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Introduction – Switched Controllers

Sometimes, a single continuous controller cannot satisfy design requirements.

Switching between multiple controllers has been used to. . .

▶ Achieve robust global asymptotic stability around obstructions.1

▶ Unite multiple Lyapunov-certified controllers (such as local and global
controllers) to achieve global asymptotic stability.2

▶ Provide a backup controller that guarantees constraint safety when the
primary controller is not provably safe.3

1Mayhew, Sanfelice, and Teel (2011) and Sanfelice, Messina, et al. (2006).
2Prieur (2001), Teel and Kapoor (1997), and El-Farra, Mhaskar, and Christofides (2005).
3Seto et al. (1998).
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Why Use an Uncertified Controller?

An uncertified controller may have “better” properties compared to available
certified controllers:

▶ More energy efficient

▶ Faster convergence

▶ Requires less computation

Examples:

▶ Linear quadratic regulator (LQR) for the linearization of a system with an
unknown basin of attraction.

▶ Model predictive control (MPC) that occasionally fails to compute an update.

▶ Black box controllers (e.g., neural network controllers).
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Problem Setting

Consider a continuous-time plant

ż = fP (z, u), z ∈ Rn, u ∈ Rm.

Our goal is to render a compact set
A ⊂ Rn globally asymptotically
stable (GAS).

Given two continuous controllers:

κ0: a Lyapunov-certified controller

κ1: any continuous controller

 Switching  
Logic

Plant

Hybrid Control Strategy

Our contribution:

Switching logic for q ∈ {0, 1} such that

▶ A is GAS

▶ κ1 is preferred over κ0
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Problem Setting – Lyapunov-certified Controller κ0

Because κ0 is Lyapunov-certified there exists a Lyapunov function

V : Rn → R≥0

that guarantees A is GAS for

ż = fP (z, κ0(z)).
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Example: Model Predictive Controller with Slow Computation

Consider a nonlinear plant

ż = fP (z, u)

and two controllers:

κ0: Lyapunov-certified controller

κ1: Model predictive controller (MPC)
with a sampling period of 1ms

Suppse A new MPC feedback value is not
available at every sample time.

When should we switch?
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0

50

100
Switching Between 50 and 51

v
V (z)
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▶ The dynamics of v are described later.
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Hybrid Control Strategy – Switching Logic

Let V̇1(z) := ⟨∇V (z), fP (z, κ1(z))⟩.

Threshold functions:

Let σ0, σ1 : R≥0 → R≥0 be continuous
functions such that

▶ σ1 is positive definite

▶ σ0(s) > σ1(s) for all s ≥ 0
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1
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Hybrid Control Strategy – Switching Logic

Let V̇1(z) := ⟨∇V (z), fP (z, κ1(z))⟩.

For q = 0:

V̇1 is “small enough to switch to q = 1” if

V̇1(z) ≤ −σ0(|z|A)

and V̇1 is “large enough to hold q = 0” if

V̇1(z) ≥ −σ0(|z|A).
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-5

0

_ V
1
(z

)
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Switch to q = 1
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Hybrid Control Strategy – Switching Logic

Let V̇1(z) := ⟨∇V (z), fP (z, κ1(z))⟩.

For q = 1:

V̇1 is “small enough to hold q = 1” if

V̇1(z) ≤ −σ1(|z|A)

and “large enough to switch to q = 0” if

V̇1(z) ≥ −σ1(|z|A).
————————–

A switch to q = 0 occurs only when both

V̇1(z) ≥ −σ1(|z|A) and V (z) ≥ v.
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Example: Switching Logic

Consider the plant

ż = u

with z, u ∈ R and controllers

κ0(z) := −z

κ1(z) := −z3
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Dynamics of Closed-Loop System
At each switch:

▶ z is unchanged

▶ q is toggled to the opposite value in {0, 1}
▶ v is set to V (z)

Between switches:

▶ z evolves according to ż = fP (z, κq(z))

▶ q is constant

▶ v evolves according to the dynamics chosen here:

v̇ = fv(z, v, q) :=

{
−v, if q = 0,

−σ1(|z|A) + µ(V (z)− v), if q = 1,

where µ > 0 is parameter.
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Hybrid Control Strategy — Design of v’s Dynamics

v̇ = fv(z, v, q) :=

{
−v, if q = 0,

−σ1(|z|A) + µ(V (z)− v), if q = 1.

▶ With our switching logic, v converges to 0.

▶ After every switch from q = 0 to q = 1, there is an interval where no switches
can occur because V (z) < v.

▶ While q = 1, if V (z) does not converge fast enough then v will catch up to
V (z), causing a switch to q = 0.

17



Example: Linear Quadratic Regulator of Linearized System
Consider the nonlinear plant

ż = Az + u+ f(z, u)︸ ︷︷ ︸
Nonlinear
component

z, u ∈ R2.

Suppose the origin is GAS for
κ0(z) := Kz.

For κ1, we use the LQR feedback that solves the following LQR problem:

minimize
u

∫ ∞

0
∥z(t)∥2 + ∥u(t)∥2 dt

subject to ż = Az + u.

We could, instead, use MPC, machine learning, untested prototypes, etc.
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Example: Linear Quadratic Regulator
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Main Result: Global Asymptotic Stability

Theorem 1

Suppose that

▶ fP , κ0, and κ1 are continuous;

▶ V is continuously differentiable.

Then, Ã := {(z, v, q) | z ∈ A, v = 0} is GAS for the closed-loop system.

Proof sketch. Let
Ṽ (z, v, q) := max{V (z), v}

We show that Ṽ is a Lyapunov function for the closed-loop system.

▶ Outside Ã, Ṽ (z, v, q) decreases along flows.
▶ At each switch, Ṽ (z, v, q) does not increase.
▶ The time between switches is nonzero.

Therefore, Ã is GAS.

Remark. The asymptotic stability of Ã is robust to small perturbations.
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Conclusion

Summary

▶ Lyapunov-certified controller acts as a backup to ensure convergence while
using an uncertified controller.

▶ Exploit useful properties of an uncertified controller without losing the
convergence guarantee.

▶

Future work

▶ Weaken assumptions on κ1 and V .

▶ Consider systems with disturbances.

▶ Adapt hybrid control strategy for systems with constraints.
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Questions?
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Definition of UGAS

Definition 1

A nonempty set A ⊂ Rn is said to be

▶ uniformly globally stable if there exists a continuous, strictly increasing
function α such that every solution x to H satisfies |x(t, j)|A ≤ α(|x(0, 0)|A)
for each (t, j) ∈ domx; and

▶ uniformly globally attractive for H if every maximal solution is complete and
for all ε > 0 and r > 0, there exists T > 0 such that every solution x to H with
|x(0, 0)|A ≤ r satisfies |x(t, j)|A ≤ ε for all (t, j) ∈ domx such that t+ j ≥ T .

▶ If A is both uniformly globally stable and uniformly globally attractive for H,
then it is said to be uniformly globally asymptotically stable (UGAS) for H.
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Because κ0 is Lyapunov-certified there exists a Lyapunov function

V : Rn → R≥0

that guarantees A is UGAS for

ż = fP (z, κ0(z)).

Namely, there exist α1, α2 ∈ K∞ and a continuous positive definite function ρ such
that

α1(|z|A) ≤ V (z) ≤ α2(|z|A) ∀z ∈ Rn,

V̇0(z) ≤ −ρ(|z|A) ∀z ∈ Rn.
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Hybrid Systems

We consider hybrid systems modeled as

H

{
ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D

with

▶ flow set C ⊂ Rn

▶ flow map f : C → Rn

▶ jump set D ⊂ Rn

▶ jump map g : D → Rn
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Clarke Generalized Gradient

For the function
Ṽ (x) := max{V (z), v},

the Clarke generalized gradient at x = (z, v, q) in the direction w = (wz, wv, 0) is

Ṽ ◦(x,w) =


⟨∇zV (z), wz⟩ if V (z) > v,

max{⟨∇zV (z), wz⟩, wv} if V (z) = v,

wv if V (z) < v.

(1)
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