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Introduction – Switched Controllers

Sometimes, a single continuous controller cannot satisfy design requirements.

Switching has been used to. . .

▶ Achieve robust global asymptotic stability around obstructions.12

▶ Achieve global asymptotic stability by uniting multiple Lyapunov-certified
controllers (such as local and global controllers)345 or by uniting a
Lyapunov-certified controller and an uncertified controller.6

1Mayhew, Sanfelice, and Teel, “Quaternion-based hybrid control for robust global attitude tracking,”, 2011.
2Sanfelice, Messina, Tuna, et al., “Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to

disconnected set of points,”, 2006.
3Prieur, “Uniting local and global controllers with robustness to vanishing noise,”, 2001.
4Teel and Kapoor, “Uniting local and global controllers,”, 1997.
5El-Farra, Mhaskar, and Christofides, “Output feedback control of switched nonlinear systems using multiple Lyapunov functions,”, 2005.
6Wintz, Sanfelice, and Hespanha, “Global asymptotic stability of nonlinear systems while exploiting properties of uncertified feedback controllers via

opportunistic switching,”, Atlanta, GA, 2022.
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Introduction – Switched Controllers

The Simplex architecture is an approach for switching between an “advanced,”
unverified controller and a “simple,” easy-to-verify controller.78

Barrier functions have been used with the Simplex architecture to guarantee safety for
hybrid systems while using an unverified controller.

Existing approaches have drawbacks:

▶ Requires costly reachability analysis and only defines “one way” switching.9

▶ Only rectangular constraints are considered, and the switching criteria depends on
the extremal values of the vector field over the entire admissible set.10

7Rivera, Danylyszyn, Weinstock, et al., “An architectural description of the Simplex Architecture,” Defense Technical Information Center, Fort
Belvoir, VA, Tech. Rep., 1996.

8Seto, Krogh, Sha, et al., “The Simplex architecture for safe online control system upgrades,”, Philadelphia, PA, USA, 1998.
9Yang, Islam, Murthy, et al., “A Simplex architecture for hybrid systems using barrier certificates,”, Tonetta, Schoitsch, and Bitsch, Eds.,

ser. Lecture Notes in Computer Science, 2017.
10Damare, Roy, Smolka, et al., “A barrier certificate-based Simplex architecture with application to microgrids,”, Dang and Stolz, Eds., ser. Lecture

Notes in Computer Science, 2022.
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Why Use an Uncertified Controller?

An uncertified controller may have “better” properties compared to available certified
controllers:

▶ More energy efficient

▶ Convergence to a reference

▶ Less computation

Examples:

▶ Model predictive control (MPC) that occasionally fails to compute an update due
to computational delays.

▶ Black box controllers (e.g., neural network controllers).
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Supervisory Control for Forward Invariance

Consider a nonlinear plant

ż = fp(z, u), z ∈ Rn, u ∈ Rm.

Goal: Render K ⊂ Rn forward
invariant.

Given two continuous controllers:

κ0: a barrier-certified controller

κ1: any continuous controller

 Switching 

Logic

Plant

Hybrid Control Strategy

Design switching logic for q ∈ {0, 1} such that

▶ K is forward invariant.

▶ κ1 is preferred over κ0.

▶ The switching does not chatter.
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Barrier Function Certificate

Assume a continuously differentiable barrier function B : Rn → R that certifies a set
K ⊂ Rn is forward invariant for the closed–loop system with the certified controller

ż = f0(z) := fp(z, κ0(z)).

In particular

▶ K = {z ∈ Rn | B(z) ≤ 0}.
▶ There exists a neighborhood U of K such that

Ḃ0(z) := ⟨∇B(z), f0(z)⟩ ≤ 0 ∀z ∈ U \K.

We also define corresponding quantities for the uncertified controller:

f1(z) := fp(z, κ1(z)) and Ḃ1(z) := ⟨∇B(z), f1(z)⟩.
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Switching Criteria and Hold Criteria

Pick four threshold functions δ0, δ1, θ0, θ1 : Rn → R, such that

δ0(z) < δ1(z) ≤ 0 and θ0(z) < θ1(z) ≤ 0 ∀z ∈ Rn.

Z0 7→1

Z17→0

δ0 δ1

θ0

θ1

Ḃ1(z)

B(z)

For q = 1 (uncertified controller):

▶ Hold q = 1 if z ∈ Z1.

▶ Switch to q = 0 if z ∈ Z17→0.

For q = 0 (certified controller):

▶ Hold q = 0 if z ∈ Z0.

▶ Switch to q = 1 if z ∈ Z0 7→1.
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Switching Criteria and Hold Criteria

Z0 7→1

Z17→0

δ0 δ1

θ0

θ1

Ḃ1(z)

B(z)

Z17→0 := {z ∈ Rn | B(z) ≥ δ1(z), Ḃ1(z) ≥ θ1(z)}
Z07→1 := {z ∈ Rn | B(z) ≤ δ0(z) or Ḃ1(z) ≤ θ0(z)}.
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Example: Linear and Affine Feedbacks

Consider the double integrator

ż = fp(z, u) :=

[
0 1
0 0

]
z +

[
0
1

]
u.

Admissible set:

K :=
{
z ∈ R2

∣∣ |z − (5, 0)| ≥ 1
}
.

Controllers:

κ0(z) =
[
−1 1

]
(z − c) (certified)

κ1(z) =
[
−1 −2

]
z (uncertified)

z1

-2

-1

1

2
z2

Phase Plot

?(0; 0)

-1 1 3 5

z2

Inadmissible

? (q = 0)

? (q = 1)
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Example: Linear and Affine Feedbacks
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Example: MPC with Computational Delays

3.5 4 4.5 5 5.5 6 6.5

z1
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z 2
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?(0;0)
? (q = 1)
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z1
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-0.5

0
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MPC with Slow Computation

?(0;0)
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? (q = 1)
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Introduction to Hybrid Dynamical Systems

H :

{
ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D

▶ flow set C ⊂ Rn

▶ flow map f : C → Rn

▶ jump set D ⊂ Rn

▶ jump map g : D → Rn

0 1 2 3
t [s]

0

1

2

3

j

Hybrid Time Domain
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Introduction to Hybrid Dynamical Systems

A solution ϕ to H is defined on a hybrid time domain domϕ ⊂ R≥0 × N, which looks
something like

domϕ = ([t0, t1]×{0}) ∪ ([t1, t2]×{1}) ∪ · · · .
0 = t0 ≤ t1 ≤ t2 ≤ · · · .

We write
supt domϕ := sup{ t | (t, j) ∈ domϕ}
supj domϕ := sup{ j | (t, j) ∈ domϕ}.

A solution ϕ to H is said to be complete if

supt domϕ+ supj domϕ = ∞.

A solution ϕ is said to be maximal if it cannot be extended into a longer solution.

Wintz, Sanfelice — Forward Invariance via Uncertified Controllers 13



Hybrid Model of Closed-Loop System

The hybrid model for our closed-loop switched system is

Hcl:



[
ż

q̇

]
= f(z, q) :=

[
fq(z)

0

]
(z, q) ∈ C := C0 ∪ C1[

z+

q+

]
= g(z, q) :=

[
z

1− q

]
(z, q) ∈ D := D0 ∪D1,

(1)

where
C0 := Z0 × {0}, C1 := Z1 × {1},
D0 := Z0 7→1 × {0}, D1 := Z17→0 × {1}.
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Result: Forward Invariance

Theorem 1 (Forward Invariance)

Suppose that

▶ B is a C1 barrier function of K for ż = f0(z).

▶ f0 and f1 are continuous.

▶ δ0, δ1, θ0, and θ1 are continuous and satisfy

δ0(z) < δ1(z) ≤ 0 and θ0(z) < θ1(z) ≤ 0 ∀z ∈ Rn.

▶ For each q ∈ {0, 1}, no solution to ż = fq(z), z ∈ Zq has a finite escape time.

Then:

▶ K ′ := K × {0, 1} is forward invariant for Hcl.

Furthermore, if ϕ is bounded, then supt domϕ = ∞.
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Proof Sketch.

Let
B′(z, q) := B(z) ∀(z, q) ∈ Rn × {0, 1}.

The function B′ is a barrier function of K ′ for Hcl, so K ′ is forward pre-invariant.

To show that all maximal solutions are complete, we show that

▶ C ∪D is the entire space Rn.

▶ At every point in C \D, flows are viable, so solutions can always either flow or
jump.

D and g(D) are closed and disjoint, so that for every bounded solution ϕ, there exists
γ > 0 such that the time between jumps is greater than γ.
=⇒ If ϕ is maximal and bounded, then supt domϕ = ∞.
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Result: Forward Invariance Without Chattering

Theorem 2 (Forward Invariance Without Chattering)

Suppose that

▶ B is a C1 barrier function of K for ż = f0(z).

▶ f0 and f1 are globally Lipschitz continuous with Lipschitz constants L0 and L1.

▶ δ0, δ1, θ0, and θ1 are continuous and satisfy the threshold function inequalities.

▶ There exists τ > 0 such that for all z0 ∈ Z07→1 and z1 ∈ Z17→0,

|z0 − z1| ≥ τ max
{
|f0(z0)| exp(L0τ), |f1(z1)| exp(L1τ)

}
.

Then,

▶ τ is a lower bound on the time between jumps for all solutions to Hcl.

▶ Every maximal solution ϕ to Hcl is complete and supt domϕ = ∞.
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Proof Sketch of Theorem 2.

▶ Forward pre-invariance is proven using the same barrier function as in Theorem 1.

▶ Solutions to ż = f0(z) and ż = f1(z) cannot escape to infinity in finite time
because f0 and f1 are globally Lipschitz.

▶ Let z0 ∈ Z07→1 and z1 ∈ Z17→0. To prove τ is a lower bound on the time between
jumps, we show
▶ The (unique) solution to ż = f0(z) starting at z0 satisfies

|z0 − z1| ≥ τ |f0(z0)| exp(L0τ) ≥ |z(t)− z0| ∀t ∈ [0, τ ].

Thus, in time τ , a solution to Hcl cannot move from (z0, 1) ∈ g(D0) to (z1, 1) ∈ D1.
▶ The (unique) solution to ż = f1(z) starting at z1 satisfies

|z0 − z1| ≥ τ |f1(z1)| exp(L1τ) ≥ |z(t)− z1| ∀t ∈ [0, τ ].

Thus, in time τ , a solution to Hcl cannot move from (z1, 0) ∈ g(D1) to (z0, 0) ∈ D0.
▶ The time to move from g(D) to D is at least τ .
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Example: Lower Bound on Switching Times

Consider the plant

ż = fp(z, u) :=

[
z1
u

]
with z = (z1, z2) ∈ R2 and u ∈ R.
Admissible Set: Lower Half Plane of R2

Controllers: κ0(z) := −|z1|
κ1(z) := +|z1|

Barrier Function: B(z) := z2.

Thresholds: δ0(z) := −2− 2|z1|
δ1(z) := −1− |z1|.

Satisfies Theorem 1 =⇒ K is forward invariant.

0 20 40

z1

-80

-60

-40

-20

0

z 2

Phase Plot

?(0; 0)

Inadmissible
Z17!0

? (q = 0)
? (q = 1)
Z07!1

Solutions are unbounded =⇒ Theorem 1 does not
guarantee solutions existence for all t > 0.
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Example: Lower Bound on Switching Times

We find that for τ := 0.25,

|z0 − z1| ≥ |z01 |+ 1√
5

> τ |f0(z0)| exp(L0τ),

|z0 − z1| ≥ |z11 |+ 1√
2

> τ |f1(z1)| exp(L1τ).

Satisfies Theorem 2 =⇒
{
The time between jumps is at least τ = 0.25.

Every maximal solution exists for all t ≥ 0.
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Conclusion

Summary

▶ Designed a hybrid control algorithm that switches between a barrier-certified
controller that renders a desired set forward invariant and a uncertified controller
that may not.

▶ The resulting hybrid control strategy guarantees forward invariance while
preferentially using the uncertified controller.

▶ Our approach allows for advanced controllers to be safely used without
constructing barrier functions.

Future work

▶ Weaken assumption on f1 to allow for discontinuous vector field.

▶ Consider systems with disturbances.

▶ Develop better methods for picking the threshold functions.
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