1) = 0,. From (6.18), we have that 0 €
W(vg £ vg11), 80 Tq1 = 0 € W(wg41). Thus, (6.30) holds:

|2(hk+1)| = 0 = Tk170 = Tit1|2(ho) |-

Suppose, instead, that r; > 0, which also implies that ro > 0 (if ro = 0, then
ri=ry=---=r=0). We will define 7 > 0 and & : [0, 7] — R" to satisfy the flow
arrow conditions in (6.17) for vy By vgpyq. Let j := m,(hg) = 75(hir1), ti := mr(hg),
and tg11 = mp(hgy1). We define

)tk — if ¢ has linear flows
. (tk-i-l — tk)/rork if ¢ has constant flows,

and for all ¢ € [0, 7], let

£ £(t) = z(ty + t, j)/@?‘k ?f q has linear flows
z(te + rorkt, ) /rork if ¢ has constant flows.
By the inductive hypothesis, rory = |z(hg)|, so we find that (6.17a) is satisfied:
1 2
0) = —=(tk,J) = =nrv(z(hg)) = s

To check that £(t) = f,(&(t)), that is, (6.17b), we consider constant flows and

linear flows separately. If ¢ has linear flows, then for all ¢ € (0, 7),

£0) = 50+ 00)rome) = ——2(tn +1.3)
1 1
= Agz(ty +t,7)/rorr = Ag(t)
= fq(&(2)).

Alternatively, if ¢ has constant flows, then

0 = 5 (st rono)

- dt ToTk
= Z(tk + Torkt)

= fq(2(tx + rorit)).

127



Since f; is constant, i.e., fy(2) = fy for all z € R",

fa(2(t +rort)) = fi = f(&(1)),

so £(t) = f,(£(t)). Tn both cases, (6.17b) is satisfied.

We have that £(t) € C, for all t € [0,7], C; is a cone, so z(t,j) € C, for all
t € [t, try1], satisfying (6.17c).

Checking the terminal flow arrow condition (6.17d), we find

£(r) E(trr — tk) if ¢ has linear flows
T =
((tkH —tx) /rork) if ¢ has constant flows
B z(tk + (tg+1 — tr), )/rork if ¢ has linear flows
(tk + rork (tge1 — ti)/rork, J )/rork if ¢ has constant flows

= z(tks1,4) /rork

= z(hk+1)/rork. (6.31)

Therefore, (6.17d) holds:

nrv(E(7)) = nev(2(hgg1) /rrro ) = nv(2(hiy)) = Sgra-

Finally, let 7, = [£(7)| € W(vr B vgq1) and rpqq = rpr) W (wpy1). Rewrit-
ing (6.31), we find

|2(his1)| = rorel€(T)] = rorary i = rorks1 = re41lz(ho)l.

Therefore, (6.30) holds for all k € {1,2,..., K}, by induction. O

6.5.2 Stability and Asymptotic Stability

By applying Propositions 6.3-6.5, we can use the CTG of H to determine pre-
asymptotic stability of O. First, in Proposition 6.6, we use the CTG to establish
stability, which we use to establish pre-asymptotic stability in Theorem 6.2.

Proposition 6.6. Let H = (C, f, D, g) by a conical hybrid system with modes Q
and conical transition graph G. Suppose that O := Q x {0,} is stable for (C, f) and
that there exists M > 1 such that sup W(w) < M for each walk w through G. Then,
O is stable for H.

128



Proof. Take any ¢ > 0. Since O is stable for (C, f), there exists § € (0,¢) such that
for every solution t — &(t) to (C, f) with [£(0)] < 4,

E(t)] <e Wt e dom(é).

Let ¢/ := §/M. Then, again by the stability of 0, there exists 6’ > 0 such that,
for every solution ¢ — £(t) to (C, f) with [£(0)] < &,

|E(t)| <&Vt € dom().

Let (t,j) — o(t,4) == (¢(4),2(t,7)) be any solution to H with |2(0,0)| < §'.
Thus, |2(t,0)| < € for all ¢ € [0, 1], where ¢; is the first jump time in dom(yp). In

particular, we will use the fact that
|2(t1,0)] < €'

Since O is stable for (C, f), solutions to H cannot leave O by flowing. Furthermore,
from the definition of conical hybrid systems, g(Q) C O, so solutions to H cannot
jump away from O. Therefore, O is forward invariant for H.

Let w be the G-simulation of ¢ with K1, Ko, ..., Kj and hg, h1, ..., hi, defined
as in Definition 6.5, and let wj be the truncation of w to the first k£ > 0 steps. By
Proposition 6.5, for each jump time t; in dom(¢p), there exists r; € W(wg;) such

that
|2(t5,9)| = rre;l2(t1, 0)].
Since the weight of every walk is bounded by M and |z(t1,0)| < &/,

(2(t,9)| = 71, 2(t1,0)] < Me' = 6.

Thus, every interval of flow [t;, ;1] starts with |z(¢;, )| < 6, so |z(t, j)| < € for all
t € [tj,tj+1]. Therefore, O is stable for H. O

The next theorem is of central importance to this work as it allows one to

establish pre-asymptotic stability using the CTG.

Theorem 6.2. Let H = (C, f, D, g) be a conical hybrid system with modes Q and
conical transition graph G = (V, A, W). Suppose the following:

(P1) For each q € Q, the origin 0,, is pre-asymptotically stable for (Cy, fy).
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(P2) There exists M > 0 such that every walk w through G satisfies sup W(w) < M.
(P3) Every well-formed infinite-length walk w through G satisfies WW(w) = {0}.
Then, the set O := Q x {0,} is pAS with respect to H.

Proof. Ttems (P1) and (P2) satisfy the assumptions of Proposition 6.6, which asserts
that the origin of H is stable. By stability and the radial homogeneity property
of ‘H established in Proposition 6.1, every solution is bounded. Thus, we only need
to show that every complete solution to H converges to O. As a consequence of
stability, O is forward invariant and there does not exist any flow arrows in G in the
form (q,0,) & (g, 57), where s # 0,,.

Let (t,7) = ¢(t,5) = (q(4), 2(t, j)) be any solution to H, let J := sup, dom(y)
and T := sup, dom(yp), let ¢y := 0, and for each j € {1,2,...,J}, let t; denote the
jth jump time of . Showing that ¢ converges to O is equivalent to showing z
converges to 0,,.

If J < oo, then there are no jumps after ¢;, so the function t — (¢, J) is a
solution to (C, f) for all t € [t;,T). If ¢ is complete, then lim;_, z(t, J) = 0,, due
to (P1).

Suppose, instead, that J = co. Let w be the G-simulation of ¢ with K7, K, ...,
Ky; ho,h1, ..., hi,; and wy defined as in Definition 6.5. Then, by Proposition 6.5,
for each finite k € {1,2,..., K}, there exists rp € W(wy) such that

|2(hg)| = ri]2(t1,0)] < sup W(wy).

Per Proposition 6.3, the CTG-simulation of ¢ is a well-formed walk through G, so
by (P3), we have that W(w) = {0}. Thus,

lim supW(wy) =0 and lim |2(¢;,7)| = 0.
k—o0 k—o0

It remains to be shown that the value of the solution during intervals of flow
between jump times also converges. By assumption, O is stable for (C, f), so the

assumptions of Lemma 6.1 are satisfied. Thus, by Lemma 6.1, we have that

dim_2(.5) =

Therefore, since every complete solution to H converges to O, we conclude that O

is pAS for H. O
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Remark 6.4. If, additionally, # is the conical approximation of a hybrid system
‘H about x, € R", then Theorem 6.1 asserts that z, is (locally) pre-asymptotically
stable for H.

The assumptions in Theorem 6.2 can be simplified when G is finite. When V
is finite, condition (P3) is satisfied if and only if sup W(w) < 1 for every elementary
cycle win G. A walk through a graph is called an elementary cycle if it starts and ends
at the same vertex and does not visit any other vertex more than once. To check (P3),
it is necessary to enumerate over all of the elementary cycles. One efficient algorithm
for this purpose is Johnson’s enumeration algorithm [46]. For a CTG with |V| vertices,
|A| arrows, and ¢ elementary circuits (not counting cyclic permutations), the worst-
case time complexity of Johnson’s algorithm is O((|V| + |A|)(c + 1)). Furthermore,
if the weight of each arrow is bounded and V is finite, then (P3) implies (P2).

6.6 Abstractions to Reduce the Graph Size

A problem that arises when applying CTG-based analysis is that the set of
vertices V is often infinite. In this section, we introduce results that allow for
reducing an infinite CTG into a finite graph while preserving relevant properties
of the graph. Such a reduction is called an abstraction. Previous work has used
abstractions to reduce the infinite state space of timed processes [47] and timed
hybrid automatons [48] into a finite number of states, allowing for algorithmic
analysis.

Our general approach is to cover Sg_l with a finite number of sets, which we
use as replacements for individual points as vertices in graphs. Given a set S, a
cover of S is a collection of sets {P'};c7 indexed over Z C N such that P’ C S for
each ¢ € Z, and

s=JP.
i€l
Given a conical hybrid system H := (C, f, D, G) with modes Q, we consider a cover
of Sg_l for each mode. That is, for each ¢ € Q, let P, := {P;}iel'q be a cover
of Sgil with index set Z,. We impose that P, is a finite collection of sets to allow

for computational tractability, we write index sets in the form Z, := {0,1,...,m}
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where m € N. For each e := (¢7,¢%) € &, let

10 = {ieIe

;@mpﬁé@} and I9 = {ieIe

Piy N (A.D,) # @}. (6.32)
Thus, z € D, and e := (¢°,¢%) € &,
3i® €I ze Po and 3® €IP: Az € Pl (6.33)
In other words, for each e := (¢°, ¢%) € &,
D.c |J P&, and AD.c |J Pi.
i© eI i®eI®
We then define abstract conical transition graphs as follows.

Definition 6.6 (Abstract Conical Transition Graph). Consider a conical hybrid
system H on R™ with modes Q and conical transition graph G = (V, A, W). For
each mode g € Q, let P, = {Pé}iezq be a cover of S~ and for each e € £, let Z5 and
Z® be defined as in (6.32). The abstract conical transition graph (ACTG) defined
by the partitions Py, Py, ..., Pjg is a directed graph G=,A, W) with set-valued
weights. The vertex set V := V2 U V® is defined by

Vo= | a7} ¥ T e 4o V&= | {d®} x I o) (6.34)

(¢°.94%)ee (¢°.949)ee

For each v° := (¢°,i”) € V° and each v® := (¢%,i?) € VP, let
e:=(¢°¢%), P°:= ig, and P9 := P;g.
There is a jump arrow ' = v° 0% in A if (A.P°) N P® is nonempty. The
set-valued weight of a’ is
W(a') = {|A.s°| | s € PO, (6.35)

For each v := (¢,i®) € V¥ and each v\ := (¢,i") € V°, let P© := P;(O) and
P® = P;m. There is a flow arrow a* := (v £ v®) in A if for some 7 > 0, there

exists £ : [0, 7] — R™ such that

£(0) € PO (6.36a)
§(t) = fy(&(t)) Vi€ (0,7) (6.36D)
£(t) € ¢, vt € (0,7) (6.36¢)
nrv(¢(7)) € PO, (6.36d)
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The weight of each flow arrow a" = (q,1®) £ (¢,i") is

W(a") := {|&(7)| | £ : [0, 7] — R" satisfies (6.36) for some 7> 0}. (6.37)

o

The following result establishes pre-asymptotic stability from ACTG’s, analo-
gously to Theorem 6.2 for CTG’s.

Theorem 6.3. Let H = (C, f, D, g) be a conical hybrid system with modes Q and
conical transition graph G = (V, A,W). For each mode q € Q, let P, = {Pl}icz,
be a cover of Sgil with T, finite, and let G = (]7,.,1, W) be the abstract conical
transition graph defined by Py, Pa, ..., P|g|. Suppose the following:

(R1) For each q € Q, the origin 0,, is pre-asymptotically stable for (Cy, fq).
(R2) For each arrow a € A, the weight W(a) is bounded.

(R3) For each well-formed elementary cycle w through G ,

sup W(w) < 1.

Then, the set O := Q x {0,} is pAS with respect to H.
Proof. The proof proceeds by proving two facts.

Fact 1 There exists M > 0 such that for every walk w through G , we have that
sup W(i) < M, (6.38)
and if @ is infinite, then W(@) = {0}.

Fact 2 For every walk w := (vp — v1 — -+ — vk) through G (for some K €
{1,2,...,00}), there exists a walk @ := (99 — 91 — -+ — 0k through G
such that W(w) C W(w).

These two facts, along with (R1), imply assumptions (P1)—(P3) of Theorem 6.2, so
we can apply Theorem 6.2 to conclude O is pAS.

To prove Fact 1, let @ be any walk through G. Since |1~J| is finite, every walk
through G returns to a vertex it has already visited every [V| + 1 or fewer steps (or
possibly never, if the length of @ is less than |V|). As a result, @ must have the

following structure:
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1. The walk starts with an acyclical portion consisting of between zero and |1~2|—

many steps that do not repeat any vertices.

2. The acyclical portion of the walk is followed by any number of cycles (infinitely

many, if @ is infinite).

3. If the walk is finite, it ends with another acyclical portion of between zero and

V|-man steps.
Y

Let wg be the acyclical portion of @ before the first cycle, let @w; be the acyclical

portion of w after the last cycle, and let w,. be the cyclical part in the middle. Let
= sup{supW(a') ‘ a € .Z}
By (R2), every step in arrow in a’ has a bounded weight, so u < co. Thus,
sup W(wp) < (sup W5 — 171)) (supW(f)l — 172)) e < ,um.
Similarly, sup W(wy) < va\_ For the cyclical portion ., we have, per (R3), that
sup W(?I)C) <1

because each cycle multiplies the weight by a value less than 1. Thus, the weight

of W must satisfy

supW(w) < M := ;ﬂm,

proving Fact 1.
To show Fact 2, let w := (vg Loy gy b1y ZK_’l) vk ) be any walk through G with
K e {1,2,...,00}. Take any k € {0,1,..., K — 1}. Suppose {; = J and let

09 = (¢7,5%) = v, 0¥ = (¢¥,5%) i= vy, and e:=(¢°,¢%) € €.

Per (6.15),
s% e D.N Sg_l and s¥ = nrv(A(q@’q@)s@) € A.D. N Sg_l.

Because {P;'S }ioezo covers De, there is some i© € Z7 such that s© € P := P;g.
Similarly, for some ¥ € Z®, we have s¥ € P% := P;g. Since s® € A.P° N P¥, we
have that (¢°,i%) 2 (¢®,i®) is an arrow in A. The weight of v© 2y v® is {|Acs®|},

which is a subset of W(v® 25 v®), per (6.35).
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Alternatively, suppose £, = F and let
v = (q,5?) ;== v and v" = (q,5") = vpy1.

Take any r € W(v©@ L v®). Per (6.18), there exist 7 > 0 and & : [0,7] — R™ that
satisfy (6.17) such that r = |£(7)|. We have that v© € VN G(D), so there exists
q° € Q such that e := (¢°,q) € &, and s° € D, such that

s = A.s° € A.D..

Thus, there exists i® € ZP such that s € P© := Pqi(o). Similarly, v® € VN D, so

there exists ¢ € Q such that e := (q,¢%) € £ and
s € D..

Thus, there exists i) € ZO such that s € P® := ij). We then have that 0@ :=
(q,i®) € V¥ and 9 = (¢,i") € V°, and

£0) =352 € P? and nrv(é(r))s® e PO,
satisfying (6.36). Therefore, 3© ;5 is an arrow in A and
r = |&(r)] € W(E® £ 50).
In the manner described above, we construct a walk
W= (T 20 5y By L LK B,
and since
W(vr % vpy1) CW(Bg, 2 Tpy1) V€ {0,1,..., K — 1}

we have that

W(w) € W(w),

completing the proof of Fact 2.
It follows from Facts 1 and 2 that (P2) and (R3) hold, so by Theorem 6.2, the
set O is pAS for H. O
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6.7 Numerical Example

In this section, we present an example where we construct an abstract CTG
for a hybrid system with modes and apply Theorem 6.3 to determine asymptotic
stability of the origin. In particular, we consider a hybrid system H as in (6.6) in
R? with two modes, Q := {0,1}. The system has linear flows maps in each mode
q € Q defined by z = A,z where,

Ay = 2 2 A — -1 1 '
-3 1 —4 =2
The eigenvalues of Ag and A; are complex, resulting in flows that spiral around
the origin, with the flows in mode ¢ = 0 spiraling outward and the flows in ¢ =1

spiraling inward. The components of the flow set in each mode are
Co = {($1,£L’2) € R? ‘ 1 < O} and C) :=R?,

where the choice of Cy # R? is important to ensure that the origin is stable for flows
in mode 0, since solutions spiral outward but can only flow for a finite amount of
time before reaching the boundary of Cj.

In each mode, the system can jump within the same mode or jump to the other

mode, so the set of mode transition edges is

& :={(0,0),(0,1),(1,0),(1,1)}.

The jump map for each transition e € £ is defined by a linear map 2 = A.z, where

1 1/2 11
A(o,o) = 5 9 | A(o,l) =7 0 1 )
- (6.39)
1 3 0 1
Aq) = Ak Ay = o 1l

where v > 0 is a parameter we discuss in Section 6.7.1. The jump sets to trigger a

jump along each transition are

J.[22]), Dyo,1y :=cone([9],[ 7}
D Dy = cone([3L[ D)
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Figure 6.5. The system H from Section 6.7 overlaid by an ACTG. Mode ¢ =0
is shown on the left and ¢ = 1 is on the right. For each ¢ € Q and e € &, the
set Cy is blue, D, is red, and A.D, are yellow. Jump arrows are drawn as
red lines and flow arrows are blue.

A plot of the sets in ‘H is shown in Figure 6.5, overlaid with the arrows of the conical
transition graph.

The conical partition Py and P; are constructed using a method similarly to the
authors of [35], with additional partitions added as needed so that each boundary of
Cyq, De, and A.D, align with the boundaries of cones in the partition. As a result,
every cone in the partition is either entirely inside or entirely outside Cy, D., and
AeD,, respectively.

The construction of flow arrows requires determining reachability from each cone
in G(D) to each cone in D via flows in C. In each cone of the conical partition, we
find the adjacent cones (those that share a boundary), and determine the direction of
flow through the boundary. In R?, all convex cones are polyhedral, which we exploit
in our implementation. The find the full set of reachable points reachability analysis,

we over approximate the reachable set within a cone K from a polyhedron set of
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initial positions Py C K for flows along ¢ = A,z using the fact that A,z € A;K for
all x € K. Thus, the reachable set from Py in K is given by (Py + A,K) N K. By
picking Py D S™, we can over approximate the change in magnitude of a solution as
it flows through a cone, allowing us to construct the weights of flow arrows. The

code for this example is available at github.com/pwintz/conical-transition-graph.

6.7.1 Results

In Figure 6.6, we present the maximum and minimum weights for cycles through
the ACTG for various choices of v > 0, used to define A 1) in (6.39). We see that for
small values of v, the maximum weight is less than 1, satisfying (R3) in Theorem 6.3.
Furthermore, (R1) and (R2) can also be shown to hold. Therefore, by Theorem 6.3,
the set Q x {0,} is pAS for H. Increasing v above v ~ 107!, however, causes
the maximum cycle weight to become greater than 1, so Theorem 6.3 no longer
applies. Note, however, that this is insufficient to conclude that the system becomes
unstable—the test is indeterminate and the actual value of v where instability occurs
is likely larger. Over approximations used in the construction of the ACTG cause
the maximum walk weight to be inflated. Examining Figure 6.6, we see that the
effect of modifying v becomes saturated. As - increases, the minimum cycle weight
increases up to a point. After vy = 10°, increasing v has no effect on the minimum
cycle weight. The cause of this is the presence of cycles in the graph that don’t pass
through the transition that depends on «. Similarly, as « decreases toward zero, the
maximum cycle weight also saturates, as the cycle with the largest cycle becomes

one with no dependence on 7.

6.8 Future Work

There are several avenues for future work on conical transition graphs. There
are some promising directions for expanding the generality of the proposed approach.
One could relax assumptions on the system to allow for more general types of
dynamics, such as allowing for higher order homogenous systems. In particular, the
approach is agnostic to how quickly the magnitude of the flow map grows along each
ray, so long as all the flows along each ray points in the same direction. In fact, that

requirement could also be relaxed to allow for systems with moderate nonlinearities
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Figure 6.6. Maximum and minimum weights of cycles in the ACTG of the hybrid

system H described in Section 6.7 for various values of ~.

in the direction of flow. We are also interested in extending the CTG approach to
include a broader class of hybrid systems, in particular hybrid systems with set-
valued flow and jump maps as in [24, Thm. 3.16]. By extending the approach to
allow for set-valued dynamics, could over approximate nonlinear vector field as a

set-valued map that contains all the flow directions along a particular ray from the

origin, or within some cone.
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Chapter 7

Simulator for Hardware Architecture
and Real-time Control (SHARC)

One use case for the uniting feedback schemes presented in Chapters 2 and 3
and Section 4.2 is to safely exploit advanced controllers that cannot be certified
due to unpredictable computational delays. By utilizing uniting feedback, one
can provide a fast, certified controller as a backup in case the advanced controller
fails due to computational delays. For safety critical applications, however, one
may wish to verify that the uniting feedback scheme will work as expected when
deployed on a physical system with computational delays. In many cases, deploying
on the real system, however, is expensive and risky, so it is preferable to perform
initial verification in simulations. In this chapter, we present the Simulator for
Hardware Architecture and Real-time Control (SHARC). We designed SHARC to
accurately co-simulate computational hardware and physical dynamics, incorporating

computational delays into control updates [49].

7.1 Introduction

Cyber-physical systems (CPSs) are engineered systems that incorporate digital
sensors, computers, and actuators interacting with physical processes. CPSs are
ubiquitous in modern critical infrastructure such as transportation systems, energy
delivery, and health care. Typically, a CPS has strong coupling between its compu-
tational hardware, physics, and control algorithms. CPU designers, however, usually
optimize for generic instruction sets—not for a specific algorithm—whereas control

designers typically do not design their algorithms for a particular hardware architec-
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ture. Many properties of the physical system, including stability, safety, and liveness,
are affected by the latency of computing the next control input. The computational
delay depends on the underlying computational hardware on which the control algo-
rithm is run. Thus, to develop CPSs that satisfy demanding design specifications,
engineers must jointly consider the computing power and control methods. To ad-
dress this challenge, this chapter introduces a tool called the Simulator for Hardware
Architecture and Real-time Control (SHARC) that simulates the physical evolution
of a CPS and the execution of control algorithms on different computing platforms
to incorporate realistic controller delays in the closed-loop simulation. The ability
to incorporate accurate computation delays into simulations allows system designers
to gain a better understanding of how computational limitations affect the behavior
of the system, thereby informing better designs.

To allow for quick and easy installation of SHARC, a Dockerized version of
SHARC is provided. To aid in the development of SHARC and implementation of
controllers and dynamics using SHARC, the project is configured to support running
Docker images in a Dev-container. A suite of unit tests is included in the SHARC to

verify SHARC’s internal logic.

7.1.1 Problem Setting

Creating tools to analyze CPSs is challenging due to the interactions between
computational hardware, physics, and control software. There has been a trend
toward consolidating control software components onto shared multicore processors
to reduce size, weight, and power while improving performance. The adoption
of multicore hardware in practical CPSs, including automotive [50], avionics [51],
and medical systems [52], brings many benefits but also introduces a new host of
challenges for modeling and analysis. In a multicore processor, some resources, such
as the caches, memory bus, and random access memory (RAM), are shared between
cores, which affects the timing of the control software in complex ways, making the
timing difficult to model and predict.

Beyond traditional CPUs, specialized computing hardware is becoming preva-
lent in CPSs, including highly-parallelized processors (GPUs), configurable hardware
(e.g., field programmable gate arrays, or FPGAs), and domain-specific accelerators

(such as chips designed for self-driving autonomous driving). These components are
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critical for the unique demands of real-time machine learning, computer vision, and
other applications. On the other hand, control software is also becoming increasingly
complex, with diverse and rapidly changing resource requirements and performance
goals [53]. Computation-aware control algorithms require detailed information about
the performance of the computational hardware via strong performance monitor-
ing capabilities in order to understand how to safely and effectively optimize the
hardware and control algorithms.

Creating tools that can assess and simulate complicated interactions between
hardware and software is critical for automotive, avionics, and other domains in
which computationally-intensive processes play a significant role at runtime. In
particular, it is important to ensure that advanced control algorithms can run on
the available computing hardware with high confidence. For example, automotive
Original Equipment Manufacturers need to evaluate whether updated software for
advanced controllers or perception algorithms can be safely deployed on vehicle
models of the previous year. To ensure that advanced control algorithms can run
on unsophisticated computing hardware, regression analysis of candidate controllers
should be concurrently tested in situ for deployed systems. Some algorithms for
achieving robust autonomy, such as model predictive control (MPC), have limited
deployment due to insufficient computing power. By using SHARC, however, to
simulate, analyze, and optimize controllers and hardware platforms, engineers can
design solutions that improve the use of onboard energy and computational sources,

allowing cheaper and more efficient implementations of advanced control schemes.

7.1.2 Literature Review

Prior research has investigated quantifying the computational demands of var-
ious control algorithms and mitigating the effects of computational delays. The
authors of [54], [55], [56], [57], [58] investigate the effects of the worst-case execution
time on the performance of several control algorithms, including linear quadratic
control (LQR), model predictive control (MPC), and state-dependent Riccati equa-
tion (SDRE) nonlinear control. In particular, linear and nonlinear MPC schemes
that preserve stability and performance under computational delays are presented
in [59], [60] with a brief introduction given in [59, Section 7.6]. However, none of

these schemes provides a tool or methodology that explicitly accounts for the effects
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of many kinds of computational hardware, including hardware that has not yet been
fabricated. In contrast to these works, SHARC is able to analyze the effects of diverse
microarchitectures—including hypothetical configurations—on the performance of
the closed-loop system. This allows the user to conduct both microarchitecture
design exploration and control design optimization.

CPU manufacturers and computer architecture researchers rely on microarch-
itectural simulation to explore the hardware design space, prototype new hardware
ideas, and evaluate application performance on hypothetical hardware. Microarch-
itecture simulators model the internal hardware architecture of CPUs, including
branch predictors, instruction fetch and decode units, functional units, instruction
schedulers, and memory subsystems with multiple levels of caches. Some noteworthy
microarchitecture simulators are gem5 [61], ChampSim [62], ZSim [63], MARS [64],
and Sniper [65]. While these simulators enable accurate application simulation and
performance modeling, they are not designed to simulate controllers interacting in a
closed-loop with a physical system. In particular, they cannot be directly integrated
into a model where the controller interacts with a physics simulation since micro-
architecture simulators do not incorporate methods for synchronizing the passage of
time in dynamical simulations with the execution of the controller code inside the
microarchitecture simulator.

Prior works have proposed tools for testing control algorithms interacting
with physical systems via co-simulations and via hardware-in-the-loop (HIL). Co-
simulation tools [66], [67] provide simulations of the CPU capable of modeling
hardware events such as interrupts, but they do not provide a cycle-accurate timing
simulation, which is necessary to ensure the safe and reliable operation of control
algorithms under computational constraints. Hardware-in-the-loop simulation inte-
grates real-time hardware into a simulated environment, enabling realistic validation
of control algorithms. The system’s physics are simulated on a real-time platform,
interacting in a closed loop with actual hardware, such as an embedded controller.
HIL is widely used in automotive and aerospace applications to evaluate controllers
for autonomous vehicles, flight control systems, and industrial automation, ensuring
robust performance before deployment [68], [69]. However, traditional HIL setups
rely on fixed hardware, limiting flexibility in exploring different architectures or

optimizing control algorithms under varying constraints. SHARC overcomes these
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limitations by using a reconfigurable cycle-accurate microarchitectural simulator in
a closed-loop with a simulation of the system’s physics.

The remainder of the paper is structured as follows. Section 7.2 introduces the
modeling framework for the physics and the computational hardware, as used by
SHARC. Section 7.3 describes the implementation and basic usage of the simulator,
with a serial execution mode described in Section 7.3.1 and a parallel mode described
in Section 7.3.2. Two examples are presented in Section 7.4. In particular, section
Section 7.4.1 contains an example of adaptive cruise control for longitudinal vehicle
control via linear MPC. Section 7.5 describes a number of future research directions

and gives conclusions.

7.2 Modeling

In this section, we introduce our modeling framework for the physics, controller,

and computational hardware of a CPS, and their interconnection.

7.2.1 Physics and Controller

A physical system controlled by a controller is often called a plant. The physics

of a plant are typically modeled as a differential equation, which we write as

T = f(t,x,u,w), (7.1a)
y = h(z,u,w). (7.1b)

The plant has state x € R™, control input u € R™, output y € R™, and a dis-
turbance w € R™. The disturbance (or exogenous input) is given as a function
t — w(t) € R™ for all £ > 0. Although physical systems are nicely represented—
mathematically—Dby differential equations, most methods for numerically simulating
continuous-time systems use discretization. In SHARC, we use a discrete model on
an evenly-spaced time grid with period T" > 0, defined by t; := kT for each k € N.

We write the discrete dynamics of the plant as

1 = f(te, or, u, w(ty)), (7.2)

where f is a discretization of the physics with sample time 7', and xj := z(t),
ug = u(ty), and yx := y(tx) for each k. Figure 7.1 illustrates the discretization of

the continuous-time physics in (7.1).
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Discretized Physics Model: .1 = f(tr, Tk, ug, w(ts))
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Vt € tk,tk+1) [t z,u,w)

Figure 7.1. Diagram showing how a continuous-time physics model in the
form (7.1) is discretized into form (7.2).

The control input « is generated by a control algorithm that evaluates a control
function (¢,y) — g(t,y) € R™. We assume that control values can only change at
sample times. When discretizing (7.1), as shown in Figure 7.1, SHARC interpolates
the input between consecutive time steps t; and ti4; using zero-order hold. In
particular, u(t) = uy for all ¢t € [tg,tp4+1), where uy is the value of the control
input received from the controller at t;. The output y; represents periodic sensor
measurements.

SHARC users can implement the physics in two ways. If they are starting with a
continuous-time system, they can provide f to have SHARC automatically generate
and evaluate the discretization f via numerical integration. Alternatively, users can
provide f directly if they wish to implement other types of physical models, such as

hybrid systems or stochastic differential equations.

7.2.2 Interaction between Physics and Controller with Computa-

tion Delays

In an idealized system, the controller g immediately provides the next control
value g(t, yi) at time t;. In realistic systems, however, computing the control update
takes time, so the new control value is not available until after some computation
delay 7, > 0. To capture the delay, we execute the controller code to calculate
g(tr, yx) and store the “pending” control value in a memory variable a1 := g(tg, yx)
until the next sample time after 3, := tx + 7¢. To determine the computation
delay 7, SHARC simulates the execution of the controller code on a given processor
using a cycle-accurate microarchitectural simulator, as described in Section 7.2.3.

The system continues to use v = uy, until the next sample time after ¢, at which point
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> Discrete Physics Model
w, | TR F(tr, Tr, ur, w(ty))
Yk = h(zk, ur, w(ty))

Controller with Computational Delay

While computation pending | | When computation finished
{ Ugt1 = Ug { U1 = Ug
Tps1 = Uk i1 = g(tr, Yr)

Figure 7.2. A feedback diagram of the closed-loop model of the physics with
a controller that has computational delays. After a control computation is
started but before its computation time has elapsed in the simulation, it is
stored as @g. The values of u and @ are held constant until the computation
is finished.

we set u = . Figure 7.2 shows the feedback diagram for the closed-loop system
using the discrete system physics model in (7.3) interconnected with a controller
that exhibits computational delays.

Thus, the model used by SHARC for the closed-loop dynamics of a CPS’s con-

trolled by a computationally delayed controller is

Tip1 = f(te, Tr, wg, w(te)) (7.3a)
i = h(zp, ug, w(ty)) (7.3b)
Uk41 = Uk
(Computation
in progress) Ek—l-l — Ek
Uk1 = Uk
If th1 > Ths < Gpsr = gt yr) (7.3d)
(Computation ~
finished) try1 = tg + 7% for computing g(tx, yk),

where the initial state g € R™ and initial control value ug € R™ are given, the
initial pending control value is iy = g(to,%o), and o := 7o is the time required
to execute g(to, o). In (7.3c), the memory variable % and the end time ¢ of the
computation are held constant while the computation is in progress. When the
computation finishes, u is set to 4. Then @ and ¢ are updated to record a new

execution of the calculation of g(tx, yk)-
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7.2.3 Computational Hardware Simulation

In this section we introduce how we model and simulate the computational
hardware. To calculate the computational delay of a given controller, we use a
microarchitectural simulator. Existing microarchitectural simulators can execute
accurate simulations of arbitrary computer programs on a given hardware platform.
We will discuss in Section 7.3 how SHARC jointly simulates the hardware execution
of a control algorithm and the physics of a system. In SHARC, the Scarab Microarch-
itectural Simulator [70], [71] is used to perform hardware simulation. To simulate the
execution time of a control algorithm, Scarab processes either compiled x86 binaries
or traces of x86 assembly instructions. The microarchitectural simulator is agnostic
to the programming language because it consumes compiled assembly code.

Although it is possible to measure application execution times on a physical
processor, simulating the controller executable with Scarab provides the following

advantages:

1. Scarab allows for arbitrary modification of hardware parameters, such as the
cache size, clock frequency, and the depth and width of the CPU pipeline, to
allow for analysis of hypothetical computing platforms without necessitating
fabrication. Thus, by using Scarab with SHARC, we can prototype new hard-
ware components and measure the resulting changes in a system’s dynamical

performance.

2. Scarab produces detailed statistics, making the internal hardware state observ-
able and thereby allowing for better performance analysis. This is in contrast
to physical CPUs, which only provide limited visibility through existing per-

formance monitoring unit (PMU) counters.

All these aspects are crucial for enabling optimal hardware-software co-design of
control systems.

The simulation of control algorithms in Scarab provides high precision and
fidelity because Scarab models both the architectural and microarchitectural states
of the CPU at the level of individual clock cycles. The architectural state includes all
registers, program counters (PC), and the memory of the processor as specified by the

instruction set architecture (ISA). The microarchitectural state comprises the tables

147



Fetch Fetch i
PC Branch Target Target Fetch Unit, Instruction
—>»| Predictor, » FTQ » Memory »| Decoder

BTB, CRS Hierarchy

Decoded Instruction

Front-End
Back-E
ac nd Y Y Y Y
Reservation Reservation Resel:vation
Station 1 Station 2 Station n
Y Y Y Y
Function Function Function
Unit 1 Unit 2 Unitn

Figure 7.3. Scarab’s Architecture. Modern CPUs are comprised of the Frontend,
responsible for predicting future executed instructions (Branch Predictor),
buffering their instruction address (FTQ), fetching them from the instruction
cache (Fetch), and decoding their arithmetic operation (Decoder). Decoded
instructions are then forwarded to the Backend, which contains the instruction
schedulers (Reservation Stations) selecting ready instructions to be processed
by the functional units (Units 1 through N).

and internal meta-data utilized by the branch predictor [72], prefetchers, and cache
replacement mechanisms. In a microarchitectural simulator, each simulated assembly
instruction moves through a pipeline of various stages during its lifetime, including
the fetch, decode, execution, and retirement stages. At each stage, the instruction
triggers events along its path. Modern CPUs implement instruction pipelines that
are deep and wide, meaning that there can be hundreds of instructions in the pipeline
at the same time, each one triggering events in every cycle. The full pipeline of
instruction processing is accurately modeled by Scarab.

Furthermore, the modern CPU architecture, as emulated by the Scarab sim-
ulator, follows an out-of-order CPU design that can be divided into two parts, as
shown in Figure 7.3. The front-end identifies the next instructions to be fetched
from main memory, stores them into the fetch target queue (FTC) and instruction
cache, and decodes them. The front end is also responsible for handling control-flow
instructions, such as jumps and branches, utilizing a TAgged GEometric (TAGE)
history length branch predictor [72], branch target buffer (BTB), and return address
stack (RAS) predictor.
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The back-end consumes the stream of instructions provided by the front-end and
executes them through different functional units based on the instruction type (e.g.,
loads, stores, Arithmetic Logic Unit (ALU), vector instruction queues) acting as
reservation stations [73]. The instruction scheduler picks instructions as soon as they
are ready (all source operands are available) and forwards them to the appropriate
functional units. The execution stage also detects mispredicted branch instructions
to trigger pipeline flushes ensuring correct execution. To emulate, serve, load, and
store instructions, the simulator models three cache levels and implements a detailed
Dynamic Random Access Memory (DRAM) model utilizing Ramulator [74].

The Scarab simulator provides observability of over a thousand low-level events,
including the number of executed CPU cycles, mispredicted control-flow instructions,
data and instruction cache misses, and a tally of the number of cycles each functional
unit is busy. Analyzing these statistics reveals which CPU components limit the per-
formance of a particular program and thereby provides insights into how to improve
the hardware architecture or software implementation. Scarab features two simulator
frontends: an execution-driven and a trace-based approach. We utilize trace-based
simulation to supply instructions to the CPU pipeline. The traces, captured using
DynamoRIO [75], preserve a precise continuous sequence of dynamically executed
instructions including memory addresses for load and store operations. DynamoRIO
is a runtime code manipulation system that enables dynamic analysis, profiling,
and optimization by allowing arbitrary modifications to application instructions on

various architectures and operating systems.

7.3 SHARC Simulator

In SHARC, the microarchitectural simulator is executed in parallel with a simu-
lation of the physics. Figure 7.4 illustrates how SHARC simulates the physics and the
control algorithm in parallel. The simulation of the physics is executed through a
user-provided implementation of a Python interface, which may call external physics
simulators. For each simulation experiment, one or more subprocesses are started
by SHARC to simulate a controller executable with the microarchitectural simulator.
The particular dynamics of a system are defined by writing a subclass of a Python

class named Dynamics, provided by SHARC. Pseudocode for MyDynamics subclass
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of Dynamics is shown here:

class MyDynamics(Dynamics) :
def evolve_state(self, t0, x0, u, tf):
# Evolve the state from tO to tf given
# initial state x0 and control input u.
return xf # Final state of the system at tf.

def get_output(self, x, u, w):
return y # Generate output

def get_exogenous_input(self, t):
return w # Generate exogenous input

Similarly, a controller is defined in C++ by writing a subclass of a C++ class
provided with SHARC named Controller. Pseudocode for a MyController subclass

of Controller is as follows:

class MyController : public Controller {
void calculateControl(int k, double t, const Vec &y){
// Evaluate u = g(t, y) and set the
// object’s ’control’ property to the result.
control = u;

};

The code in the calculateControl function is simulated by Scarab to determine
the computational delay of computing ¢(t,y). A noteworthy feature of SHARC’s
design is that the same controller code can be used by SHARC as would be deployed

on an actual cyber-physical system.

7.3.1 Serial Mode

The SHARC simulator supports two modes. While the serial mode is optimized
for maximum accuracy, the parallelized mode minimizes simulation time through
parallel processing. We will describe the serial mode in the following and refer
to Section 7.3.2 for a detailed description of the parallel mode. When running in
serial mode, SHARC executes the controller in a single subprocess that runs for

1" The controller subprocess simulates the

the entire duration of the simulation.
controller with Scarab using an “execution-driven” mode, which allows for statistics,
such as CPU cycle counts, to be accessed during the execution of the simulation,

as opposed to having to wait until the simulation completes. At each time step,

Here, “serial” vs. “parallel” mode refers only to whether one time step or many are computed

concurrently. In the serial mode, parallelization is used to run controller and physics concurrently.
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Figure 7.4. Diagram of the SHARC simulator structure. The physics simulator
and hardware simulators run in separate processes, with inter-process com-
munication done via named pipe files.

SHARC sends the current time step k, the current time ¢; and output y; to the
controller. The exogenous input w is generated at each time t € [tk,tx11] using
the get_exogenous_input function. Once the values are received by the controller,
Scarab begins recording statistics while the control value is computed, at which
point the statistics are saved, and the control value u is sent back to the Python
process running the physics simulator. The inter-process communication between
the dynamics simulator and the controller is accomplished using named pipe files.
After u is received by the physics simulator, SHARC reads the computation statistics

from Scarab, which it uses to determine the computation time 7 for computing .

7.3.2 Parallel Mode

For computationally intensive control algorithms, running simulations in serial
mode can take a long time. Due to simulating the microarchitectural components of
a CPU, the time to simulate a controller algorithm with Scarab can be over 10,000
times longer than computing the same algorithm on physical hardware. To address
this challenge, we developed a method to improve simulation times through parallel
execution.

Recall that the discretized physics are assumed to use a periodic time grid
to:=0,t1 :=1T,ty := 2T, ..., with both the sensor measurements and control inputs
discretized at a constant sampling rate of 7. This allows SHARC to parallelize

simulations across time steps. Figure 7.5 provides an overview of the parallelized
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Figure 7.5. Diagram of SHARC’s parallel mode using a simulation horizon of
K time steps parallelized across ¢ processors. Each column is executed in
parallel. In this diagram, full-state feedback y; = xy is used, for simplicity.

approach, where full-state feedback is used for simplicity (yx = zx). Each column of
Steps 2 and 3 are executed in parallel.

The simulation takes the initial state value xg € R™ and initial control value
ug € R™ (which is to be applied until the first control update is finished) and
runs over a time horizon K € N. It is divided into batches each containing c-many
time steps, where c is typically the number of processors available. During Step 1,
the simulator assumes that each control update ugy1 can be computed within one
sample time (7, < T) and thus always updates the control at the next time step.
The resulting sequence Zx,, Tko+1, - - -» Tho+c 1S an initial guess of the trajectory that
the system would take if every control update is computed within one sample time
(1 < T). Since Step 1 assumes no delays in computing the control inputs, Scarab is
not used to record computation times, so this step is executed very quickly.

In Steps 2 and 3, SHARC backtracks to check whether the computational delay
of updating the control at each time step is actually less than T. In particular,
SHARC creates c-many processes—one for each time step in the batch. Each process
is assigned a unique t; € {tky, tko+1, - - - > tho+c—1}- Using the precomputed value zj
and ug, the simulator recomputes the control update ug11 = g(tx, yr), but this time
SHARC runs the controller executable with DynamoRIO to generate a trace of its
execution (Step 2) which is then simulated using Scarab to generate the computation
time 75 (Step 3).

In Step 4, SHARC searches for the first time step £y where the computation
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time 74, exceeds T'. If such a time step is found, then any subsequent time steps
(k > ky) are invalid because the states were generated using control values that were
applied (in the simulation) before the controller could compute them. If all of the
control updates took less than the sample time (7, < T'), then & is defined as the
last sample in the batch (kf := ko + ¢) or the simulation (k¢ := K'), whichever is
first.?

In Step 5, SHARC checks whether there was a missed computation (74, > T'),
revises the simulation trajectory accordingly, and then continues to the next batch.
If 7, ; < T, then controller has computed each update within the sample time, so the
simulation either moves to the next batch with ko = k¢ +1 (if ky < K) or terminates
(if ky = K). On the other hand, if 7, > T, then the control computation that was
started at ¢, will not be available at tj,11, violating the assumption in Step 1. Thus,
SHARC must recompute the system’s trajectory starting from wjy, using v = uy,
until the control update finishes. As in Section 7.2.1, let fkf 1=tk + Tk, (which
typically is not a sample time) and let # be the smallest integer such that ; <KT.
In other words, KT is the first sample time after the computation that started at ¢,
finishes. We recompute the portion of the trajectory computed in Step 1 from £y to

# according to (7.3a) with ug = uy, held constant:
Thy1 = f(tk,xk,ukf,w(tk)) Vk € {kf, kf +1,...,k — 1}.

Then, the simulation moves to the next batch, using ko := & or terminates (if K > K).
The simulation from ky to £ does not require using Scarab since we already know
the end time of the pending computation, so it can be computed quickly without
parallelization. At &, however, the controller will start computing a new control
value, so SHARC starts a new batch of parallelization.

Due to the large slowdown incurred by using Scarab, parallelization is impor-
tant for simulating computationally intensive control algorithms, but parallelization
somewhat reduces the fidelity of the simulation. In particular, the parallelized mode
is somewhat less accurate in determining computation times because running each
time step in a separate process prevents the simulator from accounting for some
sequential computational effects between time steps, such as memory caching. In

contrast, running SHARC in serial mode allows transient memory effects to persist

2In practice, SHARC truncates any batches that would extend past K.

153



between time steps. The results, however, of Section 7.4.1, below, show that there is
only a small difference between the delays calculated by the parallelized and serial
modes. Given the large reduction in simulation durations, the trade-off between
accuracy and speed often justifies the use of the parallelized mode.

Parallelization is useful for mitigating the 10,000 x slowdown incurred by simulat-
ing the controller with Scarab. The speedup in the parallelized approach, compared
to the serial mode comes from Steps 2 and 3 in Figure 7.5. To quantify the possible
improvements gained by parallelizing, Theorem 7.1 describes how much simulation
time is reduced by using the parallel approach instead of the serial approach. In
particular, it examines how much time it takes to compute N many jobs parallelized
across ¢ many CPU cores. In this case, each job corresponds to running Scarab once

to determine the computation time of a control input at a particular time step.

Theorem 7.1. Consider a computational system managing N jobs, each requiring
a fixed amount of time—defined as one unit of time—to execute on a single CPU
core. The system employs ¢ CPU cores for parallelization where ¢ < N. Assume
that the probability of failure for each job is i.i.d. with probability p and that the
system restarts from the job index k + 1 after each failure at job index k. Then, the

average time T to complete all the jobs is

_ Np
Hen = e

Proof. The computational process described herein constitutes a Bernoulli process

(7.4)

as it consists of a sequence of independent binary random variables representing job
success or failure. To analyze this, we calculate the average number of completed

jobs, denoted as K, for each parallel task. A closed-form expression for K is derived

as follows:
c—1
K=Y (i+1) Pr{K =i} +c-Pr{K =},
=0
. | N (7.5)
=p- D (i+1)-(1=p)+c- (1-p)= —
1=0

This result leads to the expression for the average time to complete all N jobs:

T(c,p) = % = 1_(pr_p)c. (7.6)
O
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Note that T'(1,p) = N, reflecting the case when all jobs are processed sequen-
tially, and lim,_,0 T'(N,p) = 1, aligning with the expectation that in the absence of
failures, the system completes all jobs in unit time. The parallelization gain, which
is the speedup factor for running NV jobs in parallel on ¢ cores instead of running N

jobs sequentially on one core, is

T(c,p) (mzye) 7

Thus, when using ¢ cores, the parallel approach is faster than the serial approach by

(7.7)

a factor of (1 — (1 —p)°)/p. In the ideal case with unlimited tasks and unlimited
computational resources, lim.o 6(c,p) = 1/p. Therefore, when using SHARC’s
parallel mode to simulate a system that has a uniform probability p at each time
step of the control delay 7 being larger than 7', the expected parallelization speedup
is never better than 1/p, regardless of how many CPUs are used to parallelize the

simulation.

7.4 Numerical Experiments

In this section, we present two examples of the SHARC simulator applied to
systems using a model predictive controller (MPC). In Section 7.4.1, MPC is used
for adaptive cruise control of a vehicle on a roadway. The resulting MPC problem
is linear and thus can be solved efficiently, allowing for the serial mode of SHARC to
run simulations in a reasonable time. We provide a comparison with the parallelized

mode to demonstrate the similarity of the results.

7.4.1 Adaptive Cruise Control

In this section, we present an example of applying SHARC to an adaptive cruise
control (ACC) system used for longitudinal control of a vehicle on a highway. The
dynamical model used in this example is adapted from [76]. In particular, we consider
an ego vehicle velocity v and a desired velocity vgqes := 15m/s. The ego vehicle is
following a public front vehicle that has velocity ¢ — vg(t) that we do not control
and is considered as an exogenous input to the system. The headway from the front

of the ego vehicle to the rear of the front vehicle is denoted h.
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The acceleration of the ego vehicle is

where M is the mass of the vehicle, u? is acceleration force, u® is braking force, and
F' is a resistive force on the ego vehicle due to drag and friction. The controlled
quantities are u® and u°. Assuming travel on a level roadway, v — F(v) ==+
yv?,where B > 0 and v > 0 are determined empirically. Values for 7, 3, v, and M

can be found in [76, Table 1]. The resulting dynamics are

h = vp(t) — v (7.8)
0= % <ua —uP - F(v)) (7.9)

The quadratic friction term F'(v) makes the system nonlinear, so we linearize F'
around vy > 0 as v — (8 — yv3) + 2yvov. The state of the system is x := (h,v) € R?
and the input is u := (u?, ub) € R?2. We write the exogenous inputs to the system
as w = (vp, 1) € R?, where v is the velocity ve of the front vehicle, and “1” in the
second component is used to incorporate a constant term (yvg — 8)/M arising from
F'. The resulting system is

0 -1 0 0 1 0
x + u+ w. (7.10)

0 —2yo/M|  |1yM M| |0 (- pyM

-
I

The continuous-time dynamics are discretized with a sample time 7" := 0.1 s, result-

ing in a discrete-time system we write as
Tyl = A(Uo)ivk + B(Uo)uk -+ Bd(vg)wk, (7.11)

where xp, ur, and wy are the values of x, u, and w, respectively, at t = kT'. Note

that A(vg), B(vg), and Bg(vg) depend on vy, the center of the linearization.

7.4.1.1 MPC Problem Formulation

To generate control values at each discrete time ky € N, we apply MPC with a
prediction horizon of N, € N time steps. Given any discrete time kg € N, let &3, be
a measurement-based estimate of x at kg, and let 0y be the velocity component of

Tk, For each k € {ko, ko +1,..., ko + Np}, let k — uy,, be planned control values

156



starting at ko, and let k — wy;,, be the state prediction generated by (7.11) with
initial condition xy |y, = T, and using the control signal uyy,.

The cost function of the MPC problem is a quadratic function that penalizes
the deviance of vy, from the desired velocity vges, the control effort wuyy,, and
changes to the control effort, which roughly corresponds to the vehicle’s jerk (¢). A
positive definite matrix R € R?*? defines the control weight matrix and o > 0 is a
jerk penalization parameter.

The ego vehicle must always satisfy the following constraints:

Headway: h > hyjn :=6m
Velocity: 0m/s < v < vpax := 20m/s

Acceleration force: ON <wu? <2, :=4830N
Braking force: ON <uP <wb_ :=6507N.

To ensure the headway constraint A > hp, is satisfiable past the end of the MPC
prediction horizon, we also must include a terminal constraint. In particular, h and

v must satisfy

U2 ’1)2
h> % 7.12
= Sal ~ ag] T (7.12)

at the end of the prediction horizon, where ar < 0 is a lower bound on the rate of
deceleration of the front vehicle (that is 0 > ar) and a < 0 which is an upper bound

on the deceleration of the ego vehicle when maximum braking is applied (that is,

g’lax)'

v < a when v® =0 and u® = u

Equation (7.12) is not suitable as a linear MPC constraint, however, because
it includes a nonlinear term and depends on the future velocity of the front vehicle,
which is unknown. By assuming that the front vehicle applies maximum braking,
we estimate its worst-case future velocity as a sequence k — 0p(k|kg). Then, we use
ks w(k|ko) := (0r(k|ko), 1) as a worst-case prediction of the w. To remove the v?
nonlinearity in (7.12), we replace v? with voyay > v, creating a more conservative

terminal constraint:

0F (ko + Nplko)

~+ Pmin. 7.13

Umax
Pkt Ny ko 2 G Ukt Ny ko —

The resulting MPC problem formulation is shown in Problem 1.
In Figure 7.6, the results of simulating the ACC system are shown with a
comparison between the results of serial and parallel simulation schemes. We see

that at as the headway decreases, the system hits a point around ¢ = 3.5s when the
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Problem 1 (Linear MPC).

ko+N,
minimize J(:L'(.)|k0,u(,)|k0) = Z (Uk:\ko - Udes)2
ko+Np—1 k:k0k0+Np—2 (7.14a)
+ Z u;—lkoRu’“VCO Ta Z ‘ukﬂlko - uklko}Q
k=ko k=ko
with respect to
Tkolkor T(ko+1)lkos =+ +» L(kot+Np)ko € R? (7.14b)
Ukolkos U(ko+1)lko» s Ulko+Ny—D)lko € R (7.14c)
subject to
Tholky = Lho> (7.14d)
and for each k = ko, ko +1, ..., ko+ N, —1,
Tht1lko = A(00)Th )k, + B(D0)ug, + Ba(vo)w(klko), (7.14e)
and for each k = ko, ko +1, ..., ko + Ny,
0 < gk < Vmax, (7.14f)
0 < Ugjky < Unaxs (7.14g)
0 < URpky < Urnae (7.14h)
hmin < gy (7.14i)
and for k = ko + Ny,
Py = %%mo - ng(ljjo) + hmin- (7.14j)

delays significantly increase, rising above the sampling time. This increase causes
the updated control values to be delayed by six time steps. The delays increase
at this point because more MPC inequality constraints become active, making the
optimization problem harder to solve. In this simulation, the vehicle recovers before
colliding with the lead vehicle, but if the front vehicle brakes more aggressively, the
computational delays could result in a collision.

Figure 7.7 shows a comparison of SHARC simulations using instruction caches
of size 1 KB, 8 KB, and 1 MB. We see that computation times increase as the size
of the instruction cache shrinks, producing significant deviation in v and h between

simulations.
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Figure 7.6. Comparison of trajectories for the ACC system from Section 7.4.1
simulated using the serial and parallel modes. In the Delays plot, the hori-
zontal lines extend from the start time of each computation to its completion
time.

7.5 Conclusion

In this chapter, we present SHARC as a tool to simulate user-specified control
algorithms on a given processor microarchitecture, evaluating how computational
constraints affect the performance of the control algorithm and the safety of the
physical system. We illustrated the power and usefulness of SHARC via two examples:
an adaptive cruise controller implemented with linear MPC and an inverted pendu-
lum system controlled by nonlinear MPC. By providing insight into the impact of
computing hardware on the performance of a CPS, SHARC allows for the co-design of

control algorithms and the computational hardware on which they are run. Future
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Figure 7.7. Comparison of SHARC simulations for the ACC system in Sec-

tion 7.4.1 using various sizes of instruction cache.

work includes 1) using SHARC to identify common bottlenecks in particular classes
of control algorithms and computational hardware and 2) developing an automated

framework for jointly optimizing the parameters of the hardware and the control

algorithm.
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Appendix A

Hybrid Equations Toolbox

The Hybrid Equation (HyEQ) Toolbox provides methods in MATLAB and
Simulink for computing and plotting numerical solutions to hybrid dynamical sys-
tems. During the beginning of my PhD studies, I rewrote a large portion of the HyEQ
Toolbox to improve the toolbox’s design and capabilities to aid in the simulation,
analysis of hybrid systems and the plotting of hybrid arcs. Most of the examples

throughout this dissertation were simulated and plotted an using this toolbox.

New Features in Version 3.0

This chapter summarizes my contributions to the HyEQ Toolbox, released in

versions 3.0 and 3.1 of the HyEQ Toolbox.

HyEQ MATLAB Library

Object-Oriented Definitions of Hybrid Systems. A hybrid system can now
be defined in a single file by creating a subclass of the HybridSystem class.
This allows for the definition of multiple hybrid systems without name conflicts

and enables the definition of system parameters without using global variables.

Interconnected Hybrid Systems. It is now possible, in MATLAB, to define sev-
eral hybrid subsystem systems with inputs and outputs, such as a plant and a
controller, then link them together to form a composite hybrid system. Solu-

tions to the composite system can be computed like any other system.

More Informative Solutions. The new HybridSolution class includes additional

useful information about solutions such as the duration of each interval of flow
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and the reason the solution terminated. Methods are provided for modify-
ing solution objects by, e.g., applying a transformation the state values or

truncating the time span.

Improved Progress Updates. While computing solutions, a progress bar displays
the percent completed and the current hybrid time. The progress updates
during both flows and at jumps (in v2.04, progress updates were only printed

to the command line at jumps).

Improved Plotting. Plotting hybrid arcs is easier and allows more control over

the appearance of plots. New features include:

e Easy control of the marker and line styles for flows and jumps.

Support for legends.

Ability to hide portions of hybrid arcs from plots using a filter (useful for
plotting different modes in different styles).

Automatic creation of subplots for hybrid arcs with multiple components.

Ability to set default plot settings.

Plotting methods are up to 200x faster than in v2.04 for hybrid arcs with many

jumps.

Validation and error reporting. New error checking features catch program-
ming mistakes earlier when using the toolbox. Over 350 automated tests

verify the correctness of the toolbox’s code.
Code Autocompletion. The Hybrid Equations Toolbox supports MATLAB’s auto-
completion feature (introduced to the MATLAB code editor in R2021b).
HyEQ Simulink Library

The following improvements were made to the Simulink-based Hybrid System

solver:

Hybrid System with External Functions and Inputs. A new Simulink block
allows for a hybrid system with an input to be defined using plaintext .m

MATLAB function files to specify f, g, C, and D.
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Block Parameters. Simulink block masks were added to the HyEQ blocks to allow
users to set block parameters without needing to modify anything inside the
block. Parameters are now set in a popup dialog that opens when each block

is clicked.

Instructions for How To Use Blocks. Each block in the HyEQ Simulink library
now includes instructions in the block’s popup dialog that explains how to use

the block.

Signal Sizes. HyEQ Simulink library blocks now check the signal sizes for inputs
and outputs to help identify errors and aid in debugging.

General Improvements

The following updates apply to the entire toolbox:

Easier Installation and Updates. Version 3.0 is packaged using MATLAB’s tool-
box packaging, so it can be installed and updated automatically through

MATLAB’s Add-on manager.

Backward Compatibility. All code that works in Toolbox version 2.04 is expected
to work in v3.0 without modification. Version 3.0 is compatible with—and

tested on—MATLAB versions back to R2014b.

Improved Help Files and Example. All documentation for the HyEQ Toolbox

has been redone to make it easier to access and navigate in MATLAB Help.
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Appendix B

Additional Results and Proofs

B.1 Additional Proofs from Chapter 4

This section contains proofs that were omitted from Chapter 4.

B.1.1 Proof of Lemma 4.1 (Hybrid Basic Conditions)

For clarity, we split the proof of Lemma 4.1 into several parts.

Proof that C and D are closed. The sets CS* and DS are defined in (4.15) as set
closures. The sets Ct, O, Cg*, Dk, DY, and Dg" are closed because they are
defined as equal to or as the union and Cartesian product of Cy,, Dx,, Dxk,, Ck,,
Cs, D, &, and V, which are closed by assumption (B2), as well as the finite set

{0, 1}, which is also closed. Therefore, C and D are closed. O

Proof of dom(ﬁ) D C and dom(é) D D. Take any x = (z,m9,11,v,q) € C. Since
C = Cy"NCNCENOS", we have that v is in CF", Cl, C¢t, and Cg". We want to
show z € dom(F) = (N dom(FF"). To do this, we will show for each x € {P, Ko, K1,S}
that x € dom(F"), since

dom(F) C dom(FCF).
For x = P, we have that z is in C§*", which is defined as dom(F¢*) in (4.8), so
z € C% = dom(FC) C dom(FSh).

For x = Ko, we have Ol = Cg (by definition), so z € Cgl = C{'. From the

definition of O in (4.8), we see that x = (2,70, 11, v, q) € Cgl = Cky xE1 xVx {0, 1},

172



so (z,mo) is in Ck,. By (B3), we have that dom(Fy,) = Cx,, so (z,m0) € dom(Fk,),
so Fy,(z,m0) = Fg:(z) # @, from the definition of ¢ in (4.4). Thus,

x € dom(Fg¢r) C dom(F/’IS\OL).
For x = K1, we have that » € O = C¢t = Cx, (per (4.8)). By (B3), we have
that dom(Fy,) = Cx,, so
z € dom(Fy,) = dom(FC") = dom(FgF).
For x =, we have z € C§" = CS* = Cs. By (B3), dom(fy) = Cs, so © €
dom(fy,). The domain of F* is defined as dom(f,), so
z € Cs = dom(f,) = dom(F") = dom(FCL).

Therefore, z € dom(F), so dom(F) > C.

By a similar process, one can show that dom(G) O D. O

Proof that F and G are OSC. To show F and G are OSC we must show that F/'f\L
and E\SL are OSC for each x € {P, Ko, K1,s}. By (B4), f, and g, are continuous, and
Fy, and Gy, are OSC. It follows directly that

@ FCl(z) = FS(a) = Fyo(2,70)

z = G(z) = GL(x) = Gro(2,70)

o B (e) = B ) = | M7
R

are OSC. Additionally, by (B4),
(z,m0) — Fp(z,k0(2,m)) and (z,m0) — Gp(z,ko(2,7))
are OSC. When restricted to x € &), we have that
Ffh(z) = Fp(x) = Fo(z mo(z,m)  and  GfF(x) = Ge(x) = G (2, kol 1)),

are OSC, so F/’l;a and CjS\L are OSC on Xj. Alternatively, E;C\L and @ are OSC on
X by [4, Lemma 5.16]. Therefore, @ and C/JS\L are OSC.
Similarly, I?ISTL and C/lﬁ\% are OSC, again by [4, Lemma 5.16]. O
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Proof that F and G are locally bounded. By (B5), Fp, Fx,, Fx,, Gp, Gk, Gk, , and
k1 are locally bounded, whereas kg is locally bounded because it is continuous (B4).
Thus, it follows that the closed-loop functions F¢", F", F¢l, GPb, G, GiY are
locally bounded. Furthermore, since f, and V; are continuous, Fy" and Gg" are also
locally bounded. The regularized functions in (4.15) are also locally bounded, per

[4, Lemma 5.16]. O

Proof that F(x) is convex for all x € C. Take any z := (z,19,11,v,q9) € C. By as-
sumption (B6), F/’IS\OL(QJ) = F¢(x) = Fy(2,m0) is convex. The set F/’IEJ\L(:U) is also
convex: If ¢ = 0, then F5"(z) = Fp(z,k(x)), again per (B6), whereas if ¢ = 1, then
I*:P(?L(:c) is constructed as the intersection of convex sets and therefore is convex.
Similarly, Z?IZL(:E) is also convex, by construction. The set IZC\L(:E) is a singleton, so it
is convex. Therefore, ﬁ’(w) is convex because it is the Cartesian product of convex

sets. O

B.1.2 Proof that V is a Lyapunov function candidate

Lemma B.1. Suppose that Hp, Hy,, and Hy, satisfy Assumption 4.1 and that Ap
and Hp.o satisfy Assumption 4.5 with Lyapunov function V. Suppose additionally
that v € (0,1], >0, and ¢ : & — Rsg is continuous and strictly positive. Then,
V' is a Lyapunov function candidate (Definition 1.5) with respect to A for H.

Proof. From (L2) and (L4), we have that dom(V;) = dom(og) = &, so V is
well-defined on domV = X. By Lemmas 4.1-4.2, we have that C is closed and
G(D) c CUD = X. Thus, V satisfies (LFC1):

CUDUG(C)=CUD =X =dom(V).

Next, we show V is continuous and there exists an open neighborhood of C
where V' is locally Lipschitz. The function V is continuous because it is defined
as the point-wise maximum of two continuous functions, V4 (which is continuous
because V; is a Lyapunov function candidate) and v — wv.

We want to show that V is locally Lipschitz on an open neighborhood of C.
By assumption, there exists an open neighborhood Uy g of Ck, where V; is locally

Lipschitz. Consider the open set
U:=UpoxR" xR xR.
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Recall that Ci; = Cx, x &1 X R>0 x {0,1} and Ck, C Up g, so U is an open neighbor-
hood of C'. Since C' C C{l, the set U is an open neighborhood of C. Furthermore,
V' is locally Lipschitz continuous on U because V; is locally Lipschitz on Us g, the
function v — v is Lipschitz everywhere, and the max operator preserves Lipschitz
continuity. Thus, V satisfies (LFC2).

Finally, we show that V is positive definite on C'U D U G(D) with respect to
A. As shown above, CUDUG(D) = CUD = X, so we must show that for all
xe X, if € A, then V(x) =0, and if x ¢ A, then V(x) > 0. Take any x € A.
Then, (z,7m0) € Ap and v = 0, so Vi(2,19) = 0 and V(x) = 0. Alternatively, take any
x € X\ A. Then, either (z,1m9) € Ap or v # 0. We get that Vp(z,19) >0 or v > 0,
respectively, so V(x) > 0. Therefore, V satisfies (LFC3). O

B.1.3 Proof of Lemma 4.2
Before proving Lemma 4.2, it is useful to first prove the following lemma.

Lemma B.2. Suppose Hp, Hy,, Hx,, and Hs satisfy Assumption 4.1. Then, CS* U

D$" = X for each * € {P,Ko,K1,S}.

Proof. Take any subsystem x € {P,Kg,K1,S}. From definitions, C{* U DY C X.
Thus, all that remains is to show X C C U DS". To this end, take any z :=
(z,m0,m,v,q) € X; we will show that z € CJ" U D"

Consider the plant subsystem, » = p. By (B1), we have that (z, x(x)) € CpUDp.
Per (B3), we find that dom(Fp) = Cp and dom(Gp) = Dp so x € dom(FF") U
dom(G%y"). Using the definitions of CF*, Dg%, C5", and D" in (4.8) and (4.15), we
find that

z € dom(F$") Udom(GyY) = C5" U DS".

For x = K(, we have

Similarly, for x = {K1,8}, we have that X = Cx, U Dx, = C{* U Di* = C U Di*
and X = Cs U Dy = C§" U DS" = C$" U Dg" by (B1), so

reCruD and x e Cg"U D" O
We now prove Lemma 4.2.
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Proof that C U D = X. Take any z € X. For each x € {P, Ko, K1, S}, we either have
xeCMorxe D If x e C for all x € {P,Kp,K1,S}, then z € C. Otherwise,
x € D¢" for some * € {P, Ko, Ki,S}, so x € D. Therefore, CUD = X. O

Proof that G(D) € C U D. To show G(D) C C U D, we will instead show that

G(D) € CUD. The motivation for this is that' G(D) = G(D), and C' U D is
closed, so G(D) C C'U D implies

We now prove that G(D) C C' U D. Take any

x = (z,m0,m,v,q) €D and g¢g:= (gz,gno,gm,g\’,,gq) € C:’(a:)

(the prime notation on ¢/, is used to distinguish it from the function g,). We want to
show g € CUD = X. From the definition of D, the vector x must be in Dg*, D{¥,
Dgy, or DG*. We will consider these four cases, which correspond to jumps caused
by Hp, Hx,, Hx,, or Hs, respectively.

Case 1. Suppose x € DS" and g € é\SL(aﬁ), which indicates a jump in plant state
from (z,k(z)) € Dp to g, € Gp(z, k(x)), while the other components are unchanged;
that is, gn, =m0, gy = M, g, =v, and gy = ¢. By Assumption 4.2 and (B1) of
Assumption 4.1, (g, n0) € Cxy, U Dk, = Epp. Since g, =m € &1, ¢, =v € V, and
gq = q € {0,1} are unchanged, we have that

(gZ7g7707.g7717.g\//agq) € EP,O X gl x VY X {0’ 1} =4X.

Case 2. Suppose x € Dl and g € C/}g\{)(x) We have (z,1m0) € Dk, and gy, €
Gy, (2,m0). By assumption Assumption 4.2, we have (z,g,,) € & and the other

components are unchanged, so, as before, g is in X.

Case 3. Suppose z € D and g € 5\%(95) By assumption Assumption 4.2, we have
gn € &1 with the other components unchanged, so g € &.

'Consider Hp. In the definition of GSt, we regularize GS* using Ns>o Gi-(z + 0B). Since
dom(Gy") = Df*, however, Gy"(z + 0B) = Gy* ((z + 6B) N D) C Gy(Dy") for all § > 0. Therefore,
G (z) € GEH(DfY)
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Case 4. Suppose xz € DJ* and g € C/Jg\L(x) We have that ¢, = g,(z) € V per As-
sumption 4.2, and ¢ =1 — ¢ € {0, 1} with the other components unchanged, so g is
in X.

Therefore, G(D) C X = C U D. O
B.1.4 Construction of Class K., bounds on V

Lemma B.3. Suppose the assumptions of Lemma 4.2 hold, and that there exists
oy € Koo such that a,(|(2,1m0)|4,) < Ve(z,m0) for all (z,m9) € Cy, U Dx,, as per (L3)
of Assumption 4.5, and let a : R>g — R>( be defined by

a(r) = min{ap(r/\/i),r/\/ﬁ} Vr > 0. (B.1)
Then, « is a class-Koo and a(|z|4) < V(z) for allz € CUDUG(D).

Proof. Per Lemma 4.2, X = C U D UG(D). Take any x := (z,10,m1,v,q) € X.

From Lemma B.4,
24 = \/1(2,m0) %, + 02 < V2max{|(z,m0)] 4., v}
Then,
a(lz].4) = min{ap(le].a/v2), lola/V2}
< min{ap(% max{](z,no)|A,v}>, % max{](z,no)\A,v}}. (B.2)

Consider two cases:

Case 1. Suppose |(z,m0)|4 > v. Then, max{|(z,n0)]A,v} = |(z,m0)| 4, so

a(|z]a) = min{ap(|(z,m0)|.4), [(2,70)|4}

< aP(’('Z?nO)‘A) < VP(Z7770) < maX{VP('Z?nO)’U} = V(Z’) (B?))

Case 2. Suppose |(z,m0)]|.4 < v. Then, max{|(z,m)|4,v} = v, so

a(|z|4) = min{oy(v), v} < v <max{Vp(z,m),v} = V(z). (B.4)

Therefore, by cases, we have that a(|z|4) < V(z) for all x € X. Finally, « is a class-
Koo function because it is defined as the pointwise minimum of two K, functions,

so it is class-Kxo. O
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Lemma B.4. For any a > 0 and b > 0,
max{a, b} < Va2 + b2 < V2max{a, b}.

Proof. Take any a > 0 and b > 0. We have that a = Va2 < Va2 + b2 and b = Vb2 <
Va? +b% so
max{a, b} < Va?+ b2

Since max{-,-} and /(-)> + (-)* are symmetrical, we can assume without loss of

generality that a > b. Then, max{a, b} = a and

Va2 + b2 <vVa?+a?=v2a=+v2max{a, b}. O

B.1.5 Tangent Cone Results

This section contains lemmas regarding tangent cones.

Lemma B.5. Given sets S C R" and U C R", suppose U is open. For every point
resSNU,
Ts(z) = Tsru(x).

Proof. Take any x € S NU. We immediately have that Ts~y(x) C Ts(z), since
SNU C S. To show equality, we want to show Ts(x) C Tsny. Take any w € Ts(x).
By definition, there exists convergent sequences w; — w in R” and h; — 07 in R>q
such that = + h;w; € S for all i € N. Since U/ is open and contains z, there exists
€ > 0 such that z + B C Y. The sequence i — w; is bounded, so h;w; — 0. Thus,
there exists ip € N such that |hw;| < € all i > iyp. That is, the tail of i — hw;
is contained in x 4+ B C U, so the sequences h;—;, — 0t and wi—i, — w satisfy

T+ hi—jywi—i, € SNU for all i € N. Therefore, w € Tgry (). d

Lemma B.6. Consider a closed set S € R™ and a finite set () C R. For x := (s,q) €
S x Q, the tangent cone to S x QQ at x is

TSXQ(Q?) = Ts(s) X {0}

Proof. Take any = := (s,q) € S x Q. We want to show Tsxg(x) C Ts(s) x {0} and
Touql) > Ts(s) x {0},
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(“C”) Take any (w,v) € Tsxg(x,q). We want to show (w,v) € Ts(s) x {0}. By
definition of the tangent cone, there exists (w;,v;) — (w,v) and h; — 0T such
that = + hi(w;,v;) € S x @ for all i € N, which is to say, s + hjw; € S and
q+ hiv; € Q. Thus, w € Tg(s). Since @ is finite, however, each point in @ is
isolated, meaning there is an open neighborhood of ¢ such that U N Q = {q}.
Eventually, v; = 0 for all ¢ larger than some ig € N, so v; — 0. Thus, v =0,

concluding the proof that (w,v) € Ts(s) x {0}.

(“D”) Take any (w,v) € Tg(s) x {0}, which is to say, w € Ts(s) and v = 0. There
exists a sequence w; — w and h; — 07 such that s +h;w; € S. Let i — v; := 0
for each ¢ € N. We have that (s, q) + hi(w;, vi) = (s + hjw;, q) € S x F for all
i € N. Therefore, (w,0) € Tsxp(x). O

B.2 Additional Results for Relaxed Lyapunov Condi-
tions

B.2.1 Additional Results for Hybrid Time Domains

This section contains results for relaxing the assumptions imposed on the hybrid

time domains of solutions in parts (b)-(f) of [3, Thm. 3.19(3)]
Lemma B.7. Let H be a hybrid system. The following are equivalent:

(L7.1) For each r > 0, there exist v, € Koo and N, > 0 such that for every solution ¢
to H and every T > 0,

|©(0,0)|4 € (0,7], (t,j) Edome, t+5>T = t>~.(T)— N,.

(L7.2) For each r > 0, there exist v, € Koo and N, > 0 such that for every solution ¢
to H with |¢(0,0)|4 € (0,7],

(t,j) edomp = t>~(t+j)— N,

Proof. First, we show (L7.1) = (L7.2). Take any r > 0 and take 7, € Ko and
N, > 0 from (L7.1). Take any solution ¢ to H such that |¢(0,0)|4 € (0,r] and any
(to,jo) € dom . Let Ty :=to + jo. By (L7.1),

to > 7 (To) — Nr = v (to + jo) — Ny
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Therefore, (L7.2) holds.

Conversely, we show (L7.1) <= (L7.2). Suppose (L7.2). Take any r >0
and take v, € Ko and N, >0 from (L7.2). Take any solution ¢ to #H such that
|©(0,0)|4 € (0,r], any 71 >0, and any (¢1,j1) € dom such that ¢; + j; > T;.
By (L7.2) and the monotonicity of .,

t1 > ’Yr(tl +j1) — N, > 'Yr(Tl) — N,
Therefore, (L7.1) holds. O

The following lemma and proof is nearly identical to the preceding one. The
only difference is “t” is replaced by “j” in the left-hand side of the “x > ~,.(x) — N,.”

inequalities.
Lemma B.8. Let H be a hybrid system. The following are equivalent:

(L8.1) For each r > 0, there exist v, € Ko and N, > 0 such that for every solution ¢
to H and every T > 0,

0(0,0)[4 € (0,7], (t.§) Edome, t+j=>T = j=3(T)-N,.
(L8.2) For each r > 0, there exist v, € Ko and N, > 0 such that for every solution ¢
to H with |¢(0,0)|4 € (0,7],
(tj)edomp = j>y(t+))- N,
Proof. First, we show (L8.1) == (L8.2). Suppose (L8.1). Take any r >0

and take 7, € Koo and N, > 0 from (L8.1). Take any solution ¢ to H such that
|©(0,0)| 4 € (0,r] and any (o, jo) € dom . Let Ty := to + jo. By (L8.1),

Jo = VT(TO) - N, = rYT(tO +]O) — N,
Therefore, (L7.2) holds.

Conversely, we show (L8.1) <= (L8.2). Suppose (L8.2). Take any r >0
and take 7, € Koo and N, > 0 from (L8.2). Take any solution ¢ to H such that
|©(0,0)|4 € (0,r], any 71 > 0, and any (¢1,71) € domy such that ¢; + 51 > T1.
By (L8.2) and the monotonicity of .,

g1 = vt + j1) = Ne > % (Th) — Ni..
Therefore, (L8.1) holds. O
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The next result simplifies the condition for the “finite number of jumps” case

in [3, Thm. 3.19]
Lemma B.9. Let H be a hybrid system. The following are equivalent:

1. For every r > 0, there exists J, € N such that for every solution ¢ to H with

£(0,0)[4 <7,
domp CRx{0,1,...,J,}.

2. There exist v € K and J > 0 such that for every solution ¢ to H and every
(t,7) € dom e,
7 = 7(9(0,0)[4) + J.

Proof. (1. = 2.) Suppose that for every r > 0, there exists J, € N such that for
every solution ¢ to H such that |p(0,0)[4 <,

dome C R x{0,1,...,J,}.

Let j: R>¢p — R>¢ be a nondecreasing function chosen such that for each r > 0
and domp C R x {0,1,...,7(r)} for each solution ¢ to H with |¢(0,0)|4 < r.
Because j(r) exists for all » > 0 and is nondecreasing, it is locally bounded,
so the supremum over any compact interval is finite. We will define a continuous
function o : R>p — R>( that upper bounds j by first defining o at 0, 1, 2, etc., and
then using linear interpolation between those points. For rg = 0, let
o(r) :== sup j(r).
rel0,1]
For each r; € {1,2,...}, let
o(r;) = max{ sup  j(r), o(ri—1) + 1}.
r€lr;,ri+1]
Since j(riy+1) > j(ri) + 1, the sequence r; — o(r;) is strictly increasing. Then, for
ré¢N, let
o(r) = (r—[r])o(lr]) + (Ir] = r)a([r]),
which is the linear interpolation between o(|r]) and o([r]|) and, as such, o is
continuous. For all r > 0, we have that o(r) > j(r). Let J := o(0) and let v :
R>0 — R>q be defined, for each » > 0, by



Because o is continuous and increasing, v is also. Additionally, v(0) = ¢(0) — J = 0.
Therefore, v € K.

Take any solution ¢ to H. Because

J(l(0,0)].4) < o (|(0,0)L4) = ¥(l(0,0)[.4) + J,

we have that

domp CRx {0, 1, ..., j(|¢(0,0)|4)} CR x {0, 1, ..., v(|¢(0,0)]4) + J}.

Thus, for all (¢,7) € dom ¢,

7 < 7(l9(0,0)].4) + J.

(1. < 2.) Suppose that there exist v € K and J > 0 such that for every solu-
tion ¢ to ‘H and every (t,j) € dom ¢,

7 <7(e(0,0)4) + J.

Take any r > 0 and let J, := ~(r) + J. Then, for every solution ¢ to H with |p]| .4,
we have that

Y(J9(0,0)[4) + J < y(r) + J = J,.

Therefore, for all (¢,7) € dom ¢,
j< . 0

B.3 Additional Results for CTG

This section contains results omitted from Chapter 6.

Lemma B.10. Let ‘H be a conical hybrid system with constant flows and let ¢
be any solution to H. For all r > 0, the hybrid arc (t,j) = re(t/r,j) for all
(t,7) € dom(yp) :=={(t,j) | (t/r,7) € dom(ip)} is a solution to H.

Proof. Let H = (C, f, D, g) be a conical hybrid system with constant flows, let ¢
be any solution to #H, and for any r > 0, let ¢(t,7) := ro(t/r,j) for all (¢,j) €
dom(+) := {(£,) | (¢/r,j) € dom(e)}.
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We have that t; is a jump time in dom(¢) if and only if ¢;/r is a jump time in
dom(yp), so p(tj/r,j —1) € D. Since D is a cone, (tj,j — 1) = ro(t;/r,j — 1) is
also in D. By the linearity of g,

9(¥(t5,5 — 1)) = g(re(t/r,j — 1))
=rg(p(t;/r,j —1))
=ro(t;/r,J)
= 1(t;, ),

so 1) satisfies the jump conditions.

Take any pair of consecutive jump times ¢; and ¢;41 in dom(e)) such that ¢;; >
tj, meaning I := [t;,t;41] is an interval of flow in dom(t)). Then, [t;/r,t;j+1/r] is also
an interval of flow in dom(y). For each ¢t € I, we have that i (t, j) = re(t/r,j) € C
because C is a closed cone. From flow condition (1.6) in the definition of hybrid
solutions, we have that ¢(t,j) = f(¢(t,7)) for almost all ¢ € I. Thus, using the

chain rule and the fact that f is constant-valued, we find that

9,9 = S0t/ )

/)

=rf(e(t/r,3))(1/r)

for almost all ¢t € I, so 1 satisfies the flow conditions in the definition of a hybrid

solution. Therefore, 1 is a solution to . O

Lemma B.11. Let ‘H be a conical hybrid system with linear flows and let ¢ be any
solution to H. For all r > 0, the hybrid arc v defined by ¥(t, j) := ry(t,j) for all
(t,7) € dom(¢)) := dom(p) Is a solution to H.

Proof. Let H = (C, f, D, g) be a conical hybrid system with linear flows, let ¢ be
any solution to H, and for any r > 0, let ¥ (t, j) := re(t, ) for all (¢, ) € dom()) :=
dom(yp).

For each jump time t; in dom(yp), we have that t; is a jump time in dom(%))

and ¢(t;,j —1) € D. Since D is a cone, 9(tj,j — 1) = rp(t;,j — 1) is also in D. By
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the linearity of g,

9(1/1(753"]' —1)) = Q(TQO(tjvj -1)) = Tg(@(tﬁj —1)) = T(p(tjvj) = ¢(tj7j)7

so 1) satisfies the jump conditions.

Take any pair of consecutive jump times ¢; and ;41 in dom(y) such that ¢;; >
tj, meaning I := [t;,t;41] is an interval of flow in dom(y), and also in dom(v). For
each t € I, we have that ¢(t,j) = r¢(t,j) € C because C is a closed cone. Let A be
the linear map defining the flow dynamics & = f(x) = Az. From flow condition (1.6)
in the definition of hybrid solutions, we have that ¢(t,7) = Ap(t, j) = f(e(t,7)) for
almost all t € I. Thus,

P(t, ) = ro(t,j) = rAp(t, j) = A(re(t, j)) = Ap(t, j)

for almost all ¢ € I, so v satisfies the flow conditions in the definition of a hybrid

solution. Therefore, 1) is a solution to H. ]

184



	Abstract
	Dedication
	Acknowledgments
	Introduction
	Preliminaries
	Hybrid Systems
	Notation for Sets and Set-valued Maps
	Set-valued Lie derivative
	Stability Properties and Lyapunov Functions
	Safety, Forward Invariance, and Barrier Functions


	Uniting Feedback For Safety with Static Controllers
	Problem Setting
	Hybrid Closed–Loop System
	Forward Invariance of K
	Unbounded Solutions Without Chattering

	Uniting Feedback for Asymptotic Stability with Static Controllers
	Hybrid Control Strategy
	Construction of the Closed-Loop System with Static Feedback

	Uniting Feedback with Hybrid Controllers and a Hybrid Plant
	Uniting Feedback for Hybrid Plant with Hybrid Controllers
	Regularity of the Closed-loop System
	Existence of Solutions
	Ensuring Minimum Dwell Times

	Supervisor Design for Global Asymptotic Stability

	Relaxed Lyapunov Conditions for Hybrid Systems
	Introduction
	Insertion Theorems
	Insertion Theorems for Positive Definite Functions
	Insertion Theorems for Class K-infinity Functions

	Lyapunov Theorems for Compact Sets
	Simplified Assumptions on Hybrid Time Domains
	Bounded Solutions from Lyapunov Functions
	Continuous-Time and Discrete-Time Systems


	Conical Transition Graph (CTG)
	Introduction
	Preliminaries
	Conical Hybrid Systems
	Properties of Conical Hybrid Systems

	Applications of Conical Hybrid Systems
	Sampled Linear Systems
	Conical Approximations

	Conical Transition Graph
	Establishing Pre-asymptotic Stability via the CTG
	CTG Simulations
	Stability and Asymptotic Stability

	Abstractions to Reduce the Graph Size
	Numerical Example
	Results

	Future Work

	Simulator for Hardware Architecture and Real-time Control
	Introduction
	Problem Setting
	Literature Review

	Modeling
	Physics and Controller
	Interaction between Physics and Controller with Computation Delays
	Computational Hardware Simulation

	SHARC Simulator
	Serial Mode
	Parallel Mode

	Numerical Experiments
	Adaptive Cruise Control

	Conclusion

	Hybrid Equations Toolbox
	Additional Results and Proofs
	Additional proofs from Chapter 4
	Proof of Hybrid Basic Conditions
	Proof that V is a Lyapunov function candidate
	Proof of result:X = C cup D
	Construction of Class K-infinity bounds on V
	Tangent Cone Results

	Additional Results for Relaxed Lyapunov Conditions
	Additional Results for Hybrid Time Domains

	Additional Results for CTG


