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Abstract

A method is proposed for analyzing asymptotic stability in so-called conical hybrid systems
with modes, which include any hybrid systems where portion of the state excluding the
logic variable is mapped linear at jumps and flows according to a constant or linear flow
maps during flows, and where the flow and jump sets are conical. Specifically, this paper
introduces the conical transition graph (CTG) to simplify the analysis of asymptotic
stability in conical approximations by converting solutions to a hybrid system into walks
through a discrete graph. By exploiting the fact that pre-asymptotic stability in a conical
approximation implies pre-asymptotic stability in the original system, a CTG–based
approach can establish asymptotic stability in hybrid systems that have nonlinear flow
maps and jump maps without needing to construct a Lyapunov function. Discussion of
how to reduce the size of the CTG allow for applying CTG analysis to systems where
the CTG would have infinitely many vertices.

Keywords: Stability and stabilization of hybrid systems, Stability of nonlinear systems

1. Introduction

For continuous- and discrete-time systems, local asymptotic stability can be determined
by linearizing the system and checking the eigenvalues of the resulting Jacobian matrix.
For hybrid systems, however, the same ease is currently unavailable. In the conical ap-
proximation of a hybrid system, the flow and jumps sets are approximated by tangent
cones, and the flow and jump maps are approximated by constant or linear approxima-
tions [1, Ch. 9]. It was shown in [2, Thm. 3.3] that the conical approximation of a hybrid
system can be used to determine if a point is pre-asymptotically stable. Namely, if a point
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is pre-asymptotically stable with respect to the conical approximation, then the center
of the approximation in the original hybrid system is locally pre-asymptotically stable.
(The prefix “pre-” indicates that some maximal solutions may terminate in finite time due
to the solution leaving the region of the state space where it is permitted to evolve.) The
utility of [2, Thm. 3.3] is currently limited, however, by the fact that it is still generally
difficult to show that the origin of a conical approximation is pre-asymptotically stable.
The purpose of this article is to close this gap by introducing the conical transition graph
(CTG) as a tool to determine asymptotic stability in conical approximations. Thereby,
we can establish local asymptotic stability in non-conical hybrid systems.

A graph-based approach is used in [3] to determine Lyapunov and asymptotic stability of
a class of hybrid systems called piecewise constant derivatives (PCD). In a PCD system,
the state space is partitioned into polyhedral regions with a flow vector field that is
constant within each region but not necessarily continuous on their boundaries. The class
of systems considered in the present work is more general in that the hybrid systems
permit jumps in the value of the state and transitions between modes.

While there are limited results for analyzing stability of hybrid systems via conical ap-
proximations, there are numerous other approaches for stability analysis in the literature
[4, 5] and [1, Thm. 7.30]. Lyapunov functions are a powerful and flexible tool for proving
many types of stability properties, including stability of sets, finite-time stability, Zeno
stability, and input to state stability [6, 7]. For hybrid systems where asymptotic sta-
bility of a limit cycle is of interest rather asymptotic stability of an equilibrium point,
Poincaré maps have been used in hybrid systems to prove convergence of solutions to
limit cycles [8, 9, 10]. Discrete graphs1 have been used to evaluate stability of switched
dynamical systems including discrete-time linear systems [11], discrete-time nonlinear
systems [12], and continuous-time linear systems [13]. In contrast to the existing meth-
ods for switched systems, the present work is (to the best of our knowledge) the first
graph-theoretic approach to analyze asymptotic stability in non-switched hybrid sys-
tems (i.e., systems where components of the state vector may range over a continuum
at jumps). In the context of reachability analysis, [14] introduced conical abstractions
as a graph-based method to compute infinite-horizon reachable sets for linear hybrid
automata. The biggest drawback of the Lyapunov function method is that Lyapunov
functions are often difficult to construct. There have, however, been advances made for
algorithmically constructing Lyapunov functions. For hybrid systems defined by polyno-
mial functions, Lyapunov functions can be constructed numerically via sum-of-squares
(SOS) programming [15, 16, 17, 18, 19, 20]. Lyapunov functions can also be generated
for non-polynomial systems by modeling non-polynomial functions as polynomials plus a
disturbance, as done in [19] for barrier certificates, or by transforming the system into
a polynomial system as done in [17] for continuous-time systems. The SOS approach to
constructing Lyapunov functions is powerful but suffers from two limitations. Firstly,
SOS requires solving a semidefinite program (SDP) that grows quickly as the dimension
of the hybrid system and the degrees of the polynomials increase. While there are effi-
cient algorithms for solving SDP’s, the size of the optimization problem can make them

1Throughout, we use graph in the sense of discrete graph—that is, a set of vertices connected by edges
or arrows.
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computationally expensive for high-dimensional hybrid systems. Secondly, since SOS is
a numerical approach, it requires the hybrid system to be fully defined, numerically—it
cannot have any unspecified parameters. This inhibits using SOS to reason about pa-
rameters, limiting its utility for, e.g., designing an asymptotically stabilizing feedback
law.

An alternative algorithmic approach to determine stability-like properties is via reacha-
bility analysis. The idea behind this approach is to use numerical reachability tools for
hybrid systems [21, 14, 22, 23] to approximate the reachable set for solutions starting
nearby an equilibrium and thereby assess stability numerically.

The conical transition graph is designed to simplify the analysis of asymptotic stability
of isolated equilibria by creating a simplified representation of ways that solutions to a
hybrid system can evolve continuously (called flows) or evolve discretely (called jumps).
Collectively, we refer to flows and jumps as transitions. In particular, the CTG is a
directed graph with set-valued weights assigned to each arrow. Each vertex in the CTG
represents either the origin 0𝑛 ∈ R𝑛 or a point in the unit sphere S𝑛−1 ⊂ R𝑛, where each
point 𝑣 ∈ S𝑛−1 acts as a representation of all the points in the ray {𝑟𝑣|𝑟 > 0} spanned by
𝑣. In this way, we consider the projection of R𝑛 onto S𝑛−1 ∪ {0𝑛}, as shown in Figure 1.
Roughly speaking, each arrow in the CTG represents the ways that solutions to a hybrid
system, as projected onto S𝑛−1 ∪ {0𝑛}, can transition (flow or jump) between points in
S𝑛−1∪{0𝑛}. The weight of each arrow contains all possible relative changes in magnitude
that a solution can exhibit when it undergoes the transition. Asymptotic stability can be
determined from the products of walks through the CTG. Products converging to zero
indicate convergence of solutions to the origin.

This article extends the author’s previous work, [24], in two ways. First, this article defines
and analyzes conical hybrid systems with modes—allowing switching between several
regimes. To aid in analysis, we introduce in this article the concept of a CTG-simulation
of a solution to a hybrid system. By showing a correspondence between solutions and
CTG-simulations, we show that the CTG of a hybrid system can be used to determine
asymptotic stability. Beyond the results in this article, CTG-simulations may be a useful
theoretic tool in future work for using CTG’s in reachability analysis.

Second, we describe how to reduce the size of a conical transition graph by an “abstraction”
that groups together sets of vertices. By applying this method to conical transition
graphs with large—possibly infinite—numbers of vertices, we can reduce intractable
computational problems into problems that are solvable.

The remainder of this article is organized as follows. Preliminary concepts and notation
are introduced in Section 2. In Section 2.2 we introduce conical hybrid systems with
modes, and in Section 2.3 we describe the important radial homogeneity property of
conical hybrid systems. We briefly describe two applications of conical hybrid systems in
Section 3. Conical transition graphs are introduced in Section 4. Our results, in Section 5,
demonstrate how to use a conical transition graph to determine pre-asymptotic stability
in conical hybrid systems. Section 5.1 describes CTG-simulations, which is a useful tool
in the subsequent theoretical developments. Our stability and pre-asymptotic stability
results are found in Section 5.2. Section 6 describes our approach to reducing the size of
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CTG’s by creating an “abstract” CTG that groups together vertices.
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Figure 1: The evolution of solutions to a hybrid system on R3 (left) are reduced in the CTG
(right) to discrete transitions on S2, which we label as flow arrows and jump arrows. In the right
image, solid blue curves indicate continuous-time flows projected onto S2.

2. Preliminaries

For notation, we use N := {0, 1, 2, . . . } and R≥0 := [0,∞). The Euclidean norm of
𝑣 ∈ R𝑛 is written |𝑣|. We write the inner product between 𝑣1 and 𝑣2 in R𝑛 as ⟨𝑣1, 𝑣2⟩.
The zero vector in R𝑛 is denoted 0𝑛. The domain of a function 𝑓 is written dom(𝑓).
Given a set 𝑆 ⊂ R𝑛, we write the closure as 𝑆. The unit sphere in R𝑛 is denoted by
S𝑛−1 :=

{︀
𝑥 ∈ R𝑛 : |𝑥| = 1

}︀
, and the unit sphere plus the origin is written as

S𝑛−1
0 := S𝑛−1 ∪ {0𝑛}. (1)

The normalized radial vector function nrv : R𝑛 → S𝑛−1
0 is defined for each 𝑣 ∈ R𝑛 as

nrv(𝑣) :=

{︃
𝑣/|𝑣| if 𝑣 ̸= 0𝑛

0𝑛 if 𝑣 = 0𝑛.
(2)

The following properties of the nrv function are used in this work.

∀𝑥 ∈ R𝑛 : 𝑥 = |𝑥|nrv(𝑥). (3)
∀𝑥 ∈ R𝑛 and 𝑟 > 0 : nrv(𝑟𝑥) = nrv(𝑥). (4)

∀𝑥 ∈ R𝑛 and 𝐴 ∈ R𝑛×𝑛 : nrv(𝐴𝑥) = nrv(nrv(𝐴𝑥)) = nrv(𝐴 nrv(𝑥)). (5)

Let 𝑆 ⊂ R𝑛 be nonempty and let 𝑥 ∈ 𝑆. The contingent cone 𝑇𝑆(𝑥) is the set of all
vectors 𝑣 ∈ R𝑛 such that there exist a sequence of positive real numbers ℎ𝑖 → 0+ and a
sequence of vectors 𝑣𝑖 → 𝑣 such that 𝑥+ℎ𝑖𝑣𝑖 ∈ 𝑆 for all 𝑖 ∈ N (see [25]). For any 𝑆 ⊂ R𝑛

and 𝑥 ∈ 𝑆, the contingent cone of 𝑆 at 𝑥 is a cone, meaning that for all 𝑥 ∈ 𝑇𝑆(𝑥) and
all 𝛼 > 0, we have that 𝛼𝑥 ∈ 𝑇𝑆(𝑥).
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For any 𝑥 ∈ R𝑛, we write the open ray from the origin through 𝑥 as

ray(𝑥) := {𝛼𝑥 ∈ R𝑛 | 𝛼 > 0}

and the corresponding closed ray as

ray(𝑥) := {𝛼𝑥 ∈ R𝑛 | 𝛼 ≥ 0}.

Given a cone 𝐾 ⊂ R and any 𝑥 ∈ R𝑛,

𝑥 ∈ 𝐾 ⇐⇒ ray 𝑥 ⊂ 𝐾.

We write the conical hull of 𝑥1, 𝑥2, . . . , 𝑥𝑝 ∈ R𝑛 as

cone(𝑥1, 𝑥2, . . . , 𝑥𝑝) = {𝛼1𝑥1 + 𝛼2𝑥2 + · · ·+ 𝛼𝑝𝑥𝑝 | 𝛼𝑖 ≥ 0}.

Given a set 𝒮 ⊂ R𝑛 and linear map 𝐴 ∈ R𝑛×𝑛, then the transformation of 𝒮 by 𝐴 is
defined as

𝐴𝒮 := {𝐴𝑥 ∈ R𝑛 | 𝑥 ∈ 𝒮}.

2.1. Hybrid Systems

We consider hybrid systems on R𝑛 in the form

ℋ :

{︃
𝑥̇ = 𝑓(𝑥) 𝑥 ∈ 𝐶,

𝑥+ ∈ 𝐺(𝑥) 𝑥 ∈ 𝐷,
(6)

with state 𝑥 ∈ R𝑛, flow set 𝐶 ⊂ R𝑛, flow map 𝑓 : 𝐶 → R𝑛, jump set 𝐷 ⊂ R𝑛, and
(set-valued) jump map 𝐺 : 𝐷 ⇒ R𝑛. The system ℋ can be written compactly as
ℋ = (𝐶, 𝑓,𝐷,𝐺). The continuous-time system formed by removing the discrete dynamics
of ℋ is written as (𝐶, 𝑓).

A hybrid time domain 𝐸 is a subset of R≥0 × N such that for every (𝑇, 𝐽) ∈ 𝐸, there
exists a sequence

0 = 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝐽+1 = 𝑇

such that

𝐸 ∩ ([0, 𝑇 ]× {0, 1, . . . , 𝐽})
= ([𝑡0, 𝑡1]×{0}) ∪ ([𝑡1, 𝑡2]×{1}) ∪ · · · ∪ ([𝑡𝐽 , 𝑡𝐽+1]×{𝐽}). (7)

Each 𝑡1, 𝑡2, . . . , 𝑡𝐽 in (7) is called a jump time in 𝐸. If 𝑡𝑗−1 < 𝑡𝑗 , then [𝑡𝑗−1, 𝑡𝑗 ] is
called an interval of flow in 𝐸. A function 𝜑 : dom(𝜑) → R𝑛 is called a hybrid arc if
dom(𝜑) is a hybrid time domain and 𝜑 is absolutely continuous on each interval of flow in
dom(𝜑). We write sup𝑡𝐸 := sup{𝑡 ∈ R≥0 | (𝑡, 𝑗) ∈ 𝐸}, sup𝑗 𝐸 := sup{𝑗 ∈ N | (𝑡, 𝑗) ∈ 𝐸},
and length(𝐸) := sup𝑡𝐸 + sup𝑗 𝐸. If the domain 𝐸 of a hybrid arc 𝜑 has length ∞, then
𝜑 is said to be complete. A hybrid arc 𝜑 is said be an extension of a hybrid arc 𝜓 if
dom(𝜓) is a strict subset of dom(𝜑) and

𝜑(𝑡, 𝑗) = 𝜓(𝑡, 𝑗) ∀(𝑡, 𝑗) ∈ dom(𝜓).
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Definition 1 (Hybrid Solution). A hybrid arc 𝜑 is called a solution of ℋ if it satisfies
the following:

• At each jump time 𝑡𝑗 in dom(𝜑),

𝜑(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷 (8a)

𝜑(𝑡𝑗 , 𝑗) ∈ 𝐺
(︀
𝜑(𝑡𝑗 , 𝑗 − 1)

)︀
. (8b)

• For each interval of flow [𝑡𝑗 , 𝑡𝑗+1] in dom(𝜑) (for some 𝑗 with 𝑡𝑗+1 possibly infinite),

𝜑(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1) (9a)
𝑑𝜑

𝑑𝑡
(𝑡, 𝑗) ∈ 𝐹 (𝜑(𝑡, 𝑗)) for almost all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1). (9b)

◇

A solution 𝜑 to ℋ is said to be maximal if it cannot be extended, that is, if there does
not exist another solution 𝜓 to ℋ such that dom(𝜑) a strict subset of dom(𝜓) (that is,
dom𝜑 ⊊ dom𝜓) and 𝜑(𝑡, 𝑗) = 𝜓(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom𝜑. At a jump time 𝑡 in a hybrid
domain, 𝑡 corresponds to several values of 𝑗, so it is useful to define a function that maps
each 𝑡 to a single value of 𝑗. In particular, for each (𝑡, 𝑗) ∈ dom𝜑, we define

𝑡 ↦→ 𝚥(𝑡) := max{𝑗 | (𝑡, 𝑗) ∈ dom𝜑}.

For more background on hybrid systems, see [1, 26].

Given a nonempty set 𝒜 ⊂ R𝑛, the distance from any 𝑥 ∈ R𝑛 to 𝒜 is

|𝑥|𝒜 := inf
𝑎∈𝒜

|𝑎− 𝑥|.

Definition 2. Consider a hybrid system ℋ on R𝑛. A nonempty set 𝒜 ⊂ R𝑛 is said to be

• stable for ℋ if for all 𝜀 > 0, there exists 𝛿 > 0 such that for every solution 𝜑 to ℋ with
|𝜑(0, 0)|𝒜 ≤ 𝛿, we have that |𝜑(𝑡, 𝑗)|𝒜 ≤ 𝜀 for all (𝑡, 𝑗) ∈ dom𝜑,

• pre-attractive for ℋ if there exists 𝜇 > 0 such that for each solution 𝜑 to ℋ with
|𝜑(0, 0)|𝒜 ≤ 𝜇, we have that (𝑡, 𝑗) ↦→ |𝜑(𝑡, 𝑗)|𝒜 is bounded and, if 𝜑 is complete, then

lim
𝑡+𝑗→∞

|𝜑(𝑡, 𝑗)|𝒜 = 0,

• pre-asymptotically stable (pAS) for ℋ if 𝒜 is stable and pre-attractive for ℋ,

• asymptotically stable for ℋ if 𝑥* is pAS for ℋ and every maximal solution is complete. ◇

Definition 3 (Forward Invariance). A set 𝐾 ⊂ R𝑛 is said to be forward pre-invariant
for a hybrid system ℋ if, for each 𝑥0 ∈ 𝐾 and each maximal solution 𝜑 starting from
𝜑(0, 0) = 𝑥0, then 𝜑(𝑡, 𝑗) ∈ 𝐾 for all (𝑡, 𝑗) ∈ dom𝜑. If, additionally, each maximal
solution starting in 𝐾 is complete, then 𝐾 is called forward invariant. ◇
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2.2. Conical Hybrid Systems

Definition 4 (Conical Hybrid System with Modes). Let 𝒬 := {1, 2, . . . , 𝑁q} be a finite
set of modes, let ℰ ⊂ 𝒬×𝒬 be directed edges (transitions) between modes. Consider a
hybrid system ℋ with state 𝑥 := (𝑞, 𝑧) ∈ 𝒬× R𝑛 in the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥̇=𝑓(𝑞,𝑧):=

[︂
0

𝑓𝑞(𝑧)

]︂
𝑥∈𝐶 :=

{︂[︂
𝑞
𝑧

]︂
∈𝒬×R𝑛

⃒⃒⃒⃒
𝑧∈𝐶𝑞

}︂
𝑥+∈𝐺(𝑞,𝑧):=

{︃[︂
𝑞′

𝐴𝑒𝑧

]︂⃒⃒⃒⃒
⃒∃𝑒:=(𝑞,𝑞′)∈ℰ
s.t. 𝑧∈𝐷𝑒

}︃
𝑥∈𝐷:=

{︃[︂
𝑞
𝑧

]︂
∈𝒬×R𝑛

⃒⃒⃒⃒
⃒∃𝑞′∈𝒬s.t. 𝑧∈𝐷(𝑞,𝑞′)

}︃
,

(10)

where for each mode 𝑞 ∈ 𝒬 and edge 𝑒 := (𝑞, 𝑞′) ∈ ℰ , the function 𝑧 ↦→ 𝑓𝑞(𝑧) is linear or
constant, 𝐴𝑒 ∈ R𝑛×𝑛, the set 𝐶𝑞 ⊂ R𝑛 is a closed cone that defines the region where 𝑧 is
allowed to flow while in mode 𝑞, and for each 𝑞′ ∈ 𝒬, the set 𝐷𝑒 ⊂ R𝑛 is a closed cone
that defines the region where 𝑧 is allowed to jump from mode 𝑞 to mode 𝑞′. If (𝑞, 𝑞′) ̸∈ ℰ ,
then 𝐷𝑒 = ∅.

Since 𝑞 does not depend on 𝑡, we write it as a function of 𝑗 only when it occurs as a
component of hybrid arcs, that is, 𝑗 ↦→ 𝑞(𝑗). When mode 𝑞 has linear flows, we write
𝑧̇ = 𝐴𝑞𝑧, where 𝐴𝑞 ∈ R𝑛×𝑛, whereas when mode 𝑞 has constant flows we write 𝑧̇ = 𝑓*𝑞 . ◇

A diagram of a conical hybrid system with two modes is shown in Figure 2.

Figure 2: A conical hybrid system with two modes. Mode 𝑞 = 0 (left) has constant flows and
mode 𝑞 = 1 (right) has linear flows.

Example 1 (Conical Hybrid System with Modes). As an example of a hybrid system
with modes, we consider a conical hybrid system ℋ in R2 with two modes, 𝒬 := {0, 1},
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where mode 𝑞 = 0 has constant flows and mode 𝑞 = 1 has linear flow modes. For mode 0,
let flows be defined by 𝑧̇ = 𝑓*0 :=

[︀−1
0

]︀
and

𝐶0 :=
{︀
(𝑧1, 𝑧2) ∈ R2

⃒⃒
𝑧2 ≥ 𝑧1, 𝑧1 ≥ 0

}︀
,

and let
𝐷(0,0) := 𝐷(0,1) := {(𝑧1, 𝑧2) | 𝑧1 = 𝑧2, 𝑧1 ≥ 0}.

After a jump from 𝑞 = 0 to 𝑞 = 0, the value of 𝑧 is given by 𝑧+ = 𝐴(0,0)𝑧, and after a
jump from 𝑞 = 0 to 𝑞 = 1, it is given by 𝑧+ = 𝐴(0,1), where

𝐴(0,0) :=

[︂
0 0
𝜆0 0

]︂
and 𝐴(0,1) :=

[︂
0 0
𝜆1 0

]︂
,

with 𝜆0 > 0, 𝜆1 > 0. Thus, at jumps, 𝑧 is mapped to the 𝑧2-axis.

For mode 𝑞 = 1, let 𝑧̇ = 𝐴1𝑧 where

𝐴1 :=

[︂
−2 4
−2 −1

]︂
,

and 𝐶1 := R2. The jump set is defined as the ray from the origin with an angle
𝜃(−𝜋/2, 𝜋/2) from the 𝑧1-axis, i.e., 𝐷(1,0) := ray

[︀
cos 𝜃
sin 𝜃

]︀
. The jump map from 𝑞 = 1 to

𝑞 = 0 is defined by

𝐴(1,0) =

[︂
sin 𝜃 − cos 𝜃
cos 𝜃 sin 𝜃

]︂
,

which takes any vector 𝑧 ∈ 𝐷(1,0) to 𝐴(1,0)𝑧 ∈ {0} × R≥0 (the 𝑧2-axis). The transitions
between modes are ℰ = {(0, 0), (0, 1), (1, 0)}. Based on the choices of parameters 𝜆0, 𝜆1,
and 𝜃, the set 𝒪 := 𝒬 × {0𝑛} will be asymptotic stable or unstable. The techniques
introduced in this article reduces the problem of checking stability into analyzing a
discrete graph. ◇

2.3. Properties of Conical Hybrid Systems

An important property of conical hybrid systems, formalized in Proposition 1, below, is
that their dynamics are radially homogenous—that is, a conical hybrid system behaves
the same way at all distances from the origin, except for scaling effects.

Proposition 1. Given a conical hybrid system with modes ℋ, let

(𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) :=
(︀
𝑞(𝑡, 𝑗), 𝑧(𝑡, 𝑗)

)︀
be a solution to ℋ. Then, for each 𝑟 > 0, the hybrid arc (𝑡, 𝑗) ↦→ 𝜓𝑟(𝑡, 𝑗) defined by

𝜓𝑟(𝑡, 𝑗) :=

[︂
𝑞(𝑗)

𝑟𝑧(𝛼𝑟(𝑡), 𝑗)

]︂
∀(𝛼𝑟(𝑡), 𝑗) ∈ dom(𝜑) (11)

is also a solution to ℋ, where 𝛼𝑟 is a class-𝒦 function defined, for all (𝑡, 𝑗) ∈ dom(𝜑), by

𝛼𝑟(𝑡) =

∫︁ 𝑡

0

𝛿𝑟(𝚥(𝜏)) 𝑑𝜏, (12)

and

𝛿𝑟(𝑗) :=

{︃
1/𝑟 if 𝑞(𝑗) is a mode with constant flow
1 if 𝑞(𝑗) is a mode with linear flow.

(13)
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The effect of 𝛿𝑟 in (12) is that in modes with linear flow, the time 𝜓𝑟 spends traversing
an interval of flow matches 𝜑, but in modes with constant flow, the time is dilated by a
factor 𝑟.

Proof. First, we show that 𝛼𝑟 is class-𝒦. From the definition, 𝛼𝑟(0) = 0 and 𝛼𝑟 is
continuous. Since 𝛿𝑟 is strictly positive, 𝛼𝑟 is monotonically increasing, so 𝛼𝑟 is class-𝒦.

Let 𝐽 := sup𝑗 dom(𝜑), and let 𝑡1, 𝑡2, . . ., 𝑡𝐽 be the jump times of 𝜑. For ease of notation,
let 𝑡0 := 0 and, if 𝐽 is finite, let 𝑡𝐽+1 := sup𝑡 dom(𝜑). For each jump time 𝑡𝑗 in dom(𝜑),
the hybrid times (𝑡𝑗 , 𝑗 − 1) and (𝑡𝑗 , 𝑗) are in dom(𝜑), so (𝛼−1

𝑟 (𝑡𝑗), 𝑗 − 1) and (𝛼−1
𝑟 (𝑡𝑗), 𝑗)

are in dom(𝜓𝑟) (𝛼𝑟 is invertible because it is class-𝒦). Therefore, 𝑡′𝑗 := 𝛼−1
𝑟 (𝑡𝑗) is a jump

time in dom(𝜓𝑟) for each 𝑗 ∈ {1, 2, . . . , 𝐽}.

Since 𝛼𝑟 (and 𝛼−1
𝑟 ) is strictly increasing, [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜑) if and

only if [𝑡′𝑗 , 𝑡′𝑗+1] is an interval of flow in dom(𝜓𝑟). For each (𝑡, 𝑗) ∈ dom(𝜓𝑟), let (𝑡, 𝑗) ↦→
𝑧𝑟(𝑡, 𝑗) := 𝑟𝑧(𝛼𝑟(𝑡), 𝑗), so that 𝜓𝑟(𝑡, 𝑗) = (𝑞(𝑗), 𝑧𝑟(𝑡, 𝑗)). Since 𝑧(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷(𝑞(𝑗−1),𝑞(𝑗))

and 𝐷(𝑞(𝑗−1),𝑞(𝑗)) is a cone, we have that

𝑧𝑟(𝑡
′
𝑗 , 𝑗 − 1) = 𝑟𝑧

(︁
𝛼𝑟

(︀
𝛼

−1

𝑟 (𝑡𝑗)
)︀
, 𝑗 − 1

)︁
= 𝑟𝑧(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷(𝑞(𝑗−1),𝑞(𝑗)).

Therefore, 𝜓𝑟(𝑡
′
𝑗 , 𝑗 − 1) ∈ 𝐷, so 𝜓𝑟 satisfies (8a). Similarly, since 𝐶𝑞(𝑗) is a cone and

𝑧(𝑡, 𝑗) ∈ 𝐶𝑞 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1), we have that 𝑧𝑟(𝑡, 𝑗) ∈ 𝐶𝑞 and thus 𝜓𝑟(𝑡, 𝑗) ∈ 𝐶 for all
𝑡 ∈ (𝑡′𝑗 , 𝑡

′
𝑗+1). Therefore, 𝜓𝑟 satisfies (9a).

Now that we have established the jump times and intervals of flows of 𝜓𝑟, we want to
show that 𝜓𝑟 satisfies the jump and flow conditions in Equations (8) and (9). Take any
𝑗 ∈ {1, 2, . . . , 𝐽}. By (8b),

𝜑(𝑡𝑗 , 𝑗) =

[︂
𝑞(𝑗)
𝑧(𝑡𝑗 , 𝑗)

]︂
∈ 𝐺(𝜑(𝑡𝑗 , 𝑗 − 1)),

so, from the definition of 𝐺 in (10), 𝑧(𝑡𝑗 , 𝑗) = 𝐴(𝑞(𝑗−1),𝑞(𝑗))𝑧(𝑡𝑗 , 𝑗 − 1). Thus, at 𝑡′𝑗 :=

𝛼−1
𝑟 (𝑡𝑗),

𝜓𝑟(𝑡
′
𝑗 , 𝑗) =

[︂
𝑞(𝑗)

𝑟𝑧
(︀
𝛼𝑟(𝛼

−1
𝑟 (𝑡𝑗)), 𝑗

)︀]︂ = [︂ 𝑞(𝑗)
𝐴(𝑞(𝑗−1),𝑞(𝑗))

(︀
𝑟𝑧(𝑡𝑗 , 𝑗 − 1)

)︀]︂.
Since 𝐷(𝑞(𝑗−1),𝑞(𝑗)) is a cone and 𝑧(𝑡𝑗 , 𝑗 − 1) is in 𝐷(𝑞(𝑗−1),𝑞(𝑗)), then 𝑟𝑧(𝑡𝑗 , 𝑗 − 1) is also
in 𝐷(𝑞(𝑗−1),𝑞(𝑗)). Therefore, 𝜓𝑟(𝑡𝑗 , 𝑗) is in the set 𝐺

(︀
𝜓𝑟(𝑡

′
𝑗 , 𝑗 − 1)

)︀
as required by (8b).

If 𝑡𝑗+1 > 𝑡𝑗 , then [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow for 𝜑, so for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑧̇(𝑡, 𝑗) = 𝑓𝑞(𝑧(𝑡, 𝑗)).

(Since 𝑓𝑞 is linear or constant, we have that if 𝑧̇ = 𝑓𝑞(𝑧) for almost all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1) then
it, in fact, satisfies the ODE for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1)). From Definition 4, the mode 𝑞(𝑗) has
either linear or constant flows. Suppose, first, that 𝑞(𝑗) has linear flows. Then, for all
𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑑

𝑑𝑡
(𝑧(𝑡, 𝑗)) = 𝐴𝑞(𝑗)𝑧(𝑡, 𝑗).
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Applying the chain rule to 𝑡 ↦→ 𝑧𝑟(𝑡, 𝑗) = 𝑟𝑧(𝛼𝑟(𝑡), 𝑗), we find

𝑧̇𝑟(𝑡, 𝑗) =
𝑑

𝑑𝑡
(𝑟𝑧(𝛼𝑟(𝑡), 𝑗)) = 𝐴𝑞(𝑗)𝑟𝑧(𝛼𝑟(𝑡), 𝑗)

𝑑𝛼𝑟

𝑑𝑡
(𝑡) = 𝐴𝑞(𝑗)𝑧𝑟(𝑡, 𝑗),

since 𝑑𝛼𝑟/𝑑𝑡 (𝑡) = 𝛿𝑟(𝑞(𝑗)) = 1 by applying the fundamental theorem of calculus to (13).
Thus, 𝜓𝑟 satisfies (9b) in the case of linear flows.

Suppose instead 𝑞(𝑗) has constant flows. Then, for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑑

𝑑𝑡
(𝑧(𝑡𝑗 , 𝑡𝑗+1)) = 𝑓𝑞(𝑗).

Applying the chain rule to 𝑡 ↦→ 𝑧(𝛼𝑟(𝑡), 𝑗), we find

𝑧̇𝑟(𝑡, 𝑗) =
𝑑

𝑑𝑡
(𝑟𝑧(𝛼𝑟(𝑡), 𝑗)) = 𝑟𝑓𝑞(𝑗)

𝑑𝛼𝑟

𝑑𝑡
(𝑡) =

𝑟𝑓𝑞(𝑗)

𝑟
= 𝑓𝑞(𝑗),

since 𝑑𝛼𝑟/𝑑𝑡 (𝑡) = 𝛿𝑟(𝑞(𝑗)) = 1/𝑟. Thus, 𝜓𝑟 satisfies (9b) in the case of linear flows.
Therefore, 𝜓𝑟 is a solution to ℋ.

3. Applications of Conical Hybrid Systems

In this section, we introduce one application of conical hybrid systems.

3.1. Sampled Linear Systems

Example 2 (Linear System with Sampled Control). Conical hybrid systems can be used
to model and analyze linear control systems with sampled control updates. Consider the
linear control system

𝑧̇ = 𝐴𝑧 +𝐵𝑢,

with state 𝑧 ∈ R𝑛 and input 𝑢 ∈ R𝑚. Suppose 𝑢 is updated with period 𝑇 according to
𝑢 := 𝐾𝑧, where 𝐾 ∈ R𝑚×𝑛. One way to model such as system as a hybrid system is to
use a timer variable 𝜏 ∈ [0, 𝑇 ] where 𝜏 = 1 and triggering events to update the input when
𝜏 = 𝑇 , and resetting 𝜏+ = 0. Such an approach results in a non-conical hybrid system,
because the set of 𝜏 -values where jumps are triggered is non-conical. As an alternative,
we propose using a timer variable 𝜏 := (𝜏1, 𝜏2) ∈ R2 where 𝜏 evolves according to

𝜏 =𝑀𝜏, with 𝑀 :=

[︂
0 −𝜔
𝜔 0

]︂
,

where 𝜔 := 𝜋/𝑇 . When 𝜏 starts with 𝜏 ∈ (0,∞) × {0}, it takes time 𝑇 for 𝜏 to
reach (−∞, 0)× {0}. Thus, to achieve periodic sampling, we will update 𝑢+ = 𝐾𝑥 and
𝜏+ = − 1

2𝜏 whenever 𝜏 ∈ (−∞, 0) × {0}. (The 1
2 causes 𝜏 to converge to 0𝑛, which is

convenient for showing the origin is asymptotically stable.) A representative trajectory
for 𝜏 is shown in Figure 3.
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τ1

τ2

C

D
τ(t, j)

Figure 3: An example trajectory for the timer variable 𝜏 in Example 2.

The closed-loop system has state

𝑥 := (𝑧, 𝑢, 𝜏) ∈ 𝒳 := R𝑛 × R𝑚 × R2,

and can be written as a conical hybrid system (without modes):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣𝑧̇𝑢̇
𝜏

⎤⎦ =

⎡⎣𝐴𝑧 +𝐵𝑢
0
𝑀𝜏

⎤⎦ 𝑥 ∈ 𝐶 := {(𝑧, 𝑢, 𝜏1, 𝜏2) ∈ 𝒳 | 𝜏2 ≥ 0, 𝜏 ̸= (0, 0)}

⎡⎣𝑧+𝑢+
𝜏+

⎤⎦ =

⎡⎣ 𝑧
𝐾𝑢
− 1

2𝜏

⎤⎦ 𝑥 ∈ 𝐷 := {(𝑧, 𝑢, 𝜏1, 𝜏2) ∈ 𝒳 | 𝜏1 < 0, 𝜏2 = 0}.

Various adjustments to this example could allow for modeling systems that have nonde-
terministic delays between samples and switching between modes. ◇

3.2. Conical Approximations

One application of conical hybrid systems are as approximations of non-conical hybrid
systems. Such approximations are called conical approximations. The following assump-
tion is necessary for the conical approximation of a hybrid system ℋ to be well-defined
at a point 𝑥* ∈ R𝑛.

Assumption 1. For a given hybrid system ℋ := (𝐶, 𝑓,𝐷, 𝑔) and 𝑥* ∈ R𝑛, suppose that
the following conditions hold:

1. If 𝑥* ∈ 𝐷, then 𝑔(𝑥*) = 𝑥* and 𝑔 is continuously differentiable at 𝑥*.

2. If 𝑥* ∈ 𝐶, then 𝑓 is continuous at 𝑥*.

3. If 𝑥* ∈ 𝐶 and 𝑓(𝑥*) = 0𝑛, then 𝑓 is continuously differentiable at 𝑥*. ◇
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Definition 5 ([1]). Given a hybrid system ℋ = (𝐶, 𝑓,𝐷, 𝑔) and a point 𝑥* ∈ R𝑛 that
satisfy Assumption 1, the conical approximation of ℋ at 𝑥* is

qℋ :

⎧⎪⎨⎪⎩𝑥̇ = 𝑓(𝑥) :=

{︃
𝑓(𝑥*), if 𝑓(𝑥*) ̸= 0

𝐴c(𝑥− 𝑥*), if 𝑓(𝑥*) = 0,
𝑥 ∈ q𝐶 := 𝑇𝐶(𝑥*),

𝑥+ = 𝑔(𝑥) := 𝐴d(𝑥− 𝑥*), 𝑥 ∈ q𝐷 := 𝑇𝐷(𝑥*),

(14)

where 𝐴c and 𝐴d denote the Jacobian matrices of 𝑔 and 𝑓 at 𝑥*, respectively:

𝐴c :=
𝜕𝑓

𝜕𝑥
(𝑥*) and 𝐴d :=

𝜕𝑔

𝜕𝑥
(𝑥*). ◇

The following result establishes local pre-asymptotic stability in a hybrid system via
pre-asymptotic stability in its conical approximation.

Theorem 1 ([2], Thm. 3.3). Suppose a hybrid system ℋ and a point 𝑥* ∈ R𝑛 satisfy
Assumption 1. Let qℋ be the conical approximation of ℋ at 𝑥*. If 0𝑛 is pAS for qℋ, then
𝑥* is locally pAS for ℋ.

4. Conical Transition Graph

This work relies on definitions from graph theory, provided in this section. See [27] for
details.

A directed graph 𝒢 = (𝒱,𝒜) consists of a set of vertices 𝒱 and a set of arrows 𝒜. Each
arrow in 𝒢 starts at some vertex 𝑣1 ∈ 𝒱 and ends at some vertex 𝑣2 ∈ 𝒱. We write an
arrow from 𝑣1 to 𝑣2 as 𝑣1 → 𝑣2. In a directed graph, an arrow can have the same start
and end point (𝑣1 = 𝑣2), in which case it is called a loop.

We also allow for multiple arrows that have the same start and end points. To distinguish
between such arrows, we assign each arrow a label. An arrow with the label “l” is written
as al = 𝑣1 l−→ 𝑣2. In this work, we use only two labels: “f” and “j,” which stand for
“flow” and “jump.” Thus, for 𝑣1, 𝑣2 ∈ 𝒱, there can be at most two distinct arrows 𝑣1 f−→ 𝑣2
and 𝑣1 j−→ 𝑣2. If the label is irrelevant for a particular point of discussion, then it can be
omitted.

A weighted directed graph 𝒢 = (𝒱,𝒜,𝒲) is a directed graph (𝒱,𝒜) that also includes
a weight function 𝒲 that defines a weight for each arrow in 𝒜. In a typical weighted
graph, the weight function assigns a real number to each arrow, but in this work we use
set-valued weights. Thus, the weight function is a set-valued map 𝒲 : 𝒜 ⇒ R that maps
each arrow a in 𝒜 to a set of real numbers 𝒲(a) ⊂ R.

Given a graph 𝒢 = (𝒱,𝒜,𝒲), a walk 𝑤 through 𝒢 is a finite or infinite sequence of arrows
in 𝒜. A walk of length 𝐾 ∈ {1, 2, . . . } ∪ {∞} is written

𝑤 = (a0, a1, . . . , a𝐾−1) = 𝑣0 → 𝑣1 → 𝑣2 → · · · → 𝑣𝐾 ,

such that a𝑘 = 𝑣𝑘 → 𝑣𝑘+1 for each 𝑘 = 0, 1, . . . ,𝐾 − 1.
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We define the weight of a walk 𝑤 as the cumulative Minkowski set product of the arrows
in 𝑤. For any sets 𝐴,𝐵 ⊂ R, the Minkowski set product of 𝐴 and 𝐵 is defined in [28] as
𝐴𝐵 := {𝑎𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. For a finite-length walk 𝑤 = (a0, a2, . . . , a𝑁−1), the set-valued
weight of 𝑤 is

𝒲(𝑤) :=

{︃
𝑁−1∏︁
𝑘=0

𝑟𝑘

⃒⃒⃒⃒
⃒ 𝑟𝑘 ∈ 𝒲(a𝑘)

∀𝑘 = 0, 1, . . . , 𝑁 − 1

}︃
. (15)

If we let 𝐾 = ∞, then 𝒲(𝑤) may not be well-defined because the infinite product
∏︀∞

𝑘=0 𝑟𝑘
in (15) may not converge. For this article, however, it is sufficient to define 𝒲(𝑤) if
and only if

∏︀∞
𝑘=0 𝑟𝑘 converges to 0 for every choice of {𝑟𝑘}. For an infinite-length walk

𝑤 := (a0, a1, a2, . . . ), we have that 𝒲(𝑤) = {0} if and only if

lim
𝑚→∞

𝑚∏︁
𝑘=0

𝑟𝑘 = 0 (16)

for every sequence {𝑟𝑘}∞𝑘=0 with 𝑟𝑘 ∈ 𝒲(a𝑘) for all 𝑘 ∈ N.

For an arrow a ∈ 𝒜, we have that 𝒲(a) is a set of real numbers, so we can write the
supremum weight of a as sup𝒲(a). Similarly, for a walk 𝑤, we define sup𝒲(𝑤) is the
supremum weight of 𝑤.
Remark 1. Given a walk 𝑤 := (a0, a1, . . . , a𝑁 ) through a graph with set-valued weights,
the supremum weight sup𝒲(𝑤) is not always equal to the product of the supremum
weights of the arrows. That is, in some cases

sup𝒲(𝑤) ̸=
(︀
sup𝒲(a0)

)︀(︀
sup𝒲(a1)

)︀
· · ·
(︀
sup𝒲(a𝑁 )

)︀
.

For example, if 𝒲(a0) = {0} and 𝒲(a1) = (1,∞), then sup𝒲(𝑤) = 0 but the product(︀
sup𝒲(a0)

)︀(︀
sup𝒲(a1)

)︀
= 0 ·∞ is undefined. Thus, it is important that the supremum

is evaluated after computing the product.

The CTG is designed to be a simplified representation of a conical hybrid system ℋ
to facilitate the analysis of pre-asymptotic stability. To this end, we exploit properties
of conical hybrid systems, along with assumptions on the continuous dynamics of the
hybrid system, so that the CTG can be used to establish that the origin of ℋ is pAS. In
particular, we exploit two simplifications.

In a conical hybrid system, Proposition 1 asserts that the distance a solution starts from
the origin of does not affect the way it can evolve (aside from scaling effects). Thus, if
we consider any ray from the origin and allow every point in the ray to evolve according
to the dynamics of ℋ, then that ray is (in a sense) preserved. Using this observation, the
first simplification in the CTG comes from using the nrv function to map R𝑛 to S𝑛−1

0 so
that each single point 𝑝 ∈ S𝑛−1

0 represents every point in ray(𝑝).

Mapping R𝑛 to S𝑛−1
0 reduces the dimension by one and—more importantly—allows for

recurrent walks through the CTG despite convergence of solutions (see Figure 1). For
example, suppose that for some 𝑣 ∈ S𝑛−1, a solution 𝜑 to ℋ repeatedly enters ray(𝑣).
That is, 𝜑(𝑡𝑘, 𝑗𝑘) ∈ ray(𝑣) for a sequence of hybrid times {(𝑡𝑘, 𝑗𝑘)} in dom(𝜑). Then,

𝑣 = nrv(𝜑(𝑡1, 𝑗1)) = nrv(𝜑(𝑡2, 𝑗2)) = · · · .
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Furthermore, the set of possible rays that 𝜑 can transition into from 𝜑(𝑡𝑘, 𝑗𝑘) ∈ ray(𝑣) via
a single jump or flow is the same at every hybrid time (𝑡𝑘, 𝑗𝑘) in the sequence. Exploiting
this information allows us to uncover patterns in the behavior of ℋ.

By collapsing R𝑛 to S𝑛−1
0 , however, we lose information about the magnitude (norm)

of solutions. Instead, the weight of each arrow in the CTG typically contains every
possible relative change of magnitude that a solution (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) can exhibit as
(𝑡, 𝑗) ↦→ nrv(𝜑(𝑡, 𝑗)) moves from the arrow’s start vertex to its end vertex (both in S𝑛−1

0 )
via a single jump or a single interval of flow.

The second simplification arising from the CTG is that it allows us to partition the
analysis of pre-asymptotic stability by considering separately solutions that are eventually
continuous and solutions that are not eventually continuous. A hybrid arc is called
eventually continuous if it has an interval of flow after the last jump time in its hybrid
time domain. The aspects of eventually continuous solutions that are relevant to pre-
asymptotic stability in ℋ = (𝐶, 𝑓,𝐷,𝐺) can be determined by analyzing the continuous-
time system (𝐶, 𝑓). In particular, our results assume that 0𝑛 is pAS for (𝐶, 𝑓)—which is
necessary for 0𝑛 to be pAS for ℋ and can be verified using methods from continuous-time
system analysis. Thus, the CTG is a tool for analyzing the behavior of solutions that are
not eventually continuous.

Assuming that 0𝑛 is pAS (and thus stable) for (𝐶, 𝑓) has the added benefit that if we
can show that a given solution converges to 0𝑛 at jump times, then we can establish
asymptotic convergence without analyzing the trajectories of solutions during intervals
of flow. This is shown in the following lemma.

Lemma 1. Let ℋ = (𝐶, 𝑓,𝐷,𝐺) be a conical hybrid system with modes. Suppose that
𝒪 := 𝒬×{0𝑛} is stable for (𝐶, 𝑓) and let 𝜑 be any solution to ℋ with sup𝑗 dom(𝜑) = ∞.
Then,

lim
𝑗→∞

|𝜑(𝑡𝑗 , 𝑗)|𝒪 = 0 =⇒ lim
𝑡+𝑗→∞

|𝜑(𝑡, 𝑗)|𝒪 = 0,

where each 𝑡𝑗 is the 𝑗th jump time in dom(𝜑).

Proof. Let 𝜑 be any solution to ℋ with sup𝑗 dom(𝜑) = ∞. Let 𝑡1, 𝑡2, . . ., be the jump
times of 𝜑 and suppose that

lim
𝑗→∞

|𝜑(𝑡𝑗 , 𝑗)|𝒜 = 0.

Take any 𝜀 > 0. We want to show that there exists (𝑡′, 𝑗′) ∈ dom(𝜑) such that |𝜑(𝑡, 𝑗)|𝒜 <
𝜀 for all (𝑡, 𝑗) ∈ dom(𝜑) such that 𝑡+ 𝑗 ≥ 𝑡′ + 𝑗′.

For each 𝑗 such that [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜑), the function 𝑡 ↦→ 𝜑(𝑡, 𝑗)
is a solution to (𝐶, 𝑓) for all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. By the stability of 𝒪 for (𝐶, 𝑓), there exists
𝛿 ∈ (0, 𝜀) such that

|𝜑(𝑡𝑗 , 𝑗)|𝒜 ≤ 𝛿 =⇒ |𝜑(𝑡, 𝑗)|𝒜 ≤ 𝜀 ∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. (17)

Since 𝑗 ↦→ 𝜑(𝑡𝑗 , 𝑗) converges to 𝒪, there exists 𝑗′ ∈ N such that |𝜑(𝑡𝑗 , 𝑗)|𝒜 ≤ 𝛿 for all 𝑗 ≥ 𝑗′.
Let 𝑡′ := 𝑡𝑗′ . Thus, from (17), we have that |𝜑(𝑡, 𝑗)|𝒜 ≤ 𝜀 for all (𝑡, 𝑗) ∈ dom(𝜑) such
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that 𝑡+ 𝑗 ≥ 𝑡′ + 𝑗′. Since 𝜀 > 0 was arbitrary, we can take 𝜀→ 0, thereby establishing
that

lim
𝑡+𝑗→∞

|𝜑(𝑡, 𝑗)|𝒜 = 0.

As a consequence of Lemma 1, when determining whether persistently jumping solutions
converge to 𝒪 (e.g., to establish pre-asymptotic stability), we can ignore the interior of
intervals of flow and only focus on showing that the solution at jump times converges. By
doing so, we treat flows as discrete transitions that take solutions from their values im-
mediately after a jump to their values immediately before the next jump. This effectively
ignores the ordinary time required to traverse the flow because it is irrelevant for determin-
ing pre-asymptotic stability. Based on this fact, we generalize a flow that takes a solution
𝜑 from 𝑥(0) ∈ R𝑛 to 𝑥(f) ∈ R𝑛 in mode 𝑞 ∈ 𝒬 as a flow arrow (𝑞,nrv(𝑥(0))) f−→ (𝑞,nrv(𝑥(f)))
in the CTG.

We design the CTG as a directed graph with set-valued weights with vertices that live in
𝒬× S𝑛−1

0 . Each tuple 𝑣 := (𝑞, 𝑠) in 𝒬× S𝑛−1
0 is a vertex in the CTG if it is possible for

a solution to ℋ to jump from or to 𝑣 (i.e., if 𝑣 ∈ 𝐷 ∪𝐺(𝐷)). An arrow points between
vertices 𝑣1 := (𝑞1, 𝑠1) and 𝑣2 := (𝑞2, 𝑠2) in the CTG if a solution to ℋ can move directly
from 𝑠1 in mode 𝑞1 to ray(𝑣2) in mode 𝑞2 by a single jump or a single interval of flow.
Each arrow is labeled by the type of transition it represents (either flow or jump). The
weight of the arrow 𝑣1 → 𝑣2 typically stores the relative change in the magnitude of a
solution that starts at 𝑣1 and ends in ray(𝑣2) (except if 𝑠1 = 0𝑛, in which case the weight
stores the absolute change—but the occurrence of such cases is limited). By multiplying
together the weights of all the arrows in each walk through the CTG, we can analyze the
relative change in distance of solutions from the origin (see Proposition 5, below).

Definition 6 (Conical Transition Graph). Let ℋ = (𝐶, 𝑓,𝐷,𝐺) be a conical hybrid
system on R𝑛 with modes 𝒬. Let ℒ := {“j”, “f”} be a set of labels (j stands for jump
and f stands for flow). The CTG of ℋ is a weighted, directed graph 𝒢 = (𝒱,𝒜,𝒲) where
𝒱 ⊂ 𝒬 × S𝑛−1

0 is a set of vertices, 𝒜 ⊂ 𝒱2 × ℒ is a set of arrows between vertices, and
𝒲 : 𝒜 ⇒ R≥0 is a set-valued weight function that assigns a set of nonnegative weights
to each arrow. The set of vertices is defined as

𝒱 :=
(︀
𝐷 ∪𝐺(𝐷)

)︀
∩
(︀
𝒬× S𝑛−1

0

)︀
. (18)

For each 𝑣⊖ := (𝑞⊖, 𝑠⊖) ∈ 𝒱 ∩𝐷, and each (𝑞⊕, 𝑧⊕) ∈ 𝐺(𝑣⊖), and for 𝑠⊕ := nrv(𝑧⊕); a
jump arrow aj = 𝑣⊖ j−→ 𝑣⊕ points from 𝑣⊖ to

𝑣⊕ :=
(︀
𝑞⊕, 𝑠⊕

)︀
=
(︀
𝑞⊕, nrv(𝐴𝑒𝑠

⊖)
)︀
, (19)

where 𝑒 := (𝑞⊖, 𝑞⊕). The weight of aj = 𝑣⊖ j−→ 𝑣⊕ is the (singleton) set

𝒲(aj) :=
{︀
|𝑧⊕|

}︀
=
{︀
|𝐴𝑒𝑠

⊖|
}︀
. (20)

There is a flow arrow af = 𝑣(0) f−→ 𝑣(f) from 𝑣(0) := (𝑞, 𝑠(0)) ∈ 𝒱 ∩𝐺(𝐷) to 𝑣(f) := (𝑞, 𝑠(f)) ∈

15



S10n

v1

v2

j

f

j

Figure 4: Conical transition graph for ℋ in Example 3.

𝒱 ∩𝐷 if for some 𝜏 > 0, there exists a function 𝜉 : [0, 𝜏 ] → R𝑛 such that

𝜉(0) = 𝑠(0) (21a)

𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝜏) (21b)
𝜉(𝑡) ∈ 𝐶𝑞 ∀𝑡 ∈ (0, 𝜏) (21c)

nrv(𝜉(𝜏)) = 𝑠(f). (21d)

The weight of af is

𝒲(af) :=
{︀
|𝜉(𝜏)|

⃒⃒
𝜉 : [0, 𝜏 ]→ R𝑛 satisfies (21) for some 𝜏 > 0

}︀
. (22)

That is, for each solution 𝜉 : [0, 𝜏 ] → R𝑛 of (21)—which has |𝜉(0)| = 1 (if |𝑠(0)| = 1) or
|𝜉(0)| = 0 (if |𝑠(0)| = 0)—the magnitude of 𝜉 at time 𝜏 is an element of the weight set:
|𝜉(𝜏)| ∈ 𝒲(af). ◇

Note that each vertex in a CTG is a tuple containing a mode 𝑞 ∈ 𝒬 and a vector 𝑣 ∈ R𝑛

with 𝑣 ∈ S𝑛−1
0 .

If an arrow a := 𝑣1 → 𝑣2 points from 𝑣1 := (𝑞1, 𝑠1) ∈ 𝒱 to 𝑣2 := (𝑞2, 𝑠2) ∈ 𝒱 with 𝑠1 ̸= 0𝑛,
then the weight of a is the set of all of the possible relative changes in the magnitude of a
solution that transitions from ray(𝑠1) in mode 𝑞1 to ray(𝑠2) in mode 𝑞2 via a single jump
or interval of flow (the mode can change only for jump arrows. For a flow arrow, 𝑞1 = 𝑞2).
On the other hand, if 𝑠1 = 0𝑛, then the weight of a is the set of all of the possible absolute
changes in magnitude for a transition from 0𝑛 to ray(𝑠2) via a single jump or interval of
flow (the relative change of distance is undefined because the initial distance 0 would be
in the denominator).

In the following example, we consider a conical hybrid system with a single mode, so we
omit the logic variable. In particular, we will consider only mode 𝑞 = 0 from Example 1.
To simplify the exposition, we will omit the mode variable “𝑞” during this example.

Example 3. Consider the following conical hybrid system on R2
≥0 (the non-negative

quadrant of R2) with a single mode:

ℋ:

⎧⎪⎪⎨⎪⎪⎩
𝑓(𝑥) :=

[︂
1
0

]︂
∀𝑥 ∈ 𝐶 :=

{︀
𝑥 ∈ R2

≥0

⃒⃒
𝑥2 ≥ 𝑥1

}︀
,

𝐺(𝑥) :=

[︂
0
𝛾𝑥1

]︂
∀𝑥 ∈ 𝐷 := ray

[︀
1
1

]︀
=
{︀
𝑥 ∈ R2

≥0

⃒⃒
𝑥2 = 𝑥1

}︀
,

(23)
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with 𝛾 > 0. We will construct the CTG for ℋ. Let 𝑣1 :=
[︀
0
1

]︀
and 𝑣2 := 1√

2

[︀
1
1

]︀
, so

𝐺(𝐷) = ray 𝑣1 and 𝐷 = ray 𝑣2. Thus, the set of vertices is

𝒱 =
(︀
{0𝑛} ∪ ray 𝑣1 ∪ ray 𝑣2

)︀
∩ S𝑛−1

0 = {0𝑛, 𝑣1, 𝑣2}

and the set of arrows is

𝒜 = {0𝑛 j−→ 0𝑛, 𝑣2 j−→ 𝑣1⏟  ⏞  
Jump arrows

, 𝑣1 f−→ 𝑣2⏟  ⏞  
Flow arrow

}.

The CTG of ℋ is depicted in Figure 4. ◇

Example 4 (Example 1, cont.). Now, we will consider the full conical hybrid system ℋ
with modes from Example 1. By examining Figure 2 and the data of the system, we find
that the vertices in the CTG are(︀

0, 0𝑛
)︀
, 𝑣0 :=

(︀
0,
[︀
0
1

]︀)︀
, 𝑣1 :=

(︀
0, nrv

[︀
1
1

]︀)︀
,
(︀
1, 0𝑛

)︀
, 𝑣2 :=

(︀
1,
[︀
0
1

]︀)︀
, 𝑣3 :=

(︀
1,
[︀
cos 𝜃
sin 𝜃

]︀)︀
,

and the arrows are(︀
0, 0𝑛

)︀
j−→
(︀
0, 0𝑛

)︀
,
(︀
1, 0𝑛

)︀
j−→
(︀
1, 0𝑛

)︀
,
(︀
1, 0𝑛

)︀
f−→
(︀
1, 0𝑛

)︀
,(︀

0, 0𝑛
)︀

j−→
(︀
1, 0𝑛

)︀
,
(︀
1, 0𝑛

)︀
j−→
(︀
0, 0𝑛

)︀
, 𝑣0 f−→ 𝑣1,

𝑣1 j−→ 𝑣0, 𝑣1 j−→ 𝑣2, 𝑣2 f−→ 𝑣3,
𝑣3 j−→ 𝑣0.

(24)

There is not a flow arrow from 𝑣3 to 𝑣2 because flow arrows must start in 𝐺(𝐷), nor is
𝑣2 f−→ 𝑣2 because flow arrows must end in 𝐷. ◇

The need for the weights to be set-valued comes from the fact that there may be multiple
solutions to (21) with different final magnitudes, |𝜉(𝑇 )|, as in (22). The following example
presents a conical hybrid system with a flow arrow that has a non-singleton weight.

Example 5. Consider the following conical hybrid system:

ℋ :

{︃
𝑥̇ = 𝑓(𝑥) := −1 𝑥 ∈ 𝐶 := R≥0,

𝑥+ = 𝐺(𝑥) := 𝑥/2 𝑥 ∈ 𝐷 := R≥0.

Every maximal solution to ℋ evolves by a non-deterministic combination of flows and
jumps until it reaches 0𝑛, at which point it must jump from 0𝑛 to 0𝑛 forevermore. Thus,
0𝑛 is pre-asymptotically stable for ℋ.

The vertex set of the CTG is 𝒱 = {0, 1} and the arrow set is

𝒜 = {0 j−→ 0, 1 j−→ 1, 1 f−→ 0, 1 f−→ 1}.
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Consider, in particular, the arrow 1 f−→ 1. For all 𝑇 ∈ (0, 1), the function

𝜉 : [0, 𝑇 ] → R≥0

𝑡 ↦→ 𝜉(𝑡) := 1− 𝑡

satisfies (21) with 𝑣(0) := 1, 𝑣(f) := 1, and

|𝜉(𝑇 )| = 1− 𝑇 ∈ (0, 1).

Thus, 1 f−→ 1 is a flow arrow in the CTG with set-valued weight 𝒲(1 f−→ 1) = (0, 1). ◇

Whereas non-singleton weights for conical hybrid systems with constant flows are typically
continuous intervals, such as (0, 1), for conical hybrid systems with linear flows, non-
singleton weights are infinite sets of discrete points, as shown in the next example.

Example 6. Consider the conical hybrid ℋ = (𝐶, 𝑓,𝐷,𝐺) on R2 with dynamics given
by ⎧⎪⎨⎪⎩

𝑓(𝑥) := 𝐴𝑥 ∀𝑥 ∈ 𝐶 := R2

𝐺(𝑥) :=

[︂
−𝑥1
0

]︂
∀𝑥 ∈ 𝐷 := ray

[︀
1
0

]︀
,

where 𝐴 :=
[︀ 𝛾 −1
1 𝛾

]︀
and 𝛾 ∈ R. The vertex set for the conical transition graph is 𝒱 =

{0𝑛,
[︀
1
0

]︀
,
[︀−1

0

]︀
}. It can be shown that there are two jump arrows 0𝑛 j−→ 0𝑛 and

[︀
1
0

]︀
j−→
[︀−1

0

]︀
,

and one flow arrow
[︀−1

0

]︀
f−→
[︀
1
0

]︀
(recall that the start of a flow arrow must be in 𝐺(𝐷)

and the end must be in 𝐷). The weights for the jump arrows are

𝒲(0𝑛 j−→ 0𝑛) = {0} and 𝒲(
[︀
1
0

]︀
j−→
[︀−1

0

]︀
) = {1}.

Solutions to (21) for the flow arrow af :=
[︀
1
0

]︀
f−→
[︀−1

0

]︀
are given for each 𝑇 ∈ {𝜋, 3𝜋, 5𝜋, . . . }

by

𝑡 ↦→ 𝜉(𝑡) := exp(𝛾𝑡)

[︂
cos 𝑡

− sin 𝑡

]︂
∀𝑡 ∈ [0, 𝑇 ].

At 𝑡 = 𝑇 , the magnitude of 𝜉 is |𝜉(𝑇 )| = exp(𝛾𝑇 ). Thus, the weight of a is

𝒲(af) = {exp(𝛾𝑇 ) | 𝑇 = 𝜋, 3𝜋, 5𝜋, . . .}. ◇

In addition to having a non-singleton weight, the flow arrow 1 f−→ 1 in Example 5 illustrates
an exceptional case that we must consider. In Example 5, the origin is pAS for ℋ, so
we want every infinite-length walk through the CTG to have weight {0} (see Theorem 2,
below). But, the weight of 𝑤 := 1 f−→ 1 f−→ 1 f−→ · · · is actually 𝒲(𝑤) = [0, 1). To see 𝒲(𝑤)
contains (0, 1), take any 𝑠 > 0 and let 𝑟𝑘 := exp(−𝑠/2𝑘+1), which is in 𝒲(1 f−→ 1) = (0, 1)
for each 𝑘 ∈ N. Then, by selecting {𝑟𝑘}∞𝑘=0 in (15), we compute

∞∏︁
𝑘=0

𝑟𝑘 = exp
(︀
−𝑠/2− 𝑠/4− 𝑠/8− · · ·

)︀
= 𝑒−𝑠 ∈ (0, 1).
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Alternatively, selecting 𝑟𝑘 := 1/2 ∈ 𝒲(1 f−→ 1) results in
∏︀∞

𝑘=0 1/2 = 0. Hence, 𝒲(𝑤) =
[0, 1). The crux of the problem is that by repeatedly traversing the loop 1 f−→ 1, the walk
𝑤 represents a solution that flows part of the way to the origin, then flows a little more,
and a little more, ad infinitum, without ever jumping. As indicated by the weight 𝒲(𝑤),
we can construct such as sequence of flows that will converge to 0, but also sequences
that converge to any value in [0, 1). Fortunately, any finite sequence of consecutive flow
arrows can be replaced by a single flow arrow, whereas any infinite sequence of flow
arrows represents a solution that never jumps, so we analyze it using continuous-time
methods instead of the CTG. Therefore, we exclude walks with consecutive flow arrows
from consideration.

Definition 7 (Well-formed Walk). We say that a walk 𝑤 through a conical transition
graph 𝒢 is well-formed if no pair of consecutive arrows in 𝑤 are both flow arrows. That is,
𝑤 = (a0, a1, . . . , a𝑁−1) is a well-formed walk through 𝒢 if for every 𝑖 ∈ {1, 2, . . . , 𝑁 − 1},
either a𝑖−1 or a𝑖 is a jump arrow. ◇

Remark 2. A well-formed walk may include consecutive jump arrows.

5. Establishing Pre-asymptotic Stability via the CTG

This section presents a result that allows for pre-asymptotic stability of 𝒪 := 𝒬× {0𝑛}
(the combined origins of all of the modes) to be established by analyzing the CTG. For 𝒪
to be pre-asymptotically stable, 𝒪 must be forward invariant. Forward invariance of 𝒪
can be easily checked for a conical hybrid system, as asserted by the following result.

Proposition 2. The set 𝒪 := 𝒬× {0𝑛} is not forward invariant with respect to conical
hybrid system ℋ if and only if it has a mode 𝑞c ∈ 𝒬 with constant flows and 𝑓𝑞c ∈
𝐶𝑞c ∖ {0𝑛}. Furthermore, if 𝒪 is not forward invariant, then there exists a complete
solution 𝜑 to ℋ such that

lim
𝑡+𝑗→∞

|𝜑(𝑡, 𝑗)|𝒪 = ∞.

Proof. Suppose 𝒪 is not forward invariant. From the definition of 𝐺 in (10), we find
𝐺(𝒪) ⊂ 𝒪, so solutions to ℋ cannot leave the origin at jumps. Thus, for some 𝑞c ∈ 𝒬,
solutions to ℋ can flow away from the origin. Flows in 𝑞c are either linear or constant.
In both cases, the flow map is Lipschitz continuous, so solutions are unique. If flows
are linear, then 𝑓𝑞c(0𝑛) = 0𝑛, so all solutions to that start in {𝑞c} × {0𝑛} remain in
{𝑞c} × {0𝑛}. Hence, flows cannot be linear. Similarly, if flows are constant and 𝑓𝑞c = 0𝑛,
then solutions cannot leave the origin, so we must have constant flows with 𝑓𝑞c ̸= 0𝑛.

It remains to be shown that 𝑓𝑞c ∈ 𝐶. If 𝑓𝑞c ̸∈ 𝐶, then any solution to 𝑧̇ = 𝑓𝑞c from
𝑧(0) = 0𝑛 immediately leaves 𝐶𝑞c , so solutions to ℋ cannot flow from the origin, contra-
dicting our assumption that the origin is not forward invariant. Therefore, 𝑓𝑞c ∈ 𝐶𝑞c∖{0𝑛}.

To prove the converse direction, suppose mode 𝑞c has constant flows and 𝑓𝑞c ∈ 𝐶𝑞c ∖ {0𝑛}.
Then 𝜑 : R≥0 × {0} → R𝑛 defined by

𝜑(𝑡, 0) := (𝑞c, 𝑡𝑓𝑞c) ∀𝑡 ≥ 0
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is a complete solution to ℋ. (Since 𝑓𝑞c ∈ 𝐶𝑞c and 𝐶𝑞c is a cone, 𝑡𝑓𝑞c is also in 𝐶𝑞c for all
𝑡 ≥ 0.) Finally, since 𝑓𝑞c ≥ 0, we have that |𝜑(𝑡, 𝑗)|𝒪 → ∞.

For a simple illustration of Proposition 2, consider ℋ on R𝑛 with a single mode 𝑞 that
has constant flows 𝑧̇ = 𝑓*𝑞 and a flow set consisting of a single ray, 𝐶 := ray 𝑓*𝑞 , where
𝑓*𝑞 ∈ S𝑛−1. We have 𝑓*𝑞 ∈ 𝐶, so, by Proposition 2, the set 𝒪 is not forward invariant
for ℋ. The hybrid arc 𝜑 : R≥0 × {0} → {𝑞} × R𝑛 defined by 𝜑(𝑡, 𝑗) :=

(︀
𝑞, 𝑡𝑓*𝑞

)︀
for all

(𝑡, 𝑗) ∈ dom(𝜑) is a complete solution to ℋ that leaves 0𝑛, and lim𝑡+𝑗→∞|𝜑(𝑡, 𝑗)|𝒪 = ∞.

5.1. CTG Simulations

This section establishes a correspondence between solutions to a conical hybrid system
and walks through the CTG. For each solution, there is a unique walk called the CTG-
simulation of that solution (Definition 8). That a CTG-simulation is, in fact, a walk
through the CTG is asserted in Proposition 3. Conversely, Proposition 4 asserts that for
every well-formed nonempty walk through the CTG of a hybrid system that starts and
ends with a jump arrow, there exists a solution that the walk simulates. This section is
concluded with Proposition 5, which shows that the relative change in the magnitude of
a solution is an element in the set-valued weight of the solutions CTG-simulation.

Definition 8 (CTG Simulation). Let ℋ be a conical hybrid system with modes 𝒬 and
conical transition graph 𝒢. Consider any solution (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) :=

(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
to ℋ

that jumps at least once. Let 𝐽 := sup𝑗 dom(𝜑) ∈ {1, 2, . . . ,∞}. Let 𝑡0 := 0 and let 𝑡𝑗
denote the 𝑗th jump time of 𝜑 for each 𝑗 ∈ {1, 2, . . . , 𝐽}. Let 𝐾0 := 0 and for each
finite 𝑗 ∈ {1, . . . , 𝐽}, let 𝐾𝑗 be the cumulative number of jumps and intervals of flow
in 𝜑 between (𝑡1, 0) ∈ dom(𝜑) and (𝑡𝑗 , 𝑗) ∈ dom(𝜑). Let ℎ0 := (𝑡1, 0), and for each
𝑘 ∈ {1, . . . ,𝐾𝐽}, let ℎ𝑘 be the first hybrid time among

(𝑡1, 1), (𝑡2, 1), (𝑡2, 2), . . . , (𝑡𝐽 , 𝐽 − 1), (𝑡𝐽 , 𝐽) (25)

that does not occur among ℎ0, ℎ1, . . ., ℎ𝑘−1. We denote the 𝑡-component of ℎ𝑘 as
𝜋t(ℎ𝑘) and the 𝑗-component as 𝜋j(ℎ𝑘), i.e., ℎ𝑘 = (𝜋t(ℎ𝑘), 𝜋j(ℎ𝑘)). Note that for each
𝑘 ∈ {0, 1, . . . ,𝐾𝐽 − 1}, either 𝜋j(ℎ𝑘) = 𝜋j(ℎ𝑘+1) and 𝜋t(ℎ𝑘) < 𝜋t(ℎ𝑘+1), or 𝜋j(ℎ𝑘) <
𝜋j(ℎ𝑘+1) and 𝜋t(ℎ𝑘) = 𝜋t(ℎ𝑘+1).

We say that
𝑤 := (𝑣0

ℓ0−→ 𝑣1
ℓ1−→ . . .

ℓ(𝐾𝐽−2)−−−−−→ 𝑣(𝐾𝐽−1)
ℓ(𝐾𝐽−1)−−−−−→ 𝑣𝐾𝐽

)

is the CTG simulation or the 𝒢-simulation of 𝜑, where {𝑣𝑘}𝐾𝐽

𝑘=0 is a sequence in 𝒬× S𝑛−1
0

defined as
𝑣𝑘 :=

(︀
𝑞(ℎ𝑘), nrv(𝑧(ℎ𝑘))

)︀
∀𝑘 ∈ {0, 1, . . . ,𝐾𝐽} (26)

and {ℓ𝑘}𝐾𝐽−1
𝑘=0 is a sequence of labels in ℒ defined by

ℓ𝑘 :=

{︃
j if 𝜋j(ℎ𝑘+1) > 𝜋j(ℎ𝑘)

f if 𝜋t(ℎ𝑘+1) > 𝜋t(ℎ𝑘)
∀𝑘 ∈ {0, 1, . . . ,𝐾𝐽 − 1}. (27)

◇
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Remark 3. A CTG simulation of a solution 𝜑 is a representation of 𝜑 with “snapshots” of
the solution projected onto S𝑛−1

0 by the nrv function before and after each jump. Such
a simulation does not say anything about how 𝜑 flows before the first jump or after the
last jump.

Lemma 2. Suppose ℋ := (𝐶, 𝑓,𝐷,𝐺) is a conical hybrid system with modes 𝒬 and
transitions ℰ . For any (𝑞⊖, 𝑧⊖) ∈ 𝐷 and (𝑞⊕, 𝑧⊕) ∈ 𝐺(𝑞⊖, 𝑧⊖), let 𝑠⊖ := nrv(𝑧⊖) and
𝑠⊕ := nrv(𝑧⊕). Then,

𝑣⊖ :=
(︀
𝑞⊖, 𝑠⊖

)︀
∈ 𝒱 ∩𝐷, 𝑣⊕ :=

(︀
𝑞⊕, 𝑠⊕

)︀
∈ 𝒱 ∩𝐺(𝐷),

and aj := 𝑣⊖ j−→ 𝑣⊕ is a jump arrow in the CTG of ℋ.

Furthermore, if (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
is a solution to ℋ, then for each jump

time 𝑡𝑗 in dom(𝜑), (︀
𝑞(𝑗 − 1), nrv(𝑧(𝑡𝑗 , 𝑗 − 1))

)︀
j−→
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
(28)

is a jump arrow in 𝒢.

Proof. Take any (𝑞⊖, 𝑧⊖) ∈ 𝐷 and (𝑞⊕, 𝑧⊕) ∈ 𝐺(𝑞⊖, 𝑧⊖). It follows immediately from
the definition of the jump set that 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ and 𝑧⊖ ∈ 𝐷𝑒. Since 𝐷𝑒 is a cone,
𝑠⊖ := nrv(𝑧⊖) is also in 𝐷𝑒, so 𝑣⊖ := (𝑞⊖, 𝑠⊖) ∈ 𝒱 ∩𝐷.

Next, we will show that 𝑣⊕ := (𝑞⊕, 𝑠⊕) is a vertex in 𝒱∩𝐺(𝐷) (specifically, 𝑣⊕ ∈ 𝒱∩𝐺(𝐷)),
where 𝑠⊕ := nrv(𝑧⊕). Let

𝑧* :=

{︃
𝑠⊖/|𝐴𝑒𝑠

⊖| if 𝐴𝑒𝑠
⊖ ̸= 0𝑛

𝑠⊖ if 𝐴𝑒𝑠
⊖ = 0𝑛.

Since 𝑠⊖ ∈ 𝐷𝑒 and 𝐷𝑒 is a cone, we have that 𝑧* ∈ 𝐷𝑒, so (𝑞⊖, 𝑧*) ∈ 𝐷. Then,

𝐴𝑒𝑧
* = 𝑠⊕.

To see why, first suppose that 𝐴𝑒𝑠
⊖ ̸= 0𝑛. Then,

𝐴𝑒𝑧
* = 𝐴𝑒(𝑠

⊖/|𝐴𝑒𝑠
⊖|) = nrv(𝐴𝑒𝑠

⊖) = nrv(𝐴𝑒𝑧
⊖) = 𝑠⊕,

where the penultimate equality is a result of (5). On the other hand, if 𝐴𝑒𝑠
⊖ = 0𝑛, then

𝐴𝑒𝑧
* = 0𝑛 = 𝑠⊕. Therefore, 𝑣⊕ ∈ 𝐺(𝑞⊖, 𝑧*), so 𝑣⊕ is in 𝐺(𝐷) and 𝒱.

To finish the proof, we must show that 𝑣⊖ j−→ 𝑣⊕ is a jump arrow in the CTG of ℋ. Using
the definitions of 𝑠⊕ and 𝑧⊕, we have that 𝑠⊕ = nrv(𝑧⊕) = nrv(𝐴𝑒𝑧

⊖). By linearity,
𝐴𝑒𝑧

⊖ = |𝑧⊖|𝐴𝑒𝑠
⊖, so nrv(𝐴𝑒𝑧

⊖) = nrv(𝐴𝑒𝑠
⊖). Therefore, per (19), 𝑣⊖ → 𝑣⊕ is a jump

arrow.

Finally, (28) is a jump arrow in 𝒢 since 𝜑(𝑡𝑗 , 𝑗 − 1) ∈ 𝐷 at each jump time 𝑡𝑗 .

Lemma 3. Consider a conical hybrid system ℋ := (𝐶, 𝑓,𝐷,𝐺) with modes 𝒬 and
transitions ℰ . Let (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) =

(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
be any solution to ℋ with jump times

𝑡𝑗 and 𝐽 := sup𝑗 dom(𝜑). For each interval flow [𝑡𝑗 , 𝑡𝑗+1] in dom(𝜑), if 𝑗 ∈ {1, 2, . . . , 𝐽−1},
then (︀

𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))
)︀

f−→
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗+1, 𝑗))

)︀
(29)

is a flow arrow in 𝒢.
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Proof. Let (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
be a solution to ℋ. Without loss of generality,

suppose 𝐽 > 1 (otherwise the conclusion is vacuously true). Take any 𝑗 ∈ {1, 2, . . . , 𝐽−1}.
Let 𝑧(0) := 𝑧(𝑡𝑗 , 𝑗), 𝑠(0) := nrv(𝑧(0)), 𝑧(f) := 𝑧(𝑡𝑗+1, 𝑗), and 𝑠(f) := nrv(𝑧(f)).

Then, 𝜑(𝑡𝑗 , 𝑗) ∈ 𝐺(𝜑(𝑡𝑗 , 𝑗−1)), so 𝑣(0) := (𝑞(𝑗), 𝑠(0)) is a vertex in 𝒱. Similarly, 𝜑(𝑡𝑗+1, 𝑗) ∈
𝐷, so 𝑣(f) := (𝑞(𝑗), 𝑠(f)) is in 𝒱.

To show that 𝑣(0) f−→ 𝑣(f) is a flow arrow, for 𝜏 := 𝑡𝑗+1 − 𝑡𝑗 , let 𝜉 : [0, 𝜏 ] → R𝑛 be defined
by

𝑡 ↦→ 𝜉(𝑡) :=

{︃
𝑧(𝑡+ 𝑡𝑗 , 𝑗)/|𝑧(0)| if |𝑧(0)| ≠ 0

𝑧(𝑡+ 𝑡𝑗 , 𝑗) if |𝑧(0)| = 0𝑛.

Since [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow, 𝜏 is positive. We will check each condition in the flow
arrow conditions (21). Equation (21a) is satisfied because 𝜉(0) = nrv(𝑧(0)) = 𝑠(0). From
the flow condition (9b) of hybrid solutions, we have that 𝑧̇(𝑡, 𝑗) = 𝑓𝑞(𝑧(𝑡, 𝑗)) for almost
all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. Since 𝑓𝑞 is either constant or linear, 𝑡 ↦→ 𝑧(𝑗, 𝑡) is the unique solution
to 𝑥̇ = 𝑓𝑞(𝑥) and 𝑧̇(𝑗, 𝑡) = 𝑓𝑞(𝑧(𝑗, 𝑡)) for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1) (rather than merely almost all).
Therefore, (21b) is satisfied:

𝑑𝜉

𝑑𝑡
(𝑡) =

𝑑𝑧

𝑑𝑡
(𝑡+ 𝑡𝑗) = 𝑓𝑞(𝑧(𝑡+ 𝑡𝑗)) = 𝑓𝑞(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝜏).

By (9a), 𝜑(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1), so 𝑧(𝑡, 𝑗) ∈ 𝐶𝑞 for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1) and

𝜉(𝑡) ∈ 𝐶𝑞 ∀𝑡 ∈ (0, 𝑇 ),

satisfying (21c).

Finally, (21d) is satisfied:

nrv(𝜉(𝑇 )) =

{︃
nrv(𝑧(f)/|𝑧(0)|) if |𝑧(0)| ≠ 0

nrv(𝑧(f)) if |𝑧(0)| = 0

= nrv(𝑧(f)) = 𝑠(f).

Therefore, 𝑣(0) f−→ 𝑣(f) is a flow arrow in 𝒢.

Proposition 3. Consider a conical hybrid system ℋ with conical transition graph 𝒢. For
any solution 𝜑 to ℋ, the 𝒢-simulation of 𝜑 is a well-formed walk through 𝒢.

Proof. Let 𝑤 be the 𝒢-simulation of 𝜑, and let {𝐾𝑗}𝐽𝑗=0, {𝑣𝑘}𝐾𝐽

𝑘=0, and {ℓ𝑘}𝐾𝐽−1
𝑘=0 be

defined as in Definition 8. We write the components of 𝜑 as 𝜑(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
. To

show that 𝑤 is a walk through 𝒢, we must show that each 𝑣𝑘 is a vertex in 𝒱, and for each
𝑘 ∈ {0, 1, . . . ,𝐾𝑗} that 𝑣𝑘 → 𝑣𝑘+1 is an arrow in 𝒢. The values of 𝐾𝑗 always increment by
+1 or +2, i.e., 𝐾(𝑗+1) ∈ {𝐾𝑗+1,𝐾𝑗+2}. Thus, for each 𝑗 ∈ {0, 1, . . . , 𝐽}, we need to show

that 𝑣𝐾𝑗
∈ 𝒱 and (if 𝑗 < 𝐽) that 𝑣𝐾𝑗+1 ∈ 𝒱. Furthermore, we need to show 𝑣𝐾𝑗

ℓ𝐾𝑗−−→ 𝑣𝐾𝑗+1

is an arrow in 𝒜. If 𝐾(𝑗+1) = 𝐾𝑗+2, we also need to show 𝑣𝐾𝑗+1
ℓ𝐾𝑗+1

−−−−→ 𝑣𝐾𝑗+2 is an arrow
in 𝒜. We will consider separately the cases of 𝐾(𝑗+1) = 𝐾𝑗 + 1 and 𝐾(𝑗+1) = 𝐾𝑗 + 2.

Take any 𝑗 ∈ {0, 1, . . . , 𝐽}.
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Case 1 (𝐾(𝑗+1) = 𝐾𝑗 + 1). Suppose 𝐾(𝑗+1) = 𝐾𝑗 + 1, which requires that either 𝑗 = 0
or 𝑡𝑗 = 𝑡𝑗+1. For the case where 𝑗 = 0, there is a jump arrow in 𝒢 from 𝑣0 =(︀
𝑞(0), nrv(𝑧(𝑡1, 0))

)︀
to 𝑣1 =

(︀
𝑞(1), nrv(𝑡1, 1)

)︀
per Lemma 2, since 𝑡1 is a jump time

in dom(𝜑). Similarly, if 𝑡𝑗 = 𝑡𝑗+1, then(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
=
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗+1, 𝑗))

)︀
∈ 𝐷,

so, again by Lemma 2, there is a jump arrow in 𝒢 from

𝑣𝐾𝑗
=
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
to 𝑣𝐾(𝑗+1)

=
(︀
𝑞(𝑗 + 1), nrv(𝑡𝑗+1, 𝑗 + 1)

)︀
.

Case 2 (𝐾(𝑗+1) = 𝐾𝑗 + 2). Suppose 𝐾(𝑗+1) = 𝐾𝑗 + 2. From the definition of 𝐾𝑗 , it
follows that 𝑗 ∈ {1, 2, . . . , 𝐽 − 1} and [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜑). By
Lemma 3, there is a flow arrow in 𝒢 from 𝑣𝐾𝑗

=
(︀
𝑞(𝑗), nrv(𝑧(𝑡𝑗 , 𝑗))

)︀
to 𝑣𝐾𝑗+1 =(︀

𝑞(𝑗), 𝑧(𝑡𝑗+1, 𝑗)
)︀
. Additionally, because 𝑡𝑗+1 is a jump time, there is a jump arrow

in 𝒢 from

𝑣(𝐾𝑗+1) to 𝑣(𝐾𝑗+2) = 𝑣𝐾(𝑗+1)
=
(︀
𝑞(𝑗 + 1), nrv(𝑡𝑗+1, 𝑗 + 1)

)︀
,

per Lemma 2.

Therefore, we have shown that each 𝑣𝑘 is a vertex in 𝒱 and each step in 𝑤 is an arrow
in 𝒜, so 𝑤 is a walk through 𝒢. Furthermore, each flow arrow in 𝑤 is followed by a jump
arrow, as shown in Case 2, so 𝑤 is well-formed.

Proposition 4. Consider a conical hybrid system ℋ with modes 𝒬 and conical transition
graph 𝒢. For some 𝐾 ∈ {1, 2, . . . ,∞}, suppose that

𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · · ℓ(𝐾−1)−−−−→ 𝑣𝐾)

is a well-formed walk through 𝒢 with ℓ0 = j and if 𝐾 <∞, then ℓ(𝐾−1) = j. Then, there
exists a solution 𝜑 to ℋ such that 𝑤 is the 𝒢-simulation of 𝜑.

Proof. Let 𝐽 be the total number of jump arrows in 𝑤. For each finite 𝚥 ∈ {0, 1, . . . , 𝐽},
let 𝐾𝚥 be the index of the vertex in 𝑤 immediately after 𝚥-many jump arrows. That is,
𝐾𝑗 ∈ N is the smallest number such that there are 𝚥 jump labels in {ℓ0, ℓ1, . . . , ℓ𝐾𝚥

}.

For each finite 𝑘 ∈ {0, 1, 2, . . . ,𝐾}, let (𝑞𝑘, 𝑠𝑘) := 𝑣𝑘. We will construct a sequence
{𝜑𝚥}𝐽𝚥=1 of hybrid arcs in the form

(𝑡, 𝑗) ↦→ 𝜑𝚥(𝑡, 𝑗) =
(︀
𝑝𝚥(𝑗), 𝑧𝚥(𝑡, 𝑗)

)︀
, (30)

where dom(𝜑𝚥) and 𝑧𝚥 are defined below, and 𝑗 ↦→ 𝑝𝚥(𝑗) := 𝑞𝐾𝑗
for each 𝑗 ∈ {0, 1, . . . , 𝚥}.

By induction, we will show that for each 𝚥 ∈ {1, 2, . . . , 𝐽},

(S1) if 𝚥 > 1, then 𝜑𝚥 is an extension of 𝜑𝚥−1,

(S2) 𝜑𝚥 is a solution to ℋ that jumps 𝚥 times (i.e., sup𝑗 dom(𝜑𝚥) = 𝚥),
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(S3) nrv
(︀
𝑧𝚥(𝑇𝚥, 𝚥)

)︀
= 𝑠𝐾𝚥 , where 𝑇𝚥 := sup𝑡 dom(𝜑𝚥) is finite (and 𝚥 = sup𝑗 dom(𝜑𝚥)),

(S4) 𝑤𝚥 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · ·
ℓ(𝐾𝚥−1)

−−−−−→ 𝑣𝐾𝚥
) is the 𝒢-simulation of 𝜑𝚥.

The following definition is used to construct 𝜑𝚥. For each 𝑘 ∈ {0, 1, . . . ,𝐾 − 1} such that
ℓ𝑘 = f, take 𝜏𝑘 > 0 and 𝜉𝑘 : [0, 𝜏𝑘] → R𝑛 that satisfy the flow arrow conditions in (21).

For the base case (𝚥 = 1), let dom(𝜑1) := {(0, 0), (0, 1)}, 𝑧1(0, 0) := 𝑠0, and 𝑧1(0, 1) :=
𝐴𝑒0𝑠0. Hence, 𝜑1(0, 0) = (𝑞0, 𝑠0) = 𝑣0 and 𝜑1(0, 1) =

(︀
𝑞1, 𝐴𝑒0𝑠0

)︀
. Condition (S1)

is vacuously satisfied because 𝚥 = 1. Since 𝑣0 j−→ 𝑣1 is a jump arrow, 𝜑1(0, 0) is in 𝐷.
Thus, 𝜑1 is a solution to ℋ with one jump—satisfying (S2)—because dom(𝜑1) has no
intervals of flow and satisfies (8) at 𝑡1 = 0, the only jump time in dom(𝜑1). Additionally,
since (𝑞0, 𝑠0) j−→ (𝑞1, 𝑠1) is a jump arrow, (19) requires that 𝑠1 = nrv(𝐴𝑒0𝑠0). Thus,
nrv(𝑧1(𝑇1, 𝐽1)) = nrv(𝑧1(0, 1)) = 𝑠1 = 𝑠𝐾1 , satisfying (S3). The walk 𝑤1 = 𝑣0 j−→ 𝑣1 is the
𝒢-simulation of 𝜑1 with ℎ0 = (0, 0) and ℎ1 = (0, 1), as defined in Definition 8, thus (S4)
is satisfied, finishing the proof that the base case satisfies (S1)–(S4).

For the inductive case, take any 𝚥 ∈ {1, 2, . . . , 𝐽 − 1} and suppose that 𝜑𝚥 is a hybrid arc
that satisfies (S1)–(S4). We define 𝜑𝚥+1 as an extension of 𝜑𝚥, i.e., dom(𝜑𝚥) ⊂ dom(𝜑𝚥+1)
and 𝜑𝚥+1(𝑡, 𝑗) := 𝜑𝚥(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜑𝚥), so (S1) holds by construction. We define
𝜑𝚥+1 beyond the domain of 𝜑𝚥 via three cases. In each case, we will define 𝑘⊖ and 𝑘⊕

and, for Cases 2 and 3, we also define 𝑘(0) and 𝑘(f). For the given definitions of 𝑘⊖, 𝑘⊕,
𝑘(0), and 𝑘(f), let

𝑣⊛ := 𝑣𝑘⊛ , 𝑠⊛ := 𝑠𝑘⊛ , and 𝑞⊛ := 𝑞𝑘⊛ for each ⊛ ∈ {⊖,⊕, (0), (f)},

and 𝑒 := (𝑞𝑘⊖ , 𝑞𝑘⊕).

Case 1 (jump arrow). Suppose ℓ𝐾𝚥
is a jump label. There are, 𝚥-many jump arrows

from 𝑣0 to 𝑣𝐾𝚥
(by the definition of 𝐾𝚥) and it takes one additional step 𝑣𝐾𝚥

j−→ 𝑣𝐾𝚥+1

for the walk 𝑤(𝚥+1) to contain 𝚥+ 1 jump arrows, because ℓ𝐾𝚥
= j, so 𝐾(𝚥+1) =

𝐾𝚥 + 1. Let 𝑘⊖ := 𝐾𝚥 and 𝑘⊕ := 𝐾(𝚥+1), We also define 𝑟0 := |𝑧𝚥(𝑇𝚥, 𝚥)| and
𝑟j := |𝐴𝑒𝑠

(0)| ∈ 𝒲(𝑣⊖ j−→ 𝑣⊕). Let

dom(𝜑𝚥+1) := dom(𝜑𝚥) ∪ ({𝑇𝚥} × {𝚥, 𝚥+ 1}),

and
𝑧𝚥+1(𝑇𝚥, 𝚥+ 1) := 𝑟0𝐴𝑒𝑠

⊖.

Since 𝑣⊖ j−→ 𝑣⊕ is a jump arrow in 𝒜, we have that (𝑞⊖, 𝑠⊖) ∈ 𝐷. By property (3)
of the nrv function and (S3) from the inductive hypothesis,

𝑧𝚥(𝑇𝚥, 𝚥) = |𝑧𝚥(𝑇𝚥, 𝚥)|nrv(𝑧𝚥(𝑇𝚥, 𝚥)) = 𝑟0𝑠
⊖.

Since 𝐷𝑒 is a cone containing 𝑠⊖, we have that 𝑧𝚥(𝑇𝚥, 𝚥) ∈ 𝐷𝑒 and thus 𝜑𝚥(𝑇𝚥, 𝚥) is
in 𝐷. Additionally,

𝜑𝚥+1(𝑇𝚥, 𝚥+ 1) =
(︀
𝑞⊕, 𝐴𝑒(𝑟0𝑠

⊖)
)︀
∈ 𝐺(𝜑𝚥+1(𝑇𝚥, 𝚥)).
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Therefore, 𝜑𝚥+1 is a solution that jumps 𝚥+ 1 times, thereby satisfying (S2). At the
end of 𝜑𝚥+1, we have 𝑧𝚥+1(𝑇𝚥+1, 𝚥+1) = 𝑟0𝐴𝑒𝑠

⊖. By the definition of a jump arrow
in (19), 𝑠⊕ = nrv(𝐴𝑒𝑠

⊖). Furthermore, 𝑠⊕ = nrv(𝑟0𝐴𝑒𝑠
⊖) = nrv(𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1))

because 𝑟0 ≥ 0 with 𝑟0 = 0 if and only if 𝑠⊖ = 0𝑛, in which case 𝐴𝑒𝑠
⊖ = 0𝑛, also.

Thus, (S3) is satisfied.

By (S4) in the inductive hypothesis, 𝑤𝚥 is the CTG-simulation of 𝜑𝚥, so Equa-
tions (26) and (27) are satisfied up to 𝐾𝚥 and 𝐾𝚥 − 1, respectively. For 𝚥+ 1,
the hybrid times ℎ0, ℎ1, . . . , ℎ𝐾𝚥

defined in Definition 8 are the same as for 𝚥 and
ℎ𝐾𝚥+1

= (𝑇𝚥+1, 𝚥+ 1). Using (S3), we find that

𝑣⊕ =
(︀
𝑞⊕, 𝑠⊕

)︀
=
(︁
𝑝𝚥+1(𝚥+ 1), nrv

(︀
𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1)

)︀)︁
,

satisfying (26) for 𝑘 = 𝐾𝚥+1. Finally, 𝜋j
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋j

(︀
ℎ𝐾𝚥

)︀
, so (27) is satisfied for

𝑘 = 𝐾𝚥+1 − 1. Therefore, 𝑤𝚥+1 is the CTG-simulation of 𝜑𝚥+1, as required by (S4).

Case 2 (flow arrow in mode with linear flows). Suppose ℓ𝐾𝚥
= f and 𝑞𝐾𝚥

is a
mode with linear flows. Since ℓ𝐾𝚥

= f and 𝑤 is well-formed, ℓ𝐾𝚥+1 is a jump
label, so 𝐾(𝚥+1) = 𝐾𝚥 + 2. Let 𝑘(0) := 𝐾𝚥, 𝑘(f) := 𝐾𝚥 + 1, 𝑘⊖ := 𝐾𝚥 + 1, and
𝑘⊕ := 𝐾𝚥 + 2. From the definition of flow arrows, take 𝜏 > 0 and 𝜉 : [0, 𝜏 ] → R𝑛

that satisfy (21) for 𝑣(0) f−→ 𝑣(f). We also define 𝑞 := 𝑞(0) = 𝑞(f), 𝑟0 := |𝑧𝚥(𝑇𝚥, 𝚥)|,
𝑟f := |𝜉(𝜏)| ∈ 𝒲(𝑣(0) f−→ 𝑣(f)), and 𝑟j := |𝐴𝑒𝑠

⊖| ∈ 𝒲(𝑣(0) j−→ 𝑣(f)). The extension of
dom(𝜑𝚥) is defined as

dom(𝜑𝚥+1) := dom(𝜑𝚥) ∪ ([𝑇𝚥, 𝑇𝚥 + 𝜏 ]× {𝚥, 𝚥+ 1}).

Thus, 𝑇𝚥+1 = 𝑇𝚥+𝜏 . The values of 𝑧𝚥+1 are defined for (𝑡, 𝑗) ∈ dom(𝜑𝚥+1)∖dom(𝜑𝚥)
as

𝑧𝚥+1(𝑡, 𝚥) := 𝑟0𝜉(𝑡− 𝑇𝚥) ∀𝑡 ∈ [𝑇𝚥, 𝑇𝚥+1] (31a)

𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) := 𝑟0𝑟f𝐴𝑒𝑠
⊖. (31b)

Since 𝜉(𝑡) ∈ 𝐶𝑞 for all 𝑡 ∈ (0, 𝜏) and 𝐶𝑞 is a cone, 𝑧𝚥+1(𝑡, 𝚥) is also in 𝐶𝑞 for all
𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1), satisfying (9a). Furthermore, the hybrid arc 𝜑𝚥+1 satisfies the flow
condition (9b) for all 𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1):

𝑑𝑧𝚥+1

𝑑𝑡
(𝑡, 𝑗) =

𝑑

𝑑𝑡

(︀
𝑟0𝜉
(︀
𝑡− 𝑇𝚥

)︀)︀
= 𝑟0𝑓𝑞(𝜉(𝑡− 𝑇𝚥)) = 𝑟0𝐴𝑞𝜉(𝑡− 𝑇𝚥)

= 𝐴𝑞𝑟0𝜉(𝑡− 𝑇𝚥) = 𝑓𝑞(𝑧𝚥+1(𝑡, 𝑗)).

By the definition of flow arrows, namely (21d), nrv(𝜉(𝜏)) = 𝑠(f), so at the end
of the interval of flow (𝑇𝚥, 𝑇𝚥+1), we have 𝑧𝚥+1(𝑇𝚥+1, 𝚥) = 𝑟0𝜉(𝜏) ∈ 𝐷𝑒. Thus,
𝜑𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐷, satisfying (8a). Furthermore, (8b) is satisfied because 𝜑𝚥+1(𝑇𝚥+1, 𝚥) ∈
𝐺(𝜑𝚥+1(𝑇𝚥+1, 𝚥)) because

𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) = 𝑟0𝑟f𝐴𝑒𝑠
⊖ = 𝐴𝑒(𝑟0𝑟𝑓𝑠

⊖) = 𝐴𝑒(𝑟0|𝜉(𝜏)|nrv(𝜉(𝜏)))
= 𝐴𝑒(𝑟0𝜉(𝜏)) = 𝐴𝑒𝑧𝚥+1(𝑇𝚥+1, 𝚥). (32)

Therefore, 𝜑𝚥+1 is a solution to ℋ that jumps one more time than 𝜑𝚥, satisfying (S2).
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Let 𝑧0 := 𝑧𝚥+1(𝑇𝚥, 𝐽𝚥) and 𝑧𝑓 := 𝑧𝚥+1(𝑇𝚥+1, 𝐽𝚥+1). We want to show nrv(𝑧𝑓 ) =
𝑠⊕ = 𝑠𝐾𝚥+1. By definition, in (32), 𝑧𝑓 = 𝑟0𝑟f𝐴𝑒𝑠

⊖. If 𝑟0𝑟f > 0, then we have that
nrv(𝑧𝑓 ) = 𝑠⊕, per (4), since 𝑠⊕ = nrv(𝐴𝑒𝑠

⊖).

On the other hand, if 𝑟0 = 0, then 𝑠(f) = 𝑠⊖ = 𝑧0 = 0𝑛 and, because mode 𝑞 has
linear flows, solutions cannot flow away from the origin, so 𝑟f = 0, 𝑧𝑓 = 0𝑛, and
𝑠(f) = 𝑠⊖ = 0𝑛, so 𝑠⊕ = nrv(𝐴𝑒𝑠

⊖) = nrv(0𝑛) = 0𝑛. Thus, nrv(𝑧𝑓 ) = 𝑠⊕.

Finally, if 𝑟f = 0, then 𝑠(f) = 𝑠⊖ = 0𝑛, because |𝜉(𝜏)| = 0. Since 𝑠⊕ = nrv(𝐴𝑒𝑠
⊖) =

0𝑛, we have that
nrv(𝑧𝑓 ) = 𝑠⊕ = 0𝑛.

Next, we want to show (S4), i.e., that 𝑤𝚥+1 is the 𝒢-simulation of 𝜑𝚥+1, which
requires showing (26) holds for 𝑘 ∈ {𝐾𝚥 + 1,𝐾𝚥 + 2}, and (27) holds for 𝑘 ∈
{𝐾𝚥,𝐾𝚥 + 1}. By assumption, 𝑤𝚥 is the 𝒢-simulation of 𝑧𝚥. For 𝑧𝚥+1, the sequence
ℎ0, ℎ1, . . . , ℎ𝐾(𝚥+1)

defined in Definition 8 has two more elements than the corre-
sponding sequence for 𝑧𝚥, namely ℎ(𝐾𝚥+1) = (𝑇𝚥+1, 𝚥) and ℎ(𝐾𝚥+2) = ℎ𝐾(𝚥+1)

=
(𝑇𝚥+1, 𝚥+ 1).

First, we will show that 𝑤𝚥+1 satisfies (26) for 𝑘 = 𝐾𝚥 + 1. We have that

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑝𝚥+1(𝚥) = 𝑞𝐾𝚥

because 𝑝𝚥+1(𝑗) = 𝑞𝐾𝑗
by definition for each 𝑗 ∈ {0, 1, . . . , 𝚥+ 1}. But,

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑞𝐾𝚥+1,

because 𝑞 = 𝑞(0) = 𝑞𝐾𝚥
= 𝑞𝐾𝚥+1 = 𝑞(f), as required by (26) for 𝑘 = 𝐾𝚥 + 1. For the

𝑧-component,
𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥) = 𝑟0𝜉(𝜏).

Suppose, first, that 𝑟0 > 0. Then, by (4), Suppose, instead, that 𝑟0 = 0. In this
case, 𝜉 is identically zero because 𝑡 ↦→ 𝜉(𝑡) := 0𝑛 is the unique solution to 𝑥̇ = 𝐴𝑞𝑥
from 𝑥0 = 0𝑛. Thus, nrv(𝑟0𝜉(𝜏)) = nrv(𝜉(𝜏)) = 0𝑛. By (21d), nrv(𝜉(𝜏)) = 𝑠(f), so

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑠𝐾𝚥+1,

therefore (26) is satisfied for 𝑘 = 𝐾𝚥 + 1.

Next, we will show that 𝑤𝚥+1 satisfies (26) for 𝑘 = 𝐾𝚥 + 2 = 𝐾(𝚥+1). We have that

𝑝𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑝𝚥+1(𝚥+ 1) = 𝑞𝐾(𝚥+1)

,

as required by (26) for 𝑘 = 𝐾𝚥 + 1. For the 𝑧-component,

𝑧𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1).

We have already shown that (S3) holds, so nrv(𝑧𝚥+1(ℎ𝐾(𝚥+1)
)) = 𝑠𝐾(𝚥+1)

. There-
fore, (26) holds for 𝑘 = 𝐾(𝚥+1).

Finally, (27) is satisfied for 𝑘 = 𝐾𝚥 because ℓ𝐾𝚥
= f and

𝜋t
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋t

(︀
ℎ𝐾𝚥

)︀
,
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and is satisfied for 𝑘 = 𝐾𝚥 + 1 because ℓ𝐾𝚥+1 = j and

𝜋j
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋j

(︀
ℎ𝐾𝚥+1

)︀
.

Therefore, 𝑤𝚥+1 is the 𝒢-simulation of 𝜑𝚥+1, satisfying (S4).

Case 3 (flow arrow in mode with constant flows). Suppose ℓ𝐾𝚥
= f and 𝑞𝐾𝚥

is a
mode with constant flows. Since 𝑤 is well-formed, ℓ𝐾𝚥+1 = j and 𝐾(𝚥+1) = 𝐾𝚥 + 2.
Let 𝑘(0) := 𝐾𝚥, 𝑘(f) := 𝐾𝚥 +1, 𝑘⊖ := 𝐾𝚥 +1, and 𝑘⊕ := 𝐾𝚥 +2. From the definition
of flow arrows, take 𝜏 > 0 and 𝜉 : [0, 𝜏 ] → R𝑛 that satisfy (21) for 𝑣(0) f−→ 𝑣(f). We
also define 𝑞 := 𝑞(0) = 𝑞(f), 𝑟0 := |𝑧𝚥(𝑇𝚥, 𝚥)|, 𝑟f := |𝜉(𝜏)| ∈ 𝒲(𝑣(0) f−→ 𝑣(f)), and
𝑟j := |𝐴𝑒𝑠

⊖| ∈ 𝒲(𝑣(0) j−→ 𝑣(f)). Let

dom(𝜑𝚥+1) := dom(𝜑𝚥) ∪
(︀
[𝑇𝚥, 𝑇𝚥+1]× {𝚥, 𝚥+ 1}

)︀
,

where

𝑇𝚥+1 := 𝑇𝚥 +

{︃
𝑟0𝜏 if 𝑟0 > 0

𝜏 if 𝑟0 = 0.

The value of 𝑧𝚥+1(𝑡, 𝑗) is defined for (𝑡, 𝑗) ∈ dom(𝜑𝚥+1) ∖ dom(𝜑𝚥) as

𝑧𝚥+1(𝑡, 𝚥) :=

{︃
𝑟0𝜉
(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀
if 𝑟0 > 0

𝜉
(︀
𝑡− 𝑇𝚥

)︀
if 𝑟0 = 0

∀𝑡 ∈ [𝑇𝚥, 𝑇𝚥+1] (33a)

𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1) :=

{︃
𝑟0𝑟f𝐴𝑒𝑠

⊖ if 𝑟0 > 0

𝑟f𝐴𝑒𝑠
⊖ if 𝑟0 = 0.

(33b)

To show (S2), we will consider separately the cases 𝑟0 > 0 and 𝑟0 = 0. Suppose,
first, that 𝑟0 > 0. Then, 𝜑𝚥+1 satisfies the flow condition (9b) for all 𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1):

𝑧̇𝚥+1(𝑡, 𝚥) =
𝑑

𝑑𝑡

(︀
𝑟0𝜉
(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀)︀
= 𝑟0𝑓𝑞

(︀
𝜉
(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀)︀ 𝑑
𝑑𝑡

(︀
(𝑡− 𝑇𝚥)/𝑟0

)︀
= 𝑓𝑞(𝑧𝚥+1(𝑡, 𝚥)).

If, instead, 𝑟0 = 0, then,

𝑧̇𝚥+1(𝑡, 𝚥) =
𝑑

𝑑𝑡

(︀
𝜉
(︀
𝑡− 𝑇𝚥

)︀)︀
= 𝑓𝑞

(︀
𝑧𝚥+1(𝑡, 𝚥)

)︀
,

again satisfying (9b). In both cases, 𝑧𝚥+1(𝑡, 𝚥) ∈ 𝐶𝑞 for all 𝑡 ∈ (𝑇𝚥, 𝑇𝚥+1), satisfy-
ing (9a).
By (21d) in the definition of flow arrows, nrv(𝜉(𝜏)) = 𝑠(f) ∈ 𝐷𝑒, so

𝑧𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐷𝑒.

Thus, 𝜑𝚥+1(𝑇𝚥+1, 𝚥) ∈ 𝐷, satisfying (8a). Furthermore, (8b) is satisfied at the only
jump time, 𝑇𝚥+1, in dom(𝜑𝚥+1)∖dom(𝜑𝚥) because 𝑧𝚥+1(𝑇𝚥+1, 𝚥+1) = 𝐴𝑒𝑧𝚥+1(𝑇𝚥+1, 𝚥).
Therefore, 𝜑𝚥+1 is a solution to ℋ that jumps one more time than 𝜑𝚥, satisfying (S2).
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Let 𝑧0 := 𝑧𝚥+1(𝑇𝚥, 𝐽𝚥) and 𝑧𝑓 := 𝑧𝚥+1(𝑇𝚥+1, 𝐽𝚥+1). To prove (S3) holds, we must
show nrv(𝑧𝑓 ) = 𝑠⊕ = 𝑠𝐾𝚥+1. From (33b), nrv(𝑧𝑓 ) = nrv(𝐴𝑒𝑠

⊖), which equals 𝑠⊕,
satisfying (S3).

Next, we want to show (S4), i.e., that 𝑤𝚥+1 is the 𝒢-simulation of 𝜑𝚥+1, which
requires showing (26) holds for 𝑘 ∈ {𝐾𝚥 + 1,𝐾𝚥 + 2}, and (27) holds for 𝑘 ∈
{𝐾𝚥,𝐾𝚥 + 1}. By assumption, 𝑤𝚥 is the 𝒢-simulation of 𝑧𝚥. For 𝑧𝚥+1, the sequence
ℎ0, ℎ1, . . . , ℎ𝐾(𝚥+1)

defined in Definition 8 has two more elements than the corre-
sponding sequence for 𝑧𝚥, namely ℎ(𝐾𝚥+1) = (𝑇𝚥+1, 𝚥) and ℎ(𝐾𝚥+2) = ℎ𝐾(𝚥+1)

=
(𝑇𝚥+1, 𝚥+ 1). First, we will show that 𝑤𝚥+1 satisfies (26) for 𝑘 = 𝐾𝚥 + 1. We have
that

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑝𝚥+1(𝚥) = 𝑞𝐾𝚥

because 𝑝𝚥+1(𝑗) = 𝑞𝐾𝑗 by definition for each 𝑗 ∈ {0, 1, . . . , 𝚥+ 1}. But,

𝑝𝚥+1(ℎ𝐾𝚥+1) = 𝑞𝐾𝚥+1,

because 𝑞 = 𝑞(0) = 𝑞𝐾𝚥
= 𝑞𝐾𝚥+1 = 𝑞(f), thereby satisfying (26) for 𝑘 = 𝐾𝚥 + 1. For

the 𝑧-component,

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥) =

{︃
𝑟0𝜉(𝜏) if 𝑟0 > 0

𝜉(𝜏) if 𝑟0 = 0

Thus, nrv(𝑧𝚥+1) = nrv(𝜉(𝜏)). By (21d), nrv(𝜉(𝜏)) = 𝑠(f), so

𝑧𝚥+1(ℎ𝐾𝚥+1) = 𝑠𝐾𝚥+1,

therefore (26) is satisfied for 𝑘 = 𝐾𝚥 + 1.

Next, we will show that 𝑤𝚥+1 satisfies (26) for 𝑘 = 𝐾𝚥 + 2 = 𝐾(𝚥+1). We have that

𝑝𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑝𝚥+1(𝚥+ 1) = 𝑞𝐾(𝚥+1)

,

as required by (26) for 𝑘 = 𝐾𝚥 + 1. For the 𝑧-component,

𝑧𝚥+1(ℎ𝐾(𝚥+1)
) = 𝑧𝚥+1(𝑇𝚥+1, 𝚥+ 1).

We have already shown that (S3) holds, so nrv(𝑧𝚥+1(ℎ𝐾(𝚥+1)
)) = 𝑠𝐾(𝚥+1)

. There-
fore, (26) holds for 𝑘 = 𝐾(𝚥+1).

Finally, (27) is satisfied for 𝑘 = 𝐾𝚥 because ℓ𝐾𝚥
= f and

𝜋t
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋t

(︀
ℎ𝐾𝚥

)︀
,

and is satisfied for 𝑘 = 𝐾𝚥 + 1 because ℓ𝐾𝚥+1 = j and

𝜋j
(︀
ℎ𝐾𝚥+1

)︀
> 𝜋j

(︀
ℎ𝐾𝚥+1

)︀
.

Therefore, 𝑤𝚥+1 is the 𝒢-simulation of 𝜑𝚥+1, satisfying (S4).

Thus, for the inductive case, 𝜑𝚥+1 is a hybrid arc that satisfies (S1)–(S4). Therefore, by
induction, 𝑤𝐽 = 𝑤 is the 𝒢-simulation of 𝜑𝐽 = 𝜑.
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The following result asserts that the weight of a solution 𝜑’s CTG-simulation contains
the relative change in the distance of 𝜑 from 𝒬× {0𝑛}. In other words, the weights of
CTG-simulations tell us how solutions move toward or away from 𝒬× {0𝑛}.

Proposition 5. Consider a conical hybrid system ℋ with conical transition graph 𝒢 and
a solution

(𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) =
(︀
𝑞(𝑗), 𝑧(𝑡, 𝑗)

)︀
.

Suppose 𝜑 jumps at least once and let

𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · · ℓ(𝐾𝐽−1)−−−−−→ 𝑣𝐾𝐽
)

be the 𝒢-simulation of 𝜑, with 𝐽 := sup𝑗 dom(𝜑) and with 𝐾0,𝐾1, . . . ,𝐾𝐽 defined as in
Definition 8. Furthermore, let ℎ0, ℎ1, . . ., ℎ𝐾𝐽

be the hybrid times associated with the
𝒢-simulation of 𝜑, as defined in Definition 8, and for each finite 𝑘 ∈ {0, 1, . . . ,𝐾𝐽}, let

𝑤𝑘 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ · · · ℓ(𝑘−1)−−−−→ 𝑣𝑘)

be the truncation of 𝑤 to the first 𝑘 arrows.

Suppose that there does not exist a flow arrow (𝑞, 0𝑛) f−→ (𝑞, 𝑠(f)) in 𝑤 such that 𝑠(f) ̸= 0𝑛.
Then, for each finite 𝑘 ∈ {1, 2, . . . ,𝐾𝐽},

|𝑧(ℎ𝑘)| = 𝑟𝑘|𝑧(ℎ0)| for some 𝑟𝑘 ∈ 𝒲(𝑤𝑘). (34)

Proof. For each 𝑘 ∈ {0, 1, . . . ,𝐾𝐽}, let (𝑞𝑘, 𝑠𝑘) := 𝑣𝑘, and if ℓ𝑘 = j, then let 𝑒𝑘 :=
(𝑞𝑘, 𝑞𝑘+1). Let 𝑟0 := |𝑧(ℎ0)|.

We proceed by induction over 𝑘. For the base case, consider 𝑘 = 1. The first arrow
in a CTG-simulation is always a jump arrow. Let 𝑟1 := |𝐴𝑒0𝑠0| ∈ 𝒲(𝑣0 j−→ 𝑣1). Since
𝑧(𝑡1, 1) = 𝐴𝑒0𝑧(ℎ0) and 𝑧(ℎ0) = 𝑟0𝑠0, we have

|𝑧(ℎ1)| = |𝐴𝑒0𝑟0𝑠0| = 𝑟0𝑟1 = 𝑟1|𝑧(ℎ0)|.

Therefore, (34) holds for 𝑘 = 1, proving the base case.

Now, suppose that (34) holds for 𝑘 ∈ {1, . . . ,𝐾𝐽 − 1}. That is, there exists 𝑟𝑘 ∈ 𝒲(𝑤𝑘)
such that |𝑧(ℎ𝑘)| = 𝑟𝑘|𝑧(ℎ0)|.

Suppose, first, that ℓ𝑘 = j. Let 𝑟′𝑘+1 := |𝐴𝑒𝑘𝑠𝑘| ∈ 𝒲(𝑣𝑘 j−→ 𝑣𝑘+1). Thus, 𝑟𝑘+1 := 𝑟𝑘𝑟
′
𝑘+1 ∈

𝒲(𝑤𝑘+1). Furthermore, 𝑧(ℎ𝑘+1) = 𝐴𝑒𝑘𝑧(ℎ𝑘), so

|𝑧(ℎ𝑘+1)| = |𝐴𝑒𝑘𝑧(ℎ𝑘)| = |𝐴𝑒𝑘𝑟0𝑟𝑘𝑠𝑘| = 𝑟0𝑟𝑘|𝐴𝑒𝑘𝑠𝑘| = 𝑟0𝑟𝑘𝑟
′
𝑘+1 = 𝑟0𝑟𝑘+1.

Thus, |𝑧(ℎ𝑘+1)| = 𝑟𝑘+1|𝑧(ℎ0)| for 𝑟𝑘+1 ∈ 𝒲(𝑤𝑘+1).

Alternatively, suppose that ℓ𝑘 = f. Let 𝑞 := 𝑞𝑘 = 𝑞𝑘+1. If 𝑟𝑘 = 0, then 𝑠𝑘 = 0𝑛, so
𝑠𝑘+1 = 0𝑛 also, by assumption, in which case 𝑓𝑞(0𝑛) = 0𝑛. Since 𝑓𝑞 is Lipschitz continuous,
solutions to 𝑧̇ = 𝑓𝑞(𝑧), 𝑧(0) = 0𝑛 are unique, namely 𝑡 ↦→ 𝜉(𝑡) := 0𝑛. Thus, it must be

29



the case that 𝑧(ℎ𝑘+1) = 0𝑛. From (22), we have that 0 ∈ 𝒲(𝑣𝑘 f−→ 𝑣𝑘+1), so 𝑟𝑘+1 := 0 ∈
𝒲(𝑤𝑘+1). Thus, (34) holds:

|𝑧(ℎ𝑘+1)| = 0 = 𝑟𝑘+1𝑟0 = 𝑟𝑘+1|𝑧(ℎ0)|.

Suppose, instead, that 𝑟𝑘 > 0, which also implies that 𝑟0 > 0 (if 𝑟0 = 0, then 𝑟1 = 𝑟2 =
· · · = 𝑟𝑘 = 0). We will define 𝜏 > 0 and 𝜉 : [0, 𝜏 ] → R𝑛 to satisfy the flow arrow conditions
in (21) for 𝑣𝑘 f−→ 𝑣𝑘+1. Let 𝑗 := 𝜋j(ℎ𝑘) = 𝜋j(ℎ𝑘+1), 𝑡𝑘 := 𝜋t(ℎ𝑘), and 𝑡𝑘+1 = 𝜋t(ℎ𝑘+1).
We define

𝜏 :=

{︃
𝑡𝑘+1 − 𝑡𝑘 if 𝑞 has linear flows(︀
𝑡𝑘+1 − 𝑡𝑘

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has constant flows,

and for all 𝑡 ∈ [0, 𝜏 ], let

𝑡 ↦→ 𝜉(𝑡) :=

{︃
𝑧
(︀
𝑡𝑘 + 𝑡, 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has linear flows

𝑧
(︀
𝑡𝑘 + 𝑟0𝑟𝑘𝑡, 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has constant flows.

By the inductive hypothesis, 𝑟0𝑟𝑘 = |𝑧(ℎ𝑘)|, so we find that (21a) is satisfied:

𝜉(0) =
1

𝑟0𝑟𝑘
𝑧(𝑡𝑘, 𝑗) =

𝑧(ℎ𝑘)

|𝑧(ℎ𝑘)|
= nrv(𝑧(ℎ𝑘)) = 𝑠𝑘.

To check that 𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)), that is, (21b), we consider constant flows and linear flows
separately. If 𝑞 has linear flows, then for all 𝑡 ∈ (0, 𝜏),

𝜉(𝑡) =
𝑑

𝑑𝑡

(︀
𝑧(𝑡𝑘 + 𝑡, 𝑗)/𝑟0𝑟𝑘

)︀
=

1

𝑟0𝑟𝑘
𝑧̇(𝑡𝑘 + 𝑡, 𝑗)

=
1

𝑟0𝑟𝑘
𝑓𝑞(𝑧(𝑡𝑘 + 𝑡, 𝑗)) =

1

𝑟0𝑟𝑘
𝐴𝑞𝑧(𝑡𝑘 + 𝑡, 𝑗)

= 𝐴𝑞𝑧(𝑡𝑘 + 𝑡, 𝑗)/𝑟0𝑟𝑘 = 𝐴𝑞𝜉(𝑡)

= 𝑓𝑞(𝜉(𝑡)).

Alternatively, if 𝑞 has constant flows, then

𝜉(𝑡) =
𝑑

𝑑𝑡

(︂
1

𝑟0𝑟𝑘
𝑧(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

)︂
= 𝑧̇(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

= 𝑓𝑞
(︀
𝑧(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

)︀
.

Since 𝑓𝑞 is constant, i.e., 𝑓𝑞(𝑧) = 𝑓*𝑞 for all 𝑧 ∈ R𝑛,

𝑓𝑞
(︀
𝑧(𝑡𝑘 + 𝑟0𝑟𝑘𝑡)

)︀
= 𝑓*𝑞 = 𝑓𝑞(𝜉(𝑡)),

so 𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)). In both cases, (21b) is satisfied.

We have that 𝜉(𝑡) ∈ 𝐶𝑞 for all 𝑡 ∈ [0, 𝜏 ], 𝐶𝑞 is a cone, so 𝑧(𝑡, 𝑗) ∈ 𝐶𝑞 for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1],
satisfying (21c).
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Checking the terminal flow arrow condition (21d), we find

𝜉(𝜏) =

{︃
𝜉
(︀
𝑡𝑘+1 − 𝑡𝑘

)︀
if 𝑞 has linear flows

𝜉
(︀
(𝑡𝑘+1 − 𝑡𝑘)/𝑟0𝑟𝑘

)︀
if 𝑞 has constant flows

=

{︃
𝑧
(︀
𝑡𝑘 + (𝑡𝑘+1 − 𝑡𝑘), 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has linear flows

𝑧
(︀
𝑡𝑘 + 𝑟0𝑟𝑘 (𝑡𝑘+1 − 𝑡𝑘)/𝑟0𝑟𝑘 , 𝑗

)︀⧸︀
𝑟0𝑟𝑘 if 𝑞 has constant flows

= 𝑧
(︀
𝑡𝑘+1, 𝑗

)︀⧸︀
𝑟0𝑟𝑘

= 𝑧
(︀
ℎ𝑘+1

)︀⧸︀
𝑟0𝑟𝑘 . (35)

Therefore, (21d) holds:

nrv(𝜉(𝜏)) = nrv
(︀
𝑧(ℎ𝑘+1)/𝑟𝑘𝑟0

)︀
= nrv(𝑧(ℎ𝑘+1)) = 𝑠𝑘+1.

Finally, let 𝑟′𝑘+1 := |𝜉(𝜏)| ∈ 𝒲(𝑣𝑘 f−→ 𝑣𝑘+1) and 𝑟𝑘+1 := 𝑟𝑘𝑟
′
𝑘+1𝒲(𝑤𝑘+1). Rewriting (35),

we find
|𝑧(ℎ𝑘+1)| = 𝑟0𝑟𝑘|𝜉(𝜏)| = 𝑟0𝑟𝑘𝑟

′
𝑘+1 = 𝑟0𝑟𝑘+1 = 𝑟𝑘+1|𝑧(ℎ0)|.

Therefore, (34) holds for all 𝑘 ∈ {1, 2, . . . ,𝐾𝐽}, by induction.

5.2. Stability and Asymptotic Stability

By applying Propositions 3–5, we can use the CTG of ℋ to determine pre-asymptotic
stability of 𝒪. First, in Proposition 6, we use the CTG to establish stability, which we
use to establish pre-asymptotic stability in Theorem 2.

Proposition 6. Let ℋ = (𝐶, 𝑓,𝐷,𝐺) by a conical hybrid system with modes 𝒬 and
conical transition graph 𝒢. Suppose that 𝒪 := 𝒬 × {0𝑛} is stable for (𝐶, 𝑓) and that
there exists 𝑀 ≥ 1 such that sup𝒲(𝑤) ≤ 𝑀 for each walk 𝑤 through 𝒢. Then, 𝒪 is
stable for ℋ.

Proof. Take any 𝜀 > 0. Since 𝒪 is stable for (𝐶, 𝑓), there exists 𝛿 ∈ (0, 𝜀) such that for
every solution 𝑡 ↦→ 𝜉(𝑡) to (𝐶, 𝑓) with |𝜉(0)| ≤ 𝛿,

|𝜉(𝑡)| ≤ 𝜀 ∀𝑡 ∈ dom(𝜉).

Let 𝜀′ := 𝛿/𝑀 . Then, again by the stability of 0𝑛, there exists 𝛿′ > 0 such that, for every
solution 𝑡 ↦→ 𝜉(𝑡) to (𝐶, 𝑓) with |𝜉(0)| ≤ 𝛿′,

|𝜉(𝑡)| ≤ 𝜀′ ∀𝑡 ∈ dom(𝜉).

Let (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) := (𝑞(𝑗), 𝑧(𝑡, 𝑗)) be any solution to ℋ with |𝑧(0, 0)| ≤ 𝛿′. Thus,
|𝑧(𝑡, 0)| ≤ 𝜀′ for all 𝑡 ∈ [0, 𝑡1], where 𝑡1 is the first jump time in dom(𝜑). In particular,
we will use the fact that

|𝑧(𝑡1, 0)| ≤ 𝜀′.
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Since 𝒪 is stable for (𝐶, 𝑓), solutions to ℋ cannot leave 𝒪 by flowing. Furthermore, from
the definition of conical hybrid systems, 𝐺(𝒪) ⊂ 𝒪, so solutions to ℋ cannot jump away
from 𝒪. Therefore, 𝒪 is forward invariant for ℋ.

Let 𝑤 be the 𝒢-simulation of 𝜑 with 𝐾1, 𝐾2, . . ., 𝐾𝐽 and ℎ0, ℎ1, . . ., ℎ𝐾𝐽
defined as in

Definition 8, and let 𝑤𝑘 be the truncation of 𝑤 to the first 𝑘 > 0 steps. By Proposition 5,
for each jump time 𝑡𝑗 in dom(𝜑), there exists 𝑟𝑗 ∈ 𝒲(𝑤𝐾𝑗 ) such that

|𝑧(𝑡𝑗 , 𝑗)| = 𝑟𝐾𝑗
|𝑧(𝑡1, 0)|.

Since the weight of every walk is bounded by 𝑀 and |𝑧(𝑡1, 0)| ≤ 𝜀′,

|𝑧(𝑡𝑗 , 𝑗)| = 𝑟𝐾𝑗
|𝑧(𝑡1, 0)| ≤𝑀𝜀′ = 𝛿.

Thus, every interval of flow [𝑡𝑗 , 𝑡𝑗+1] starts with |𝑧(𝑡𝑗 , 𝑗)| ≤ 𝛿, so |𝑧(𝑡, 𝑗)| ≤ 𝜀 for all
𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. Therefore, 𝒪 is stable for ℋ.

The next theorem is of central importance to this work as it allows one to establish
pre-asymptotic stability using the CTG.

Theorem 2. Let ℋ = (𝐶, 𝑓,𝐷,𝐺) be a conical hybrid system with modes 𝒬 and conical
transition graph 𝒢 = (𝒱,𝒜,𝒲). Suppose the following:

(P1) For each 𝑞 ∈ 𝒬, the origin 0𝑛 is pre-asymptotically stable for (𝐶𝑞, 𝑓𝑞).

(P2) There exists 𝑀 > 0 such that every walk 𝑤 through 𝒢 satisfies sup𝒲(𝑤) ≤𝑀 .

(P3) Every well-formed infinite-length walk 𝑤 through 𝒢 satisfies 𝒲(𝑤) = {0}.

Then, the set 𝒪 := 𝒬× {0𝑛} is pAS with respect to ℋ.

Proof. Items (P1) and (P2) satisfy the assumptions of Proposition 6, which asserts
that the origin of ℋ is stable. By stability and the radial homogeneity property of ℋ
established in Proposition 1, every solution is bounded. Thus, we only need to show that
every complete solution to ℋ converges to 𝒪. As a consequence of stability, 𝒪 is forward
invariant and there does not exist any flow arrows in 𝒢 in the form (𝑞, 0𝑛) f−→ (𝑞, 𝑠(f)),
where 𝑠(f) ̸= 0𝑛.

Let (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) = (𝑞(𝑗), 𝑧(𝑡, 𝑗)) be any solution to ℋ, let 𝐽 := sup𝑗 dom(𝜑) and
𝑇 := sup𝑡 dom(𝜑), let 𝑡0 := 0, and for each 𝑗 ∈ {1, 2, . . . , 𝐽}, let 𝑡𝑗 denote the 𝑗th jump
time of 𝜑. Showing that 𝜑 converges to 𝒪 is equivalent to showing 𝑧 converges to 0𝑛.

If 𝐽 <∞, then there are no jumps after 𝑡𝐽 , so the function 𝑡 ↦→ 𝜑(𝑡, 𝐽) is a solution to
(𝐶, 𝑓) for all 𝑡 ∈ [𝑡𝐽 , 𝑇 ). If 𝜑 is complete, then lim𝑡→∞ 𝑧(𝑡, 𝐽) = 0𝑛 due to (P1).

Suppose, instead, that 𝐽 = ∞. Let 𝑤 be the 𝒢-simulation of 𝜑 with 𝐾1, 𝐾2, . . ., 𝐾𝐽 ;
ℎ0, ℎ1, . . . , ℎ𝐾𝐽

; and 𝑤𝑘 defined as in Definition 8. Then, by Proposition 5, for each finite
𝑘 ∈ {1, 2, . . . ,𝐾𝐽}, there exists 𝑟𝑘 ∈ 𝒲(𝑤𝑘) such that

|𝑧(ℎ𝑘)| = 𝑟𝑘|𝑧(𝑡1, 0)| ≤ sup𝒲(𝑤𝑘).
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Per Proposition 3, the CTG-simulation of 𝜑 is a well-formed walk through 𝒢, so by (P3),
we have that 𝒲(𝑤) = {0}. Thus,

lim
𝑘→∞

sup𝒲(𝑤𝑘) = 0 and lim
𝑘→∞

|𝑧(𝑡𝑗 , 𝑗)| = 0.

It remains to be shown that the value of the solution during intervals of flow between
jump times also converges. By assumption, 𝒪 is stable for (𝐶, 𝑓), so the assumptions of
Lemma 1 are satisfied. Thus, by Lemma 1, we have that

lim
𝑡+𝑗→∞

𝑧(𝑡, 𝑗) = 0𝑛.

Therefore, since every complete solution to ℋ converges to 𝒪, we conclude that 𝒪 is pAS
for ℋ.

Remark 4. If, additionally, qℋ is the conical approximation of a hybrid system ℋ about
𝑥* ∈ R𝑛, then Theorem 1 asserts that 𝑥* is (locally) pre-asymptotically stable for ℋ.

The assumptions in Theorem 2 can be simplified when 𝒢 is finite. When 𝒱 is finite,
condition (P3) is satisfied if and only if sup𝒲(𝑤) < 1 for every elementary cycle 𝑤 in 𝒢.
A walk through a graph is called an elementary cycle if it starts and ends at the same
vertex and does not visit any other vertex more than once. To check (P3), it is necessary
to enumerate over all of the elementary cycles. One efficient algorithm for this purpose
is Johnson’s enumeration algorithm [29]. For a CTG with |𝒱| vertices, |𝒜| arrows, and 𝑐
elementary circuits (not counting cyclic permutations), the worst-case time complexity
of Johnson’s algorithm is 𝑂

(︀
(|𝒱|+ |𝒜|)(𝑐+ 1)

)︀
. Furthermore, if the weight of each arrow

is bounded and 𝒱 is finite, then (P3) implies (P2).

6. Abstractions to Reduce the Graph Size

A problem that arises when applying CTG–based analysis is that the set of vertices 𝒱 is
often infinite. In this section, we introduce results that allow for reducing an infinite CTG
into a finite graph while preserving relevant properties of the graph. Such a reduction is
called an abstraction. Previous work has used abstractions to reduce the infinite state
space of timed processes [? ] and timed hybrid automatons [? ] into a finite number of
states, allowing for algorithmic analysis.

Our general approach is to cover S𝑛−1
0 with a finite number of sets, which we use as

replacements for individual points as vertices in graphs. Given a set 𝑆, a cover of 𝑆 is a
collection of sets {𝑃 𝑖}𝑖∈ℐ indexed over ℐ ⊂ N such that 𝑃 𝑖 ⊂ 𝑆 for each 𝑖 ∈ ℐ, and

𝑆 =
⋃︁
𝑖∈ℐ

𝑃 𝑖.

Given a conical hybrid system ℋ := (𝐶, 𝑓,𝐷,𝐺) with modes 𝒬, we consider a cover
of S𝑛−1

0 for each mode. That is, for each 𝑞 ∈ 𝒬, let 𝒫𝑞 := {𝑃 𝑖
𝑞}𝑖∈ℐ𝑞

be a cover of S𝑛−1
0

with index set ℐ𝑞. We impose that 𝒫𝑞 is a finite collection of sets to allow for computational
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tractability, we write index sets in the form ℐ𝑞 := {0, 1, . . . ,𝑚} where 𝑚 ∈ N. For each
𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ , let

ℐ⊖
𝑒 :=

{︁
𝑖 ∈ ℐ𝑒

⃒⃒⃒
𝑃 𝑖
𝑞⊖ ∩𝐷𝑒 ̸= ∅

}︁
and ℐ⊕

𝑒 :=
{︁
𝑖 ∈ ℐ𝑒

⃒⃒⃒
𝑃 𝑖
𝑞⊕ ∩ (𝐴𝑒𝐷𝑒) ̸= ∅

}︁
. (36)

Thus, 𝑧 ∈ 𝐷𝑒 and 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ ,

∃𝑖⊖ ∈ ℐ⊖
𝑒 : 𝑧 ∈ 𝑃 𝑖⊖

𝑞⊖ and ∃𝑖⊕ ∈ ℐ⊕
𝑒 : 𝐴𝑒𝑧 ∈ 𝑃 𝑖⊕

𝑞⊕ . (37)

In other words, for each 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ ,

𝐷𝑒 ⊂
⋃︁

𝑖⊖ ∈ℐ⊖
𝑒

𝑃 𝑖⊖

𝑞⊖ , and 𝐴𝑒𝐷𝑒 ⊂
⋃︁

𝑖⊕ ∈ℐ⊕
𝑒

𝑃 𝑖⊕

𝑞⊕ .

We then define abstract conical transition graphs as follows.

Definition 9 (Abstract Conical Transition Graph). Consider a conical hybrid system ℋ
on R𝑛 with modes 𝒬 and conical transition graph 𝒢 = (𝒱,𝒜,𝒲). For each mode 𝑞 ∈ 𝒬,
let 𝒫𝑞 = {𝑃 𝑖

𝑞}𝑖∈ℐ𝑞
be a cover of S𝑛−1

0 and for each 𝑒 ∈ ℰ , let ℐ⊖
𝑒 and ℐ⊕

𝑒 be defined
as in (36). The abstract conical transition graph (ACTG) defined by the partitions
𝒫1,𝒫2, . . . ,𝒫|𝒬| is a directed graph ̃︀𝒢 = (̃︀𝒱, ̃︀𝒜,̃︁𝒲) with set-valued weights. The vertex
set ̃︀𝒱 := 𝒱⊖ ∪ 𝒱⊕ is defined by

𝒱⊖ :=
⋃︁

(𝑞⊖,𝑞⊕)∈ℰ

{𝑞⊖} × ℐ⊖
(𝑞⊖,𝑞⊕)

𝒱⊕ :=
⋃︁

(𝑞⊖,𝑞⊕)∈ℰ

{𝑞⊕} × ℐ⊕
(𝑞⊖,𝑞⊕)

. (38)

For each 𝑣⊖ := (𝑞⊖, 𝑖⊖) ∈ 𝒱⊖ and each 𝑣⊕ := (𝑞⊕, 𝑖⊕) ∈ 𝒱⊕, let

𝑒 := (𝑞⊖, 𝑞⊕), 𝑃⊖ := 𝑃 𝑖⊖

𝑞⊖ , and 𝑃⊕ := 𝑃 𝑖⊕

𝑞⊕ .

There is a jump arrow aj := 𝑣⊖ j−→ 𝑣⊕ in ̃︀𝒜 if (𝐴𝑒𝑃
⊖) ∩ 𝑃⊕ is nonempty. The set-valued

weight of aj is ̃︁𝒲(aj) :=
{︀
|𝐴𝑒𝑠

⊖|
⃒⃒
𝑠⊖ ∈ 𝑃⊖

}︀
. (39)

For each 𝑣(0) := (𝑞, 𝑖(0)) ∈ 𝒱⊕ and each 𝑣(f) := (𝑞, 𝑖(f)) ∈ 𝒱⊖, let 𝑃 (0) := 𝑃 𝑖(0)

𝑞 and
𝑃 (f) := 𝑃 𝑖(f)

𝑞 . There is a flow arrow af := (𝑣(0) f−→ 𝑣(f)) in ̃︀𝒜 if for some 𝜏 > 0, there exists
𝜉 : [0, 𝜏 ] → R𝑛 such that

𝜉(0) ∈ 𝑃 (0) (40a)

𝜉(𝑡) = 𝑓𝑞(𝜉(𝑡)) ∀𝑡 ∈ (0, 𝜏) (40b)
𝜉(𝑡) ∈ 𝐶𝑞 ∀𝑡 ∈ (0, 𝜏) (40c)
nrv(𝜉(𝜏)) ∈ 𝑃 (f). (40d)

The weight of each flow arrow af = (𝑞, 𝑖(0)) f−→ (𝑞, 𝑖(f)) is

𝒲(af) :=
{︀
|𝜉(𝜏)|

⃒⃒
𝜉 : [0, 𝜏 ] → R𝑛 satisfies (40) for some 𝜏 > 0

}︀
. (41)

◇
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The following result establishes pre-asymptotic stability from ACTG’s, analogously to
Theorem 2 for CTG’s.

Theorem 3. Let ℋ = (𝐶, 𝑓,𝐷,𝐺) be a conical hybrid system with modes 𝒬 and conical
transition graph 𝒢 = (𝒱,𝒜,𝒲). For each mode 𝑞 ∈ 𝒬, let 𝒫𝑞 = {𝑃 𝑖

𝑞}𝑖∈ℐ𝑞
be a cover

of S𝑛−1
0 with ℐ𝑞 finite, and let ̃︀𝒢 = (̃︀𝒱, ̃︀𝒜,̃︁𝒲) be the abstract conical transition graph

defined by 𝒫1,𝒫2, . . . ,𝒫|𝒬|. Suppose the following:

(R1) For each 𝑞 ∈ 𝒬, the origin 0𝑛 is pre-asymptotically stable for (𝐶𝑞, 𝑓𝑞).

(R2) For each arrow a ∈ ̃︀𝒜, the weight ̃︁𝒲(a) is bounded.

(R3) For each well-formed elementary cycle 𝑤 through ̃︀𝒢,

sup̃︁𝒲(𝑤) < 1.

Then, the set 𝒪 := 𝒬× {0𝑛} is pAS with respect to ℋ.

Proof. The proof proceeds by proving two facts.

Fact 1 There exists 𝑀 > 0 such that for every walk 𝑤̃ through ̃︀𝒢, we have that

sup̃︁𝒲(𝑤̃) ≤𝑀, (42)

and if 𝑤̃ is infinite, then ̃︁𝒲(𝑤̃) = {0}.

Fact 2 For every walk 𝑤 := (𝑣0 → 𝑣1 → · · · → 𝑣𝐾) through 𝒢 (for some 𝐾 ∈
{1, 2, . . . ,∞}), there exists a walk 𝑤̃ := (𝑣0 → 𝑣1 → · · · → 𝑣𝐾) through ̃︀𝒢
such that 𝒲(𝑤) ⊂ ̃︁𝒲(𝑤̃).

These two facts, along with (R1), imply assumptions (P1)–(P3) of Theorem 2, so we can
apply Theorem 2 to conclude 𝒪 is pAS.

To prove Fact 1, let 𝑤̃ be any walk through ̃︀𝒢. Since |̃︀𝒱| is finite, every walk through ̃︀𝒢
returns to a vertex it has already visited every |̃︀𝒱|+ 1 or fewer steps (or possibly never,
if the length of 𝑤̃ is less than |̃︀𝒱|). As a result, 𝑤̃ must have the following structure:

1. The walk starts with an acyclical portion consisting of between zero and |̃︀𝒱|-many
steps that do not repeat any vertices.

2. The acyclical portion of the walk is followed by any number of cycles (infinitely
many, if 𝑤̃ is infinite).

3. If the walk is finite, it ends with another acyclical portion of between zero and
|̃︀𝒱|-many steps.
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Let 𝑤̃0 be the acyclical portion of 𝑤̃ before the first cycle, let 𝑤̃𝑓 be the acyclical portion
of 𝑤̃ after the last cycle, and let 𝑤̃𝑐 be the cyclical part in the middle. Let

𝜇 := sup
{︁
sup̃︁𝒲(a′)

⃒⃒⃒
a′ ∈ ̃︀𝒜}︁.

By (R2), every step in arrow in a′ has a bounded weight, so 𝜇 <∞. Thus,

sup𝒲(𝑤̃0) ≤
(︁
sup̃︁𝒲(𝑣0 → 𝑣1)

)︁(︁
sup̃︁𝒲(𝑣1 → 𝑣2)

)︁
· · · ≤ 𝜇|̃︀𝒱|.

Similarly, sup𝒲(𝑤̃𝑓 ) ≤ 𝜇|̃︀𝒱|. For the cyclical portion 𝑤̃𝑐, we have, per (R3), that

sup̃︁𝒲(𝑤̃𝑐) < 1

because each cycle multiplies the weight by a value less than 1. Thus, the weight of 𝑤̃
must satisfy

sup𝒲(𝑤̃) < 𝑀 := 𝜇2|̃︀𝒱|,

proving Fact 1.

To show Fact 2, let 𝑤 := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ . . .
ℓ𝐾−1−−−→ 𝑣𝐾) be any walk through 𝒢 with 𝐾 ∈

{1, 2, . . . ,∞}. Take any 𝑘 ∈ {0, 1, . . . ,𝐾 − 1}. Suppose ℓ𝑘 = j and let

𝑣⊖ := (𝑞⊖, 𝑠⊖) := 𝑣𝑘, 𝑣⊕ := (𝑞⊕, 𝑠⊕) := 𝑣𝑘+1, and 𝑒 := (𝑞⊖, 𝑞⊕) ∈ ℰ .

Per (19),

𝑠⊖ ∈ 𝐷𝑒 ∩ S𝑛−1
0 and 𝑠⊕ = nrv(𝐴(𝑞⊖,𝑞⊕)𝑠

⊖) ∈ 𝐴𝑒𝐷𝑒 ∩ S𝑛−1
0 .

Because {𝑃 𝑖⊖

𝑞⊖}𝑖⊖∈ℐ⊖
𝑒

covers 𝐷𝑒, there is some 𝑖⊖ ∈ ℐ⊖
𝑒 such that 𝑠⊖ ∈ 𝑃⊖ := 𝑃 𝑖⊖

𝑞⊖ .
Similarly, for some 𝑖⊕ ∈ ℐ⊕

𝑒 , we have 𝑠⊕ ∈ 𝑃⊕ := 𝑃 𝑖⊕

𝑞⊕ . Since 𝑠⊕ ∈ 𝐴𝑒𝑃
⊖ ∩ 𝑃⊕, we have

that (𝑞⊖, 𝑖⊖) j−→ (𝑞⊕, 𝑖⊕) is an arrow in ̃︀𝒜. The weight of 𝑣⊖ j−→ 𝑣⊕ is {|𝐴𝑒𝑠
⊖|}, which is a

subset of ̃︁𝒲(𝑣⊖ j−→ 𝑣⊕), per (39).

Alternatively, suppose ℓ𝑘 = f and let

𝑣(0) := (𝑞, 𝑠(0)) := 𝑣𝑘 and 𝑣(f) := (𝑞, 𝑠(f)) := 𝑣𝑘+1.

Take any 𝑟 ∈ 𝒲(𝑣(0) f−→ 𝑣(f)). Per (22), there exist 𝜏 > 0 and 𝜉 : [0, 𝜏 ] → R𝑛 that
satisfy (21) such that 𝑟 = |𝜉(𝜏)|. We have that 𝑣(0) ∈ 𝒱 ∩𝐺(𝐷), so there exists 𝑞⊖ ∈ 𝒬
such that 𝑒 := (𝑞⊖, 𝑞) ∈ ℰ , and 𝑠⊖ ∈ 𝐷𝑒 such that

𝑠(0) = 𝐴𝑒𝑠
⊖ ∈ 𝐴𝑒𝐷𝑒.

Thus, there exists 𝑖(0) ∈ ℐ⊕
𝑒 such that 𝑠(0) ∈ 𝑃 (0) := 𝑃 𝑖(0)

𝑞 . Similarly, 𝑣(f) ∈ 𝒱 ∩𝐷, so there
exists 𝑞⊕ ∈ 𝒬 such that 𝑒 := (𝑞, 𝑞⊕) ∈ ℰ and

𝑠(f) ∈ 𝐷𝑒.
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Thus, there exists 𝑖(f) ∈ ℐ⊖
𝑒 such that 𝑠(f) ∈ 𝑃 (f) := 𝑃 𝑖(f)

𝑞 . We then have that 𝑣(0) :=
(𝑞, 𝑖(0)) ∈ 𝒱⊕ and 𝑣(f) = (𝑞, 𝑖(f)) ∈ 𝒱⊖, and

𝜉(0) = 𝑠(0) ∈ 𝑃 (0) and nrv(𝜉(𝜏))𝑠(f) ∈ 𝑃 (f),

satisfying (40). Therefore, 𝑣(0) f−→ 𝑣(f) is an arrow in ̃︀𝒜 and

𝑟 = |𝜉(𝜏)| ∈ ̃︁𝒲(𝑣(0) f−→ 𝑣(f)).

In the manner described above, we construct a walk

𝑤̃ := (𝑣0
ℓ0−→ 𝑣1

ℓ1−→ . . . ℓ𝐾−−→ 𝑣𝐾),

and since
𝒲(𝑣𝑘

ℓ𝑘−→ 𝑣𝑘+1) ⊂ ̃︁𝒲(𝑣𝑘
ℓ𝑘−→ 𝑣𝑘+1) ∀𝑘 ∈ {0, 1, . . . ,𝐾 − 1}

we have that
𝒲(𝑤) ⊂ ̃︁𝒲(𝑤̃),

completing the proof of Fact 2.

It follows from Facts 1 and 2 that (P2) and (R3) hold, so by Theorem 2, the set 𝒪 is
pAS for ℋ.

7. Numerical Example

In this section, we present an example where we construct an abstract CTG for a hybrid
system with modes and apply Theorem 3 to determine asymptotic stability of the origin.
In particular, we consider a hybrid system ℋ as in (10) in R2 with two modes, 𝒬 := {0, 1}.
The system has linear flows maps in each mode 𝑞 ∈ 𝒬 defined by 𝑧̇ = 𝐴𝑞𝑧 where,

𝐴0 =

[︂
2 2
−3 1

]︂
𝐴1 =

[︂
−1 1
−4 −2

]︂
.

The eigenvalues of 𝐴0 and 𝐴1 are complex, resulting in flows that spiral around the origin,
with the flows in mode 𝑞 = 0 spiraling outward and the flows in 𝑞 = 1 spiraling inward.
The components of the flow set in each mode are

𝐶0 :=
{︀
(𝑥1, 𝑥2) ∈ R2

⃒⃒
𝑥1 ≤ 0

}︀
and 𝐶1 := R2,

where the choice of 𝐶0 ̸= R2 is important to ensure that the origin is stable for flows
in mode 0, since solutions spiral outward but can only flow for a finite amount of time
before reaching the boundary of 𝐶0.

In each mode, the system can jump within the same mode or jump to the other mode,
so the set of mode transition edges is

ℰ := {(0, 0), (0, 1), (1, 0), (1, 1)}.
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Figure 5: The system ℋ from Section 7 overlaid by an ACTG. Mode 𝑞 = 0 is shown on the left
and 𝑞 = 1 is on the right. For each 𝑞 ∈ 𝒬 and 𝑒 ∈ ℰ , the set 𝐶𝑞 is blue, 𝐷𝑒 is red, and 𝐴𝑒𝐷𝑒 are
yellow. Jump arrows are drawn as red lines and flow arrows are blue.

The jump map for each transition 𝑒 ∈ ℰ is defined by a linear map 𝑧+ = 𝐴𝑒𝑧, where

𝐴(0,0) =

[︂
1 1/2
−2 2

]︂
, 𝐴(0,1) = 𝛾

[︂
1 1
0 1

]︂
,

𝐴(1,0) =

[︂
1 3
4 2

]︂
, 𝐴(1,1) =

[︂
0 1
0 −1

]︂
,

(43)

where 𝛾 > 0 is a parameter we discuss in Section 7.1. The jump sets to trigger a jump
along each transition are

𝐷(0,0) := cone
(︀[︀−1

0

]︀
,
[︀−4
−1

]︀)︀
, 𝐷(0,1) := cone

(︀[︀
0
1

]︀
,
[︀−1

2

]︀)︀
,

𝐷(1,0) := cone
(︀[︀−4

−1

]︀
,
[︀−1

0

]︀)︀
, 𝐷(1,1) := cone

(︀[︀
1
0

]︀
,
[︀

4
1

]︀)︀
.

A plot of the sets in ℋ is shown in Figure 5, overlaid with the arrows of the conical
transition graph.

The conical partition 𝒫0 and 𝒫1 are constructed using a method similarly to the authors
of [14], with additional partitions added as needed so that each boundary of 𝐶𝑞, 𝐷𝑒, and
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𝐴𝑒𝐷𝑒 align with the boundaries of cones in the partition. As a result, every cone in the
partition is either entirely inside or entirely outside 𝐶𝑞, 𝐷𝑒, and 𝐴𝑒𝐷𝑒, respectively.

The construction of flow arrows requires determining reachability from each cone in
𝐺(𝐷) to each cone in 𝐷 via flows in 𝐶. In each cone of the conical partition, we find
the adjacent cones (those that share a boundary), and determine the direction of flow
through the boundary. In R2, all convex cones are polyhedral, which we exploit in our
implementation. The find the full set of reachable points reachability analysis, we over
approximate the reachable set within a cone 𝐾 from a polyhedron set of initial positions
𝑃0 ⊂ 𝐾 for flows along 𝑧̇ = 𝐴𝑞𝑧 using the fact that 𝐴𝑞𝑧 ∈ 𝐴𝑞𝐾 for all 𝑥 ∈ 𝐾. Thus, the
reachable set from 𝑃0 in 𝐾 is given by (𝑃0+𝐴𝑞𝐾)∩𝐾. By picking 𝑃0 ⊃ S𝑛, we can over
approximate the change in magnitude of a solution as it flows through a cone, allowing
us to construct the weights of flow arrows. The code for this example is available at
github.com/pwintz/conical-transition-graph.

7.1. Results

In Figure 6, we present the maximum and minimum weights for cycles through the ACTG
for various choices of 𝛾 > 0, used to define 𝐴(0,1) in (43). We see that for small values of
𝛾, the maximum weight is less than 1, satisfying (R3) in Theorem 3. Furthermore, (R1)
and (R2) can also be shown to hold. Therefore, by Theorem 3, the set 𝒬 × {0𝑛} is
pAS for ℋ. Increasing 𝛾 above 𝛾 ≈ 10−1, however, causes the maximum cycle weight
to become greater than 1, so Theorem 3 no longer applies. Note, however, that this
is insufficient to conclude that the system becomes unstable—the test is indeterminate
and the actual value of 𝛾 where instability occurs is likely larger. Over approximations
used in the construction of the ACTG cause the maximum walk weight to be inflated.
Examining Figure 6, we see that the effect of modifying 𝛾 becomes saturated. As 𝛾
increases, the minimum cycle weight increases up to a point. After 𝛾 = 100, increasing 𝛾
has no effect on the minimum cycle weight. The cause of this is the presence of cycles
in the graph that don’t pass through the transition that depends on 𝛾. Similarly, as 𝛾
decreases toward zero, the maximum cycle weight also saturates, as the cycle with the
largest cycle becomes one with no dependence on 𝛾.

8. Future Work

There are several avenues for future work on conical transition graphs. There are some
promising directions for expanding the generality of the proposed approach. One could
relax assumptions on the system to allow for more general types of dynamics, such as
allowing for higher order homogenous systems. In particular, the approach is agnostic
to how quickly the magnitude of the flow map grows along each ray, so long as all the
flows along each ray points in the same direction. In fact, that requirement could also
be relaxed to allow for systems with moderate nonlinearities in the direction of flow.
We are also interested in extending the CTG approach to include a broader class of
hybrid systems, in particular hybrid systems with set-valued flow and jump maps as
in [2, Thm. 3.16]. By extending the approach to allow for set-valued dynamics, could

39

https://github.com/pwintz/conical-transition-graph


Figure 6: Maximum and minimum weights of cycles in the ACTG of the hybrid system ℋ
described in Section 7 for various values of 𝛾.

over approximate nonlinear vector field as a set-valued map that contains all the flow
directions along a particular ray from the origin, or within some cone.
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Appendix A. Additional Results and Proofs

This section contains results omitted from article 1.

Lemma 4. Let ℋ be a conical hybrid system with constant flows and let 𝜑 be any
solution to ℋ. For all 𝑟 > 0, the hybrid arc 𝜓(𝑡, 𝑗) := 𝑟𝜑(𝑡/𝑟, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜓) :=
{(𝑡, 𝑗) | (𝑡/𝑟, 𝑗) ∈ dom(𝜑)} is a solution to ℋ.

Proof. Let ℋ = (𝐶, 𝑓,𝐷,𝐺) be a conical hybrid system with constant flows, let 𝜑 be
any solution to ℋ, and for any 𝑟 > 0, let 𝜓(𝑡, 𝑗) := 𝑟𝜑(𝑡/𝑟, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜓) :=
{(𝑡, 𝑗) | (𝑡/𝑟, 𝑗) ∈ dom(𝜑)}.

We have that 𝑡𝑗 is a jump time in dom(𝜓) if and only if 𝑡𝑗/𝑟 is a jump time in dom(𝜑),
so 𝜑(𝑡𝑗/𝑟, 𝑗 − 1) ∈ 𝐷. Since 𝐷 is a cone, 𝜓(𝑡𝑗 , 𝑗 − 1) = 𝑟𝜑(𝑡𝑗/𝑟, 𝑗 − 1) is also in 𝐷. By
the linearity of 𝐺,

𝐺(𝜓(𝑡𝑗 , 𝑗 − 1)) = 𝐺(𝑟𝜑(𝑡𝑗/𝑟, 𝑗 − 1))

= 𝑟𝐺(𝜑(𝑡𝑗/𝑟, 𝑗 − 1))

= 𝑟𝜑(𝑡𝑗/𝑟, 𝑗)

= 𝜓(𝑡𝑗 , 𝑗),

so 𝜓 satisfies the jump conditions.

Take any pair of consecutive jump times 𝑡𝑗 and 𝑡𝑗+1 in dom(𝜓) such that 𝑡𝑗+1 > 𝑡𝑗 ,
meaning 𝐼 := [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜓). Then, [𝑡𝑗/𝑟, 𝑡𝑗+1/𝑟] is also an
interval of flow in dom(𝜑). For each 𝑡 ∈ 𝐼, we have that 𝜓(𝑡, 𝑗) = 𝑟𝜑(𝑡/𝑟, 𝑗) ∈ 𝐶 because
𝐶 is a closed cone. From flow condition (9) in the definition of hybrid solutions, we have
that 𝜑̇(𝑡, 𝑗) = 𝑓(𝜑(𝑡, 𝑗)) for almost all 𝑡 ∈ 𝐼. Thus, using the chain rule and the fact that
𝑓 is constant-valued, we find that

𝜓̇(𝑡, 𝑗) =
𝑑

𝑑𝑡

(︁
𝑟𝜑̇(𝑡/𝑟, 𝑗)

)︁
= 𝑟

(︃
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡/𝑟

𝜑(𝑡, 𝑗)

)︃(︂
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡

(𝑡/𝑟)

)︂
= 𝑟𝑓(𝜑(𝑡/𝑟, 𝑗))(1/𝑟)

= 𝑓(𝜓(𝑡, 𝑗))

for almost all 𝑡 ∈ 𝐼, so 𝜓 satisfies the flow conditions in the definition of a hybrid solution.
Therefore, 𝜓 is a solution to ℋ.
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Lemma 5. Let ℋ be a conical hybrid system with linear flows and let 𝜑 be any solution
to ℋ. For all 𝑟 > 0, the hybrid arc 𝜓 defined by 𝜓(𝑡, 𝑗) := 𝑟𝜑(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜓) :=
dom(𝜑) is a solution to ℋ.

Proof. Let ℋ = (𝐶, 𝑓,𝐷,𝐺) be a conical hybrid system with linear flows, let 𝜑 be any
solution to ℋ, and for any 𝑟 > 0, let 𝜓(𝑡, 𝑗) := 𝑟𝜑(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝜓) := dom(𝜑).

For each jump time 𝑡𝑗 in dom(𝜑), we have that 𝑡𝑗 is a jump time in dom(𝜓) and 𝜑(𝑡𝑗 , 𝑗−
1) ∈ 𝐷. Since 𝐷 is a cone, 𝜓(𝑡𝑗 , 𝑗 − 1) = 𝑟𝜑(𝑡𝑗 , 𝑗 − 1) is also in 𝐷. By the linearity of 𝐺,

𝐺(𝜓(𝑡𝑗 , 𝑗 − 1)) = 𝐺(𝑟𝜑(𝑡𝑗 , 𝑗 − 1)) = 𝑟𝐺(𝜑(𝑡𝑗 , 𝑗 − 1)) = 𝑟𝜑(𝑡𝑗 , 𝑗) = 𝜓(𝑡𝑗 , 𝑗),

so 𝜓 satisfies the jump conditions.

Take any pair of consecutive jump times 𝑡𝑗 and 𝑡𝑗+1 in dom(𝜑) such that 𝑡𝑗+1 > 𝑡𝑗 ,
meaning 𝐼 := [𝑡𝑗 , 𝑡𝑗+1] is an interval of flow in dom(𝜑), and also in dom(𝜓). For each
𝑡 ∈ 𝐼, we have that 𝜓(𝑡, 𝑗) = 𝑟𝜑(𝑡, 𝑗) ∈ 𝐶 because 𝐶 is a closed cone. Let 𝐴 be the linear
map defining the flow dynamics 𝑥̇ = 𝑓(𝑥) = 𝐴𝑥. From flow condition (9) in the definition
of hybrid solutions, we have that 𝜑̇(𝑡, 𝑗) = 𝐴𝜑(𝑡, 𝑗) = 𝑓(𝜑(𝑡, 𝑗)) for almost all 𝑡 ∈ 𝐼. Thus,

𝜓̇(𝑡, 𝑗) = 𝑟𝜑̇(𝑡, 𝑗) = 𝑟𝐴𝜑(𝑡, 𝑗) = 𝐴(𝑟𝜑(𝑡, 𝑗)) = 𝐴𝜓(𝑡, 𝑗)

for almost all 𝑡 ∈ 𝐼, so 𝜓 satisfies the flow conditions in the definition of a hybrid solution.
Therefore, 𝜓 is a solution to ℋ.
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